实验四 二阶开环及闭环系统的频率特性曲线
- 格式:docx
- 大小:876.51 KB
- 文档页数:4
实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
电 子 科 技 大 学实 验 报 告学生姓名:学号:指导老师:实验项目名称:二阶系统时频域分析实验一. 实验目的通过二阶系统的时频域分析验证课程讲授内容,加深学生对理论知识的理解程度,扩大学生视野,掌握基本的频域图解方法和时域系统校正方法。
1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、tp 、ts 的计算。
4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp 、tp 值,并与理论计算值作比对。
5. 了解和掌握Ⅰ型二阶开环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω 和虚频特性)Im(ω的计算。
6. 了解和掌握欠阻尼Ⅰ型二阶闭环系统中的自然频率n ω、阻尼比ξ对开环参数幅值穿越频率c ω和相位裕度γ的影响,及幅值穿越频率c ω和相位裕度γ的计算。
7. 研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。
8. 了解和掌握Ⅰ型二阶开环系统对数幅频曲线、相频曲线、和幅相曲线的构造及绘制方法二. 实验原理及装置图1-1是典型Ⅰ型二阶单位反馈闭环系统。
图1-1 典型Ⅰ型二阶单位反馈闭环系统Ⅰ型二阶系统的开环传递函数:)1()(+=Ts s T K s G i Ⅰ型二阶系统的闭环传递函数标准式:2222)(1)()(nn ns s s G s G s ωξωωφ++=+= 自然频率(无阻尼振荡频率):TT Ki =n ω 阻尼比:KT T 21i =ξ有二阶闭环系统模拟电路如图1-2所示。
它由积分环节(A2单元)和惯性环节(A3单元)的构成,其积分时间常数T i =R 1*C 1=1秒,惯性时间常数 T =R 2*C 2=0.1秒。
主要内容系统闭环频率特性通过频率特性曲线分析稳态性能指标频域动态性能指标频率域特性指标与时域瞬态指标的关系2)()(1)()()(1s H s G s H s G s H +⋅=4环幅频特性。
闭环幅频特性曲线闭环对数幅频曲线二、由闭环频率特性分析系统的时域响应频率特性分析法比时域性能分析简便,且有成熟的图解法可供使用,但频率特性分析是一种概略性的间接方法,在要求系统性能指标直接而具体时,还需从时域响应面进行讨论。
在已知闭环系统稳定的条件下,可根据系统的闭环幅频特性曲线,对系统的动态过程进行定性分析与定量估算。
51、通常的闭环频域有以下几个指标:V零频幅值:ω=0时闭环幅频特性的数值(反映系统静差(误差))V谐振频率ωr:闭环系统频率特性出现谐振峰值时的频率值V谐振峰值M r:系统闭环频率特性幅值的最大值,反映系统的平稳性,并非所有闭环频率特性的中频段有谐振峰值,若出现了谐振峰值,表明系统的阻尼比较小615M r、σ与ζ的关系曲线当相角裕量γ为30o ~60o 时,对应二阶系统的阻尼比ζ为0.3~0.6在ζ≤0.707时,二阶系统的相角裕量γ与阻尼比ζ之间的关系近似为:ζ=0.01γV谐振频率ωr表征系统瞬态响应的速度。
ωr值越大,响应时间越快。
对于弱阻尼系统(ζ较小),谐振频率ωr与阶跃响应的阻尼振荡频率ωd接近。
V截止频率(带宽频率)ωb当系统闭环幅频特性的幅值M(ω)降到零频率幅值的0.707(或零分贝值以下3dB)时,对应的频率ωb称为截止频率。
0~ωb的频率范围称为带宽它反映系统的快速性和低通滤波特性。
V剪切率ωc幅值=1时的频率ωc,称为剪切率,它既反映系统的相角裕度(相角裕度大,剪切率应较平缓),又表征系统从噪声中辨别信号的能力(剪切率平缓,带宽ωb大,对高频噪声的抑制不利)。
17应注意,剪切频率ωc处斜率平缓(如以-20dB/dec过0dB线)时,系统相角裕量大;而斜率陡峭时,说明具有负相角的环节集图5 剪切率中叠加于此,带来大的负相角,如图5所示,则易造成系统不稳定。
.东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417 实验组别:同组人员:实验时间:2016年12月02日评定成绩:审阅教师:目录一.实验目的 (3)二.实验原理 (3)三. 实验设备 (3)四.实验线路图 (4)五、实验步骤 (4)六、实验数据 (5)七、报告要求 (6)八、预习与回答 (10)九、实验小结 (10)一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。
建模一般有机理建模和辨识建模两种方法。
机理建模就是根据系统的物理关系式,推导出系统的数学模型。
辨识建模主要是人工或计算机通过实验来建立系统数学模型。
两种方法在实际的控制系统设计中,常常是互补运用的。
辨识建模又有多种方法。
