第五章 辐射采暖与辐射供冷
- 格式:ppt
- 大小:837.00 KB
- 文档页数:32
第5章 辐射采暖与辐射供冷5.1 定义与分类5.1.1 辐射采暖(供冷)定义主要依靠供热(冷)部件与围护结构内表面之间的辐射换热向房间供热(冷)的采暖(供冷)方式称为辐射采暖(供冷)。
辐射采暖与对流采暖的主要区别:辐射采暖时,房间各围护结构内表面(包括供热部件表面)的平均温度m s t .高于室内空气温度R t ,即m s t .> R t对流采暖时,m s t .< R t 。
通常称辐射采暖的供热部件为采暖辐射板。
辐射供冷时,房间各围护结构内表面(包括供冷部件表面)的平均温度m s t .低于室内空气温度R t ,即m s t .<R t5.1.2 辐射板的分类1.按与建筑物的结合关系埋管式辐射板:将通冷、热媒(冷冻水或热水)的金属管或塑料管埋在建筑结构内,与其合为一体,如图5-1(a);风道式辐射板:利用建筑结构内的连贯空腔输送热媒(热空气等)向室内供热,如图5-l(b)。
图5-1 与建筑结构结合的辐射采暖板(整体式)(a)埋管式 (b)风道式l-防水层 2-水泥找平层 3-保温层 4-采暖辐射板5-钢筋混凝土板 6-加热管(流通热媒的钢管) 7-抹灰层贴附式辐射板:将辐射板贴附于建筑结构表面,如图5-2所示。
单体式:由加热管1、挡板2、辐射板3(或5)和隔热层4制成的金属辐射板。
如图5-3所示。
单体式辐射板还可串联成带状辐射板吊在顶棚下,挂在墙上或柱上,如图5-4。
吊棚式辐射板:将通热媒(或冷媒)的管道4、隔热层3和装饰孔板5构成的辐射面板用吊钩挂在房间钢筋混凝土顶板2之下,如图5-5所示。
这种辐射板也常用于辐射供冷。
2.采暖辐射板按其位置5.1.3 辐射采暖的特点1.辐射供暖比对流供暖舒适辐射采暖同对流采暖相比,↑围护结构内表面温度 (R m s t t .),创造了对人体有利的热环境,↓人体向围护结构内表面的辐射放热量,热舒适度增加。
辐射采暖同对流采暖相比,↑辐射换热的比例,但仍存在对流换热。
《暖通空调》教学大纲大纲说明课程代码:5135031总学时:72学时(讲课66学时、实验6学时)总学分:4.5课程类别:专业选修适用专业:建筑环境与设备工程预修要求:传热学、工程热力学、流体力学、建筑环境学、流体输配管网、热质交换原理与设备一、课程的性质、目的、任务:本课程是建筑环境与设备工程专业学生的一门主干专业课程,其目的是通过该门课程的学习,使学生了解创造建筑物热、湿、空气品质环境的技术,即采暖、通风与空气调节技术,涵盖了所培养的毕业生将来从事准业工作所需的主要专业技术。
通过该课程的学习,并辅以一定的实践环节训练后,能具有一般建筑的采暖、通风与空调系统的设计与管理的初步能力。
二、课程教学的基本要求:1、掌握建筑冷热负荷和湿负荷的计算;2、掌握各种采暖、通风与空调系统的组成、功能、特点和调节方法;3、掌握系统中主要设备、构件的构造、工作原理、特性和选用方法;4、了解建筑节能、暖通空通自动控制、暖通空通领域的新发展和新技术。
三、大纲的使用说明:本大纲适用于建筑环境与设备工程专业本科教学。
大纲正文第一章绪论学时:2学时(讲课2学时)本章讲授要点:采暖通风与空气调节的含义、工作原理、分类。
重点:采暖通风与空气调节系统的工作原理。
