暖通空调-第5章-辐射采暖与辐射供冷
- 格式:doc
- 大小:358.50 KB
- 文档页数:17
第5章 辐射采暖与辐射供冷5.1 定义与分类5.1.1 辐射采暖(供冷)定义主要依靠供热(冷)部件与围护结构内表面之间的辐射换热向房间供热(冷)的采暖(供冷)方式称为辐射采暖(供冷)。
辐射采暖与对流采暖的主要区别:辐射采暖时,房间各围护结构内表面(包括供热部件表面)的平均温度m s t .高于室内空气温度R t ,即m s t .> R t对流采暖时,m s t .< R t 。
通常称辐射采暖的供热部件为采暖辐射板。
辐射供冷时,房间各围护结构内表面(包括供冷部件表面)的平均温度m s t .低于室内空气温度R t ,即m s t .<R t5.1.2 辐射板的分类1.按与建筑物的结合关系埋管式辐射板:将通冷、热媒(冷冻水或热水)的金属管或塑料管埋在建筑结构内,与其合为一体,如图5-1(a);风道式辐射板:利用建筑结构内的连贯空腔输送热媒(热空气等)向室内供热,如图5-l(b)。
图5-1 与建筑结构结合的辐射采暖板(整体式)(a)埋管式 (b)风道式l-防水层 2-水泥找平层 3-保温层 4-采暖辐射板5-钢筋混凝土板 6-加热管(流通热媒的钢管) 7-抹灰层贴附式辐射板:将辐射板贴附于建筑结构表面,如图5-2所示。
单体式:由加热管1、挡板2、辐射板3(或5)和隔热层4制成的金属辐射板。
如图5-3所示。
单体式辐射板还可串联成带状辐射板吊在顶棚下,挂在墙上或柱上,如图5-4。
吊棚式辐射板:将通热媒(或冷媒)的管道4、隔热层3和装饰孔板5构成的辐射面板用吊钩挂在房间钢筋混凝土顶板2之下,如图5-5所示。
这种辐射板也常用于辐射供冷。
2.采暖辐射板按其位置5.1.3 辐射采暖的特点1.辐射供暖比对流供暖舒适辐射采暖同对流采暖相比,↑围护结构内表面温度 (R m s t t .),创造了对人体有利的热环境,↓人体向围护结构内表面的辐射放热量,热舒适度增加。
辐射采暖同对流采暖相比,↑辐射换热的比例,但仍存在对流换热。
第1章供暖:又称采暖,是指向建筑物供给热量,保持室内一定温度。
通风:用自然或机械的方法向某一房间或空间送入室外空气,和由某一房间或空间排出空气的过程。
空气调节:对某一房间或空间的温度、湿度、洁净度和空气流动速度等进行调节与控制,并提供足够的新鲜空气。
湿球温度:将从感温球上包裹有浸在水中的湿纱布的温度计上读取的温度,以tw表示,亦可看成湿纱布气膜内水蒸气分压力Pv`所对应的饱和温度。
相对湿度:湿空气中水蒸气分压力Pv与同一温度同样总压力的饱和湿空气中水蒸气分压力。
表明湿空气与同温下饱和湿空气的偏离程度,反映所含水Ps的比值,以ψ表示,即ψ=PvPs蒸汽的饱和程度。
含湿量:1kg干空气所带有的水蒸汽含量,以d表示,即d=mvma露点温度:湿空气中水蒸气分压力Pv所对应的饱和温度,以td表示。
夏季空调室外计算干球(湿球)温度:夏季室外空气历年平均不保证50h的干球(湿球)温度。
冬季空调室外计算温度:历年平均不保证1天的日平均温度。
供暖室外计算温度:冬季历年不保证5天的日平均温度。
夏季通风室外计算温度(相对湿度):历年最热月14时的月平均温度(相对湿度)的平均值。
第2章1.建筑物围护结构的耗热量包括哪些?如何计算?包括围护结构的基本耗热量和围护结构附加耗热量(朝向修正率xch、风力修正率xf、外门附加率xwm、高度附加率xg)。
nQ=(1+x g)∑αk jA j(t R−t o,w)(1+x cℎ+x f+x wm)j=12.什么是得热量?什么是冷负荷?简述二者的区别。
房间得热量是指某一时刻由室内和室外热源进入房间的热量总和。
得热量可分为潜热得热和显热得热,而显热得热又分为对流得热和辐射得热。
冷负荷是指为维持建筑物室内空气的热湿参数在某一范围内,在单位时间内需从室内出去的热量,其中显热部分称显热冷负荷,潜热部分称潜热冷负荷,两者之和称全热冷负荷。
瞬时热量中以对流方式传递的显热得热和潜热得热部分,直接散发到房间空气中,立刻构成房间瞬时冷负荷;而以辐射方式传递的热得量,首先为围护结构和室内物体所吸收并贮存其中。