本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。
还有时域法等。
准确的系统建模是很困难的,要用反复多次,模型还不一定建准。
模型只取主要部分,而不是全部参数。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即,测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。
测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差Δt,则相位差。
这种方法直观,容易理解。
就模拟示波器而言,这种方法用于高频信号测量比较合适。
(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。
实验四 二阶开环及闭环系统的频率特性曲线(北京理工大学 自动化学院 班级: 姓名: 学号:)摘要:自动控制中有两个曲线是研究的重点,它们分别是波特图和奈奎斯特曲线,本实验将根据如是电路图有计算机绘制以上两种图,并研究相关参数。
关键词:开环、闭环、波特图、奈奎斯特曲线。
一、 实验目的1. 了解和掌握Ⅰ型二阶闭环系统中的对数幅频特性L (ω)和相频特性,实频特性Re(ω)和虚频特性Im(ω)的计算。
2. 了解和掌握欠阻尼Ⅰ型二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr)的影响及ωr 和L(ωr) 的计算。
3. 了解阻尼比ξ对开环参数幅值穿越频率ωc 和相位裕度的影响及幅值穿越频率ωc 和相位裕度的计算。
4. 了解和掌握Ⅰ型二阶闭环系统对数幅频曲线、相频曲线和幅相曲线的构造及绘制方法。
二、 实验过程被测系统结构所示被测系统传函:()()()()1()()C s G s s R s G s H s φ==+ 以角频率ω为参数的闭环系统对数幅频特性和相频特性为:()20lg |()|, ()()L j j ωφωφωφω==∠自然频率为n ω=阻尼比为ξ=谐振频率为r ωω=谐振峰值为()r L ω=二阶闭环系统模拟电路的各环节参数:积分环节的积分时间常数11i T R C =⨯=1s ,惯性环节的惯性常数32T R C =⨯=0.1s ,开环增益 3/K R R =。
设K=25(R=4K Ω), ωn=15.81rad/s , ξ=0.316.计算得ωr=14.14rad/s ,L (ωr ) =4.44dB 。
二阶闭环系统频率特性测试电路如 图1所示。
图1 二阶闭环系统频率特性测试电路测试结束后(约10min),将显示被测系统的闭环对数幅频、相频特性曲线(bode图)和幅相曲线(奈奎斯特图),分别如下图3、图四所示:图3图4三、实验结果表 1 不同参数系统的谐振频率和谐振峰值开环增益K 惯性常数T积分常数iT谐振频率/(1rad s-⋅) 谐振峰值/dBL计算值测量值计算值测量值25 0.1114.143 14.00 4.443 4.03 0.2 10.604 10.50 7.198 6.67 0.3 8.818 8.00 8.878 7.7720 0.1 0.5 18.708 19.20 6.301 6.09 0.2四、思考题1.说明在实际应用中,开环和闭环的不同特性。
1364957203实验三 频率特性曲线测试3.2.3 二阶闭环系统的频率特性曲线一.实验目的1. 了解和掌握二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。
2. 了解和掌握欠阻尼二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的影响及ωr 和L(ωr ) 的计算。
3. 观察和分析欠阻尼二阶开环系统的谐振频率ωr 、谐振峰值L(ωr ),并与理论计算值作比对。
4. 改变被测系统的电路参数,画出闭环频率特性曲线,观测谐振频率和谐振峰值,填入实验报告。
二.实验内容及步骤1.被测系统模拟电路图的构成如图3-2-3所示,观测二阶闭环系统的频率特性曲线,测试其谐振频率r ω、谐振峰值)(r L ω。
2.改变被测系统的各项电路参数,画出其系统模拟电路图,及闭环频率特性曲线,並计算和测量系统的谐振频率r ω及谐振峰值)(r L ω,填入实验报告。
图3-2-3 二阶闭环系统频率特性测试电路实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应分析实验项目,选择二阶系统,就会弹出‘频率特性扫描点设置’表。
在该表中用户可根据自己的需要填入各个扫描点频率(本实验机选取的频率值f,以0.1Hz 为分辨率),如需在特性曲线上标注显示某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),则可在该表的扫描点上方小框内点击一下(打√)。
设置完后,点击确认后将弹出虚拟示波器的频率特性界面,点击开始,即可按‘频率特性扫描点设置’表规定的频率值,实现频率特性测试。
