知识点:双端输入双端输出差分放大电路的分析-教学文稿.知识讲解
- 格式:ppt
- 大小:1.28 MB
- 文档页数:26
江苏省XY中等专业学校2022-2023-1教案编号:备课组别电子课程名称电子线路所在年级二年级主备教师授课教师授课系部授课班级授课日期课题项目差分放大电路教学目标1.掌握差分放大电路双端输入、双端输出时差模放大倍数的计算方法2.理解共模放大倍数和共模抑制比的概念3.理解射极电阻、射极电源的作用重点差分放大电路对零漂的抑制和电压放大倍数的计算难点对差分放大电路工作过程的分析教法讲授法,讨论法教学设备多媒体展示系统教学环节教学活动内容及组织过程个案补充教学内容一、复习引入A.复习直藕放大器的两个特殊问题?零点漂移问题?二、讲授新课三、放大倍数1.差模放大倍数A V D(1)差模信号:大小相等而极性相反的信号。
II121vv=,II221vv=差模输入方式:两管输入信号为差模信号。
教学内容(2)分析:v I1 = - v I2 ,v O1 = -v O2,则v O = v O1 - v O2 = 2 v O1设单管放大器的放大倍数为A V1、A V2,且A V1 = A V2,于是差模放大倍数为A VD = A V1 = A V21I1O1I11OIOD22vVAvvvvvvA===采用双入-双出的基本差分放大器,A V D等于直接耦合单管放大器的放大倍数。
2.共模放大倍数A V C(1)共模信号:大小相等且极性相同的信号v O1,v O2。
v O = v O1 -v O2共模输入方式:两管输入信号为共模信号。
(2)两管的输入信号vI1 = vI2 = vI,放大器为共模输入,因电路对称,vO1 = vO2 。
其双端输出电压vO = vO1 - vO2 = 0。
即共模放大倍数IIOC===vvvAV(3)实际:A V C≠ 0共模输入、双端输出差放电路的共模放大倍数等于零。
即对共模信号进行了拟制。
温度变化,引起晶体管参数变化,相当于共模信号。
Re存在,即使单端输出,也能抑制零漂。
差分放大器的差模输入方式CDV V A A =差分放大器的共模输入方式课堂小结课后作业板书设计教后札记。
差动放大电路中双端输入双端输出电路的双端输入双端输出差动放大电路:1、简介:双端输入双端输出差动放大电路通常也称为四头差动放大电路,是一种由两个集成电路(IC)组成的放大电路,它可以在两个端子处同时输入信号,可以在另两个端子处同时输出放大后的信号。
它的重要应用之一是用于两路电压采样放大器,能够将输入信号放大后输出,在当今电路设计中发挥着极大的作用。
2、工作原理:双端输入双端输出差动放大电路的工作原理是:两个集成电路(IC)的端子A、B、C、D形成了一个框架,两个输入端A、B与两个输出端C、D之间存在着对称的电压差,当在输入端AB上输入信号时,它们之间的电压差会发生变化,从而影响到输出端CD的电压,从而放大了外部输入信号。
3、优点:(1)双端输入双端输出差动放大电路易于制造,具有很大的单片集成度,不仅能有效地缩短安装空间,而且运行稳定可靠。
(2)双端输入双端输出差动放大电路能够同时对两路输入电压进行采样和放大,非常适合于信号采样、双通道ADC放大器和微波电路等电路设计中的采样和放大应用。
(3)双端输入双端输出差动放大电路的输出纹波比较小,具有更好的动态性能,能够提供更高的信噪比。
4、不足:(1)双端输入双端输出差动放大电路受到相位和施加信号大小的限制,容易出现稳定性问题。
(2)双端输入双端输出差动放大电路的工作稳定性受到输入端口的负载的影响,具有较低的负载灵敏度,很难在一个工作范围内提供较高的动态性能。
(3)双端输入双端输出差动放大电路的输出状态是由两个集成电路的性能共同控制的,一旦其中一个集成电路损坏,会造成整个放大电路的破坏,因此易于引起信号传播故障。
总之,双端输入双端输出差动放大电路具有很多优越的性能,是一种常用的放大电路,它的重要应用之一是用于两路电压采样放大器,但由于其存在的稳定性问题和负载灵敏的问题,使得它的应用还有待进一步完善。