1、采暖通风与空气调节的含义;2、采暖通风与空气调节系统的工作原理;3、采暖通风与空气调节系统的分类;4、采暖通风与空气技术的发展概况。
第二章热负荷、冷负荷和湿负荷的计算 6学时(讲课6学时)本章讲授要点:室内外空气计算参数,冬季建筑的热负荷,夏季建筑围护结构的冷负荷,室内热源散热引起的冷负荷,湿负荷,新风负荷及空调室内的冷负荷与制冷系统的冷负荷计算。
重点:热负荷、冷负荷和湿负荷的计算。
第一节:室内外空气计算参数第二节:冬季建筑的热负荷第三节:夏季建筑围护结构的冷负荷第四节:室内热源散热引起的冷负荷第五节:湿负荷第六节:新风负荷第七节:空调室内的冷负荷与制冷系统的冷负荷第八节:计算举例第三章全水系统 6学时(讲课6学时)本章讲授要点:全水系统的末端装置,热水采暖系统的分类与特点,高层建筑热水采暖系统,分户热计量采暖系统,热水采暖系统的作用压头,热水采暖系统的水力计算,热水采暖系统的失调与调节,全水风机盘管系统。
第5章 辐射采暖与辐射供冷5.1 定义与分类华北电力大学-荆有印5.1.1 辐射采暖(供冷)定义主要依靠供热(冷)部件与围护结构内表面之间的辐射换热向房间供热(冷)的采暖(供冷)方式称为辐射采暖(供冷)。
辐射采暖与对流采暖的主要区别:辐射采暖时,房间各围护结构内表面(包括供热部件表面)的平均温度m s t .高于室内空气温度R t ,即m s t .> R t对流采暖时,m s t .< R t 。
通常称辐射采暖的供热部件为采暖辐射板。
辐射供冷时,房间各围护结构内表面(包括供冷部件表面)的平均温度m s t .低于室内空气温度R t ,即m s t .<R t5.1.2 辐射板的分类1.按与建筑物的结合关系埋管式辐射板:将通冷、热媒(冷冻水或热水)的金属管或塑料管埋在建筑结构内,与其合为一体,如图5-1(a);风道式辐射板:利用建筑结构内的连贯空腔输送热媒(热空气等)向室内供热,如图5-l(b)。
图5-1 与建筑结构结合的辐射采暖板(整体式)(a)埋管式 (b)风道式l-防水层 2-水泥找平层 3-保温层 4-采暖辐射板5-钢筋混凝土板 6-加热管(流通热媒的钢管) 7-抹灰层贴附式辐射板:将辐射板贴附于建筑结构表面,如图5-2所示。
单体式:由加热管1、挡板2、辐射板3(或5)和隔热层4制成的金属辐射板。
如图5-3所示。
单体式辐射板还可串联成带状辐射板吊在顶棚下,挂在墙上或柱上,如图5-4。
吊棚式辐射板:将通热媒(或冷媒)的管道4、隔热层3和装饰孔板5构成的辐射面板用吊钩挂在房间钢筋混凝土顶板2之下,如图5-5所示。
这种辐射板也常用于辐射供冷。
2.采暖辐射板按其位置5.1.3 辐射采暖的特点1.辐射供暖比对流供暖舒适辐射采暖同对流采暖相比,↑围护结构内表面温度 (R m s t t .),创造了对人体有利的热环境,↓人体向围护结构内表面的辐射放热量,热舒适度增加。
辐射采暖同对流采暖相比,↑辐射换热的比例,但仍存在对流换热。
5.第五讲辐射采暖与辐射供冷本章主要内容:辐射采暖、供冷:特点与分类;系统型式;设计计算。