②测试结束后(约十分钟),可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的闭环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。
实验四二阶系统的频率响应与频率特性测量一、实验目的1.掌握频率特性的实验测试方法,进一步理解频率特性的物理意义2.掌握根据频率响应实验结果绘制Bode图的方法3.根据二阶系统的Bode图,确定系统的数学模型4.掌握二阶系统的频域指标与时域指标的对应关系二、实验仪器与设备1.自动控制原理学习机2.计算机(安装自动控制原理实验系统)3.万用表及接线三、实验原理1.输入、输出波形直接测试法如图4-1所示,给定的被测对象是一个稳定的系统。
由实验系统提供正弦信号,每选择一个频率,即可利用实验系统获得输入、输出随时间变化的曲线,取输出稳定后同周期的输入、输出曲线如图4-2。
图4-1 测量被控系统的频率响应图4-2 稳定后系统的输入输出曲线幅频特性)(2)(2)(ωωωmmXYjG=相频特性oTtjG360)(⨯∆-=∠ω2.李沙育图形法取被测对象某一选定频率下的输入信号x (t )和输出信号y (t )(去掉不稳定部分),利用实验系统做X-Y 图,得到一个椭圆图形,如图4-3所示。
图4-3 李沙育图形幅频特性:)(2)(2)(ωωωm m X Y j G =相频特性:如图4-3,椭圆长轴在第一、三象限,()()()ωωωφm 01-2Y 2Y sin=若椭圆长轴在第二、四象限,()()()ωωωφm 01-o 2Y 2Y sin-180=随着角频率的增加,大多数情况下椭圆逆时针运动,表明输出信号Y (t )滞后于输入信号X (t ),相位的计算结果要添加一个负号,如果椭圆顺时针运动,Y (t )超前于X (t ),计算结果为正。
幅值取两倍是为了便于测量。
3.测试频率的选取选取合适的实验测试频率范围是准确确定系统频率特性的关键。
控制系统多为低通滤波器,在频率很低时,系统的输出能够复现输入信号,通常,取被测对象转折频率的1/10作为起始测试频率,若对象模型未知,则先确定最大测试频率,方法是先测出输入信号频率为0时输出的幅值Y (0),逐渐增大输入信号频率,直至输出幅值Y m 为Y (0)/(50-100),此时频率便可确定为最大测试频率,测试频率可以在0与max ω之间选取若干点。
2014-2015-1实验报告自动控制理论学校:南昌大学院系:信息工程学院班级:姓名:学号:日期:目录实验一典型环节的模拟研究 (1)实验二二阶系统瞬态响应和稳定性 (10)实验三三阶系统的瞬态响应和稳定性 (15)实验四一阶、二阶系统的频率特性 (20)实验五频率特性的时域分析 (41)实验六频域法串联超前校正 (44)实验七频域法串联滞后校正 (52)实验八时域法串联比例微分校正和时域法微分反馈校正 .. 59实验一典型环节的模拟研究一. 实验要求1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响三.实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。
如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路实验步骤: 注:‘S ST’不能用“短路套”短接!(1)用信号发生器(B1)的‘阶跃信号输出’ 和‘幅度控制电位器’构造输入信号(Ui ):B1单元中电位器的左边K3开关拨下(GND ),右边K4开关拨下(0/+5V 阶跃)。
阶跃信号输出(B1的Y 测孔)调整为4V (调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y 测孔)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(31’档)① 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),用示波器观测A6输出端(Uo )的实际响应曲线Uo (t )。
8由开环频率特性分析闭环系统开环频率特性分析是指对闭环控制系统的开环传递函数进行频率域分析,以了解系统在频率上的响应特性。
通过开环频率特性分析可以得到系统的幅频特性和相频特性,有助于设计和优化闭环控制系统。
一、开环传递函数的形式闭环系统的开环传递函数可以用分子多项式与分母多项式的比值表示。
设闭环系统的开环传递函数为G(s),则有:G(s)=K(s)/(1+K(s)H(s))其中,K(s)为控制器的传递函数,H(s)为被控对象的传递函数。
控制器可以采用比例、积分、微分等控制算法。
被控对象可以是线性或非线性系统。
二、幅频特性幅频特性是指开环传递函数G(s)的幅值与频率之间的关系。
为了分析幅频特性,可以将G(s)表示为幅度与相位的乘积形式:G(s)=A(s)e^jθ(s)其中,A(s)为幅值,θ(s)为相位。