72信号,分别加到两只三极管基极,这样差模信号输入到差分放大器后,将引起两只差分放大管基极电流相反方向的变化,即一只三极管的基极电流在增大时,另一只在减小。
差分放大器中,差模信号是放大器所要放大的信号。
2.共模信号共模信号也是加到两只差分放大管基极的信号,但是这两个信号大小相等、相位相同,所以将引起两只放大管基极电流相同方向的变化,即一只三极管基极电流在增大时,另一只三极管基极电流也在等量增大。
共模信号是无用的信号,是差分放大器所要抑制的信号。
共模信号不是信号源加给差分放大器的,而是由下列一些原因产生的。
(1)温度对三极管影响引起的共模信号。
当三极管工作温度变化时,会引起三极管基极电流的相应变化。
由于两只差分放大管处于同一个工作环境中,而且两只三极管的性能一致,所以温度对两管所产生的影响相同,即相当于给两只三极管输入一个大小、相位相同的共模信号。
(2)放大器直流工作电压波动引起的共模信号。
当直流工作电压+V 大小波动时,对三极管的静态偏置电流大小有影响,直流工作电压波动引起的两只三极管电流变化相同,相当于给两只放大管基极输入了大小相等、方向相反的共模信号。
3.共模抑制比(CMRR)关于共模抑制比(CMRR )主要说明下列几点。
(1)共模抑制比用CMRR 表示,它的定义公式如下:式中:CMRR 为共模抑制比;A d 为差分放大器对差模信号的放大倍数;A c 为差分放大器对共模信号的放大倍数。
(2)差分放大器的共模抑制比愈大愈好。
(3)差分放大器对两种信号的放大倍数之比表明了差分放大器的一个重要特性,这一特性用共模抑制比来表示。
(4)共模抑制比愈大,表明差分放大器对差模信号放大能力愈强,对共模信号抑制能力愈强。
2.5.3 双端输入、双端输出式差分放大器工作原理分析与理解图2-13所示是一级典型的双端输入、双端输出式差分放大器,VT1和VT2是两只同型号的三极管,两只三极管构成一级差分放大器。
图2-13 典型双端输入、双端输出式差分放大器电路中,U i1和U i2是两个输入信号,这两个信号必须大小相等、相位相反。
双入双出的差分放大电路双入双出的差分放大电路是一种常用的电路设计,可以用于信号放大、滤波、混频等应用。
它由两个输入端和两个输出端组成,通过差分放大的方式实现信号的放大和处理。
本文将从差分放大电路的原理、特点和应用角度进行介绍和分析。
我们来了解一下差分放大电路的原理。
差分放大电路的基本结构由两个输入端(IN+和IN-)和两个输出端(OUT+和OUT-)组成,其中IN+和IN-为两个输入信号,OUT+和OUT-为差分输出信号。
差分放大电路通过差分放大器对输入信号进行放大和处理,其中差分放大器由两个晶体管和几个电阻组成。
当IN+和IN-两个输入信号相同时,差分放大器可以将它们的差值放大。
当IN+和IN-两个输入信号不同时,差分放大器可以将它们的差值放大并输出。
差分放大电路具有以下几个特点。
首先,差分放大电路可以抵消共模信号。
共模信号指的是同时作用于IN+和IN-两个输入端的相同幅值和相位的信号。
由于差分放大器对共模信号具有抑制作用,因此差分放大电路可以有效地消除共模干扰。
其次,差分放大电路具有较好的抗干扰能力。
由于差分放大器对共模信号具有抑制作用,因此差分放大电路对于来自外部的共模干扰具有较好的抗干扰能力。
此外,差分放大电路还具有较好的线性度和稳定性,可以实现高精度的信号放大和处理。
差分放大电路在实际应用中具有广泛的应用。
首先,差分放大电路可以用于信号放大。
由于差分放大电路具有较好的线性度和稳定性,因此可以实现高精度的信号放大。
其次,差分放大电路可以用于滤波。
差分放大电路可以通过调整电阻和电容的数值来实现不同的滤波效果,从而满足不同应用场景的需求。
此外,差分放大电路还可以用于混频。
差分放大电路可以通过调整晶体管的工作状态来实现不同的混频效果,从而实现信号的频率转换和处理。