提出问题:辐射供暖、供冷之间有什么区别?辐射供冷供暖与传统供热供冷有什么区别?辐射供冷供暖对房间舒适度方面有何意义?5.1 辐射采暖的特点与分类一、辐射采暖得定义:•依靠供热部件与围护结构内表面之间的辐射换热向房间提供热量;•供热:房间各围护结构内表面的平均温度高于室内空气温度:T s.m> t R•供冷:平均温度低于室内空气温度:T s.m< t R二、分类:表、图示讲解三、特点:1)辐射采暖时:热表面向围护结构内表面和室内设施辐射热量2)各表面:吸收热量→辐射→再吸收→再辐射→反复过程3)传热过程:辐射为主、兼有对流换热4)在辐射强度和温度的双重作用下,造成了符合人体散热要求的热状态,具有较佳的舒适感;5)建筑内表面温度↑,对人体的冷辐射↓,舒适感↑6)室内空气不会急剧流动,粉尘飞扬的机会减少,卫生条件↑7)不需要在室内布置散热器和安装连接支管,不占建筑面积;8)吊顶辐射可兼作夏季降温的供冷表面9)用塑料管代替金属管作为埋管10)辐射采暖的室内设计温度可以降低,节省供暖能耗四、辐射换热系统的置换通风:图示5.2 辐射采暖系统一、热媒种类:1)热水:温升较慢;用于:埋管式、窗下式、间墙式2)蒸汽:温升快,不适于埋管式3)热空气:将墙板、楼板内的空腔作为热空气的风道4) 电:用电加热辐射板,板面温度易控制,调节方便,消耗高品位电能。
二、辐射供暖的类型1)低温辐射供暖:板面温度<80℃低温辐射供暖系统的设计应注意的问题:保证水温、水量,管网的阻力要平衡,宜采用同程式;为保证流量分配均匀,支管长度要大于联箱长度;防止空气窜入系统,防止空气聚集,形成气塞;辐射顶棚内不应装置排气设施;管道的胀力不允许传递给辐射板;埋管禁止使用丝扣和法兰连接;顶面辐射板应靠外墙布置;系统供水温度和供回水温度差(规范4.4.3);辐射板表面温度(规范4.4.2)。
辐射采暖及供冷
辐射采暖及供冷是一种利用建筑物内部表面进行采暖,除湿和制冷的系统,也是目前最舒适的室内空调末端系统。
他通过毛细管铺设或嵌入在墙体,吊顶以及地板内,仅占用10~15mm厚的室内空间,节约了空间。
辐射换热末端可使用与室内设置温度温差较小的冷热源,从而提高整个能源系统的工作效率,节约了能源。
同时,辐射末端无风机及外露水路系统,无吹风感,无噪音,无霉菌滋生危险营造出的室内环境安全舒适,尤其适合老人小孩使用。
将辐射末端与太阳能系统相结合。
在冬季,他可以利用被太阳能热水器加热的热水作为热媒,利用埋设在墙体,吊顶和地板内的毛细管均匀的向室内散热;在夏季,太阳能空调制取的冷水作为冷媒,一部分用来降低室内的温度,另一部分更冷的水用来除湿。
辐射采暖及供冷系统
除湿毛细管重力柜嵌入墙体的毛细管
辐射采暖及制冷末端主要优点有:采用小温差换热,冷热源形式多样;无风机,安静无噪声;易于建筑一体化,节约空间;安全免维修,毛细管材料科回收利用等。
辐射供冷供暖
辐射供冷供暖是一种利用辐射热传递原理来进行供冷和供暖的技术。
该技术通过将冷热源通过辐射热传递给周围环境,从而实现供冷或供暖的效果。
在辐射供冷中,通过将冷热源放置在需要供冷的区域,冷热源通过辐射热的传递,将热量传递给空气或其他物体,从而使该区域的温度降低,实现供冷效果。
常见的辐射供冷技术包括利用地下水进行辐射供冷、利用冷热交换器将热量传递给空气等。
而在辐射供暖中,与辐射供冷相反,通过将热热源放置在需要供暖的区域,供热源通过辐射热的传递,将热量传递给空气或其他物体,从而使该区域的温度升高,实现供暖效果。
常见的辐射供暖技术包括利用太阳能进行辐射供暖、利用地板或墙壁等表面进行辐射供暖等。
辐射供冷供暖技术具有能耗低、环保、温度均匀等优点,能够提供较为舒适的供冷和供暖效果,因此在建筑、工业生产等领域得到了广泛应用。