《暖通空调》教学大纲大纲说明课程代码:5135031总学时:72学时(讲课66学时、实验6学时)总学分:4.5课程类别:专业选修适用专业:建筑环境与设备工程预修要求:传热学、工程热力学、流体力学、建筑环境学、流体输配管网、热质交换原理与设备一、课程的性质、目的、任务:本课程是建筑环境与设备工程专业学生的一门主干专业课程,其目的是通过该门课程的学习,使学生了解创造建筑物热、湿、空气品质环境的技术,即采暖、通风与空气调节技术,涵盖了所培养的毕业生将来从事准业工作所需的主要专业技术。
通过该课程的学习,并辅以一定的实践环节训练后,能具有一般建筑的采暖、通风与空调系统的设计与管理的初步能力。
二、课程教学的基本要求:1、掌握建筑冷热负荷和湿负荷的计算;2、掌握各种采暖、通风与空调系统的组成、功能、特点和调节方法;3、掌握系统中主要设备、构件的构造、工作原理、特性和选用方法;4、了解建筑节能、暖通空通自动控制、暖通空通领域的新发展和新技术。
三、大纲的使用说明:本大纲适用于建筑环境与设备工程专业本科教学。
大纲正文第一章绪论学时:2学时(讲课2学时)本章讲授要点:采暖通风与空气调节的含义、工作原理、分类。
重点:采暖通风与空气调节系统的工作原理。
1、采暖通风与空气调节的含义;2、采暖通风与空气调节系统的工作原理;3、采暖通风与空气调节系统的分类;4、采暖通风与空气技术的发展概况。
第二章热负荷、冷负荷和湿负荷的计算 6学时(讲课6学时)本章讲授要点:室内外空气计算参数,冬季建筑的热负荷,夏季建筑围护结构的冷负荷,室内热源散热引起的冷负荷,湿负荷,新风负荷及空调室内的冷负荷与制冷系统的冷负荷计算。
重点:热负荷、冷负荷和湿负荷的计算。
第一节:室内外空气计算参数第二节:冬季建筑的热负荷第三节:夏季建筑围护结构的冷负荷第四节:室内热源散热引起的冷负荷第五节:湿负荷第六节:新风负荷第七节:空调室内的冷负荷与制冷系统的冷负荷第八节:计算举例第三章全水系统 6学时(讲课6学时)本章讲授要点:全水系统的末端装置,热水采暖系统的分类与特点,高层建筑热水采暖系统,分户热计量采暖系统,热水采暖系统的作用压头,热水采暖系统的水力计算,热水采暖系统的失调与调节,全水风机盘管系统。
《暖通空调》教案荆有印华北电力大学建筑环境与设备工程教研室2001年6月目录第1章绪论1.1 采暖通风与空气调节的含义1.2 采暖通风与空气调节系统的工作原理1.3 采暖通风与空气调节系统的分类1.4 采暖通风与空调技术的发展概况第2章热负荷、冷负荷与湿负荷计算2.1 室内外空气计算参数2.2 冬季建筑的热负荷2.3 夏季建筑围护结构的冷负荷2.4 室内热源散热引起的冷负荷2.5 湿负荷2.6 新风负荷2.7 空调室内的冷负荷与制冷系统的冷负荷2.8计算举例第3章全水系统3.1 全水系统概述3.2 全水系统的末端装置3.3 热水采暖系统的分类与特点3.4 高层建筑热水采暖系统3.5 分户热计量采暖系统3.6 热水采暖系统的作用压头3.7 热水采暖系统的水力计算3.8 热水采暖系统的失调与调节3.9 全水风机盘管系统第4章蒸汽系统4.1 概述4.2 蒸汽采暖系统4.3 蒸汽在通风与空调系统中的应用4.4 蒸汽采暖系统专用设备第5章辐射采暖与辐射供冷5.1 辐射采暖(供冷)的定义与辐射板的分类5.2 辐射采暖系统5.3 辐射采暖系统的设计计算5.4 热电膜辐射采暖5.5 辐射供冷第6章全空气系统与空气一水系统6.1 全空气系统与空气一水系统的分类6.2 全空气系统的送风量和送风参数的确定6.3 空调系统的新风量6.4 定风量单风道空调系统6.5 定风量单风道空调系统的运行调节6.6 定风量双风道空调系统6.7 变风量空调系统6.8 全空气系统中的空气处理机组6.9 空气一水风机盘管系统6.10 诱导器系统6.11 空气一水辐射板系统6.12 空调系统的自动控制6.13 空调系统的选择与划分原则第7章冷剂式空调系统7.1 冷剂式空调系统的特点7.2 空调机组的分类7.3 房间空调器7.4 单元式空调机组7.5 变制冷剂流量系统一VRV系统7.6 水环热泵空调系统7.7 机组系统的适用性第9章悬浮颗粒与有害气体净化9.4 空气过滤器第10章室内气流分布10.1 对室内气流分布的要求与评价10.2 送风口和回风口10.3 典型的气流分布模式10.4 室内气流分布的设计计算第13章冷热源、管路系统及消声隔振13.1 冷热源的种类与组合方式13.2 采暖系统与热源或室外管网的连接13.3 空调水系统形式13.4 空调水系统的典型图式13.5 空调水系统的分区13.9 管道与设备的保温与隔热13.11 暖通空调水系统的水质管理13.12 空调、通风系统的消声13.13 隔振与设备房的噪声控制第1章绪论1.1 暖通空调的基本概念1.采暖通风与空气调节作用是控制建筑热湿环境和室内空气品质的技术,同时也包含对系统本身所产生噪声的控制。