双入双出的差分放大电路是一种常用的电路设计,可以用于信号放大、滤波、混频等应用。
它具有抗干扰能力强、线性度高、稳定性好等特点,并且在实际应用中具有广泛的应用。
差分电路知识点总结一、差分电路的基本概念1. 差分电路的定义差分电路也称为差模电路,它是一种利用两个输入端的电压差来产生输出信号的电路,其基本原理是对两个输入端的电压进行差分运算。
差分电路可以用来放大、滤波、比较、数字化等,是现代电子系统中不可或缺的一部分。
2. 差分信号在差分电路中,输入信号通常以差分信号的形式处理。
差分信号是指两个信号的差值,通常用ΔV来表示,它可以表示为ΔV = V2 - V1,其中V1和V2分别代表两个输入端的电压信号。
差分信号的优势在于能够消除共模干扰,提高信号的可靠性和精度。
3. 差模运算放大器在差分电路中,常用的放大器是差模运算放大器(differential amplifier,简称差动放大器或差分放大器)。
差分放大器有两个输入端和一个输出端,通过放大输入端的差分信号来产生输出信号。
差分放大器通常具有高增益、低失调、高共模抑制比等特性,适用于多种应用场景。
二、差分电路的特性1. 共模抑制比共模抑制比是衡量差分电路抑制共模干扰能力的重要指标,通常用CMRR来表示。
CMRR 越高,表示差分电路对共模信号的抑制能力越强,其计算公式为CMRR =20log10(Av/Acm),其中Av表示差分增益,Acm表示共模增益。
2. 带宽差分电路的带宽是指其能够正常工作的频率范围,通常用3dB带宽来表示。
带宽越宽,表示差分电路对高频信号的处理能力越强,能够更好地保持信号的准确性和完整性。
3. 驱动能力差分电路的驱动能力是指其输出端对负载的驱动能力,通常用开环输出阻抗来表示。
开环输出阻抗越小,表示差分电路对负载的驱动能力越强,能够输出更大的功率和电流。
4. 阻抗匹配差分电路的输入输出端通常需要与外部电路进行阻抗匹配,以确保信号的传输和处理的完整性和准确性。
阻抗匹配可以通过变压器、阻抗转换器、匹配网络等方式来实现。
5. 温度漂移差分电路的性能通常会受到温度的影响,其参数和特性在不同温度下可能会发生漂移。
目录1 课程设计的目的与作用 (1)2 设计任务及所用multisim环境的介绍 (1)2.1设计任务 (1)2.1.1双端输入双端输出恒流源式差分放大电路的设计 (1)2.1.2对双端输入双端输出恒流源式差分放大电路的分析 (1)2.2 multisim10.0的介绍 (1)3 电路模型的建立 (3)4 理论分析及计算 (3)4.1电路组成 (3)4.2静态工作点分析 (4)4.3动态工作点分析 (4)5仿真结果分析 (4)6设计总结和体会 (7)6.1 设计总结 (7)6.2心得体会 (7)7 参考文献 (8)1 课程设计的目的与作用(1).了解并熟悉multisim的使用,能熟练的进行仿真(2).加深理解双端输入双端输出恒流源式差分放大电路的原理及改进.(3).通过自己亲自动手设计和搭建仿真环境,不仅对书上的理论知识得到巩固和深入理解,也增强了动手实践能力和使用先进软件进行设计的能力.2 设计任务及所用multisim环境的介绍2.1设计任务2.1.1双端输入双端输出恒流源式差分放大电路的设计设计一个双端输入双端输出恒流源式差分放大电路,自己独立完成,在实验中通过自己动手设计仿真电路,达到真正明白原理的目的.2.1.2对双端输入双端输出恒流源式差分放大电路的分析(1),正确理解电路中所设置的参数对电路输出的影响.(2),正确处理理论数据和和仿真数据,通过比较加深对电路的理解.2.2 multisim10.0的介绍Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。
针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。
其中教育版适合高校的教学用。