1.幅频曲线幅频曲线是表示幅值与频率之间关系的曲线。
在频率为0时,幅值为A0;随着频率的增大,幅值逐渐下降,直到达到临界频率Fc,幅值下降到A0的1/√2倍;随着频率继续增大,幅值持续下降,最终趋近于0。
2.切斜率切斜率是指幅频曲线上两点之间的斜率。
在低频段,切斜率较小;在高频段,切斜率较大。
切斜率可以用于衡量系统的动态响应速度,切斜率越大,系统的动态响应越快。
三、相频特性相频特性是指相位与频率之间的关系。
相位是指输入信号与输出信号之间的相位差。
1.相频曲线相频曲线是表示相位与频率之间关系的曲线。
在低频段,相位变化较小,接近于0;在高频段,相位变化较大,最终趋近于-180度。
2.相移相移是指相位差的变化。
相移可以用来衡量系统的时滞情况,相位差越大,系统的时滞越大。
四、开环频率特性分析方法1. Bode图Bode图是一种常用的频率特性分析方法,可以直观地表示系统的幅频特性和相频特性。
Bode图采用对数坐标,将幅度(单位为dB)和相位(单位为度)作为纵坐标,频率(单位为Hz)作为横坐标。
2. Nyquist图Nyquist图是一种复平面上的频率特性分析方法,可以直观地显示系统的稳定性。
实验四 二阶开环及闭环系统的频率特性曲线
(北京理工大学 自动化学院 班级: 姓名: 学号:)
摘要:自动控制中有两个曲线是研究的重点,它们分别是波特图和奈奎斯特
曲线,本实验将根据如是电路图有计算机绘制以上两种图,并研究相关参数。
关键词:开环、闭环、波特图、奈奎斯特曲线。
一、 实验目的
1. 了解和掌握Ⅰ型二阶闭环系统中的对数
幅频特性L (ω)和相频特性,实频特性Re(ω)和虚频特性Im(ω)的计算。
2. 了解和掌握欠阻尼Ⅰ型二阶闭环系统
中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr)的影响及ωr 和L(ωr) 的计算。
3. 了解阻尼比ξ对开环参数幅值穿越频
率ωc 和相位裕度的影响及幅值穿越频率ωc 和相位裕度的计算。
4. 了解和掌握Ⅰ型二阶闭环系统对数幅
频曲线、相频曲线和幅相曲线的构造及绘制方法。
二、 实验过程
被测系统结构所示被测系统传函:
()()
()()1()()
C s G s s R s G s H s φ=
=+ 以角频率ω为参数的闭环系统对数幅频特性和相频特性为:
()20lg |()|, ()()L j j ωφωφωφω==∠自然频率为
n ω=
阻尼比为
ξ=
谐振频率为
r ωω=谐振峰值为
()r L ω=
二阶闭环系统模拟电路的各环节参数:
积分环节的积分时间常数
11i T R C =⨯=1s ,
惯性环节的惯性常数
32T R C =⨯=0.1s ,
开环增益 3/K R R =。
设K=25(R=4K Ω), ωn=15.81rad/s , ξ=0.316.
计算得ωr=14.14rad/s ,L (ωr ) =4.44dB 。
二阶闭环系统频率特性测试电路如 图1所示。
图1 二阶闭环系统频率特性测试电路
测试结束后(约10min),将显示被测系统的闭环对数幅频、相频特性曲线(bode图)和幅相曲线(奈奎斯特图),分别如下图3、图四所示:
图3
图4
三、实验结果
表 1 不同参数系统的谐振频率和谐振峰值
开环增益K 惯性常
数T
积分常数
i
T
谐振频率/(1
rad s-⋅) 谐振峰值/dB
L
计算值测量值计算值测量值
25 0.1
1
14.143 14.00 4.443 4.03 0.2 10.604 10.50 7.198 6.67 0.3 8.818 8.00 8.878 7.77
20 0.1 0.5 18.708 19.20 6.301 6.09 0.2
四、思考题
1.说明在实际应用中,开环和闭环的不同
特性。
开环系统制在一个控制系统中系统的输
入信号不受输出信号影响的控制系统。
也就是,不将控制的结果反馈回来影响
当前控制的系统闭环系统就比较复杂,输出量直接或间接地反馈到输入端,形成闭环参与控制的系统称为闭环控制系统。
也叫反馈控制系统。
为了实现闭环控制,必须对输出量进行测量,并将测量的结果反馈到输入端与输入量进行相减得到偏差,再由偏差产生直接控制作用去消除偏差。
整个系统形成一个闭环。
对于自动控制系统而言闭环系统,任何一个环节的输入都可以受到输出的反馈作用。
控制装置的输入受到输出
的反馈作用时,该系统就称为全闭环系
统,或简称为闭环系统。
2.仔细观察对比开环和闭环幅频特性,可
以发现在低频段和高频段两条曲线逐渐趋向重合,请分析原因。
在低频和高频段,开环和闭环的幅频率特性逐渐趋向于相同的状态,所以两条曲线逐渐趋向重合,在中频段,闭环和开环的幅度受到频率的影响较大,两条曲线的差别较大。
五、结束语
本次实验是计算机绘制波特图和奈奎斯特图,通过改变电路箱上的电阻电容接法来改变传递函数,对系统的改变在计算机上的曲线变化非常明显,很大程度节省了人力计算。
参考文献
[1]胡寿松自动控制理论(第六版)科学出版社 2013
[2] 姜增如自动控制理论实验北京理工大学出版社 2010。