5.第五讲辐射采暖与辐射供冷本章主要内容:辐射采暖、供冷:特点与分类;系统型式;设计计算。
提出问题:辐射供暖、供冷之间有什么区别?辐射供冷供暖与传统供热供冷有什么区别?辐射供冷供暖对房间舒适度方面有何意义?5.1 辐射采暖的特点与分类一、辐射采暖得定义:•依靠供热部件与围护结构内表面之间的辐射换热向房间提供热量;•供热:房间各围护结构内表面的平均温度高于室内空气温度:T s.m> t R•供冷:平均温度低于室内空气温度:T s.m< t R二、分类:表、图示讲解三、特点:1)辐射采暖时:热表面向围护结构内表面和室内设施辐射热量2)各表面:吸收热量→辐射→再吸收→再辐射→反复过程3)传热过程:辐射为主、兼有对流换热4)在辐射强度和温度的双重作用下,造成了符合人体散热要求的热状态,具有较佳的舒适感;5)建筑内表面温度↑,对人体的冷辐射↓,舒适感↑6)室内空气不会急剧流动,粉尘飞扬的机会减少,卫生条件↑7)不需要在室内布置散热器和安装连接支管,不占建筑面积;8)吊顶辐射可兼作夏季降温的供冷表面9)用塑料管代替金属管作为埋管10)辐射采暖的室内设计温度可以降低,节省供暖能耗四、辐射换热系统的置换通风:图示5.2 辐射采暖系统一、热媒种类:1)热水:温升较慢;用于:埋管式、窗下式、间墙式2)蒸汽:温升快,不适于埋管式3)热空气:将墙板、楼板内的空腔作为热空气的风道4) 电:用电加热辐射板,板面温度易控制,调节方便,消耗高品位电能。
二、辐射供暖的类型1)低温辐射供暖:板面温度<80℃低温辐射供暖系统的设计应注意的问题:保证水温、水量,管网的阻力要平衡,宜采用同程式;为保证流量分配均匀,支管长度要大于联箱长度;防止空气窜入系统,防止空气聚集,形成气塞;辐射顶棚内不应装置排气设施;管道的胀力不允许传递给辐射板;埋管禁止使用丝扣和法兰连接;顶面辐射板应靠外墙布置;系统供水温度和供回水温度差(规范4.4.3);辐射板表面温度(规范4.4.2)。
第5章 辐射采暖与辐射供冷5.1 定义与分类 华北电力大学-荆有印5.1.1 辐射采暖(供冷)定义主要依靠供热(冷)部件与围护结构内表面之间的辐射换热向房间供热(冷)的采暖(供冷)方式称为辐射采暖(供冷)。
辐射采暖与对流采暖的主要区别:辐射采暖时,房间各围护结构内表面(包括供热部件表面)的平均温度m s t .高于室内空气温度R t ,即m s t .> R t对流采暖时,m s t .< R t 。
通常称辐射采暖的供热部件为采暖辐射板。
辐射供冷时,房间各围护结构内表面(包括供冷部件表面)的平均温度m s t .低于室内空气温度R t ,即m s t .<R t 5.1.2 辐射板的分类1.按与建筑物的结合关系埋管式辐射板:将通冷、热媒(冷冻水或热水)的金属管或塑料管埋在建筑结构内,与其合为一体,如图5-1(a);风道式辐射板:利用建筑结构内的连贯空腔输送热媒(热空气等)向室内供热,如图5-l(b)。
图5-1 与建筑结构结合的辐射采暖板(整体式)(a)埋管式 (b)风道式l-防水层 2-水泥找平层 3-保温层 4-采暖辐射板5-钢筋混凝土板 6-加热管(流通热媒的钢管) 7-抹灰层贴附式辐射板:将辐射板贴附于建筑结构表面,如图5-2所示。
单体式:由加热管1、挡板2、辐射板3(或5)和隔热层4制成的金属辐射板。
如图5-3所示。
单体式辐射板还可串联成带状辐射板吊在顶棚下,挂在墙上或柱上,如图5-4。
吊棚式辐射板:将通热媒(或冷媒)的管道4、隔热层3和装饰孔板5构成的辐射面板用吊钩挂在房间钢筋混凝土顶板2之下,如图5-5所示。
这种辐射板也常用于辐射供冷。
2.采暖辐射板按其位置5.1.3 辐射采暖的特点1.辐射供暖比对流供暖舒适辐射采暖同对流采暖相比,↑围护结构内表面温度 (R m s t t .),创造了对人体有利的热环境,↓人体向围护结构内表面的辐射放热量,热舒适度增加。
辐射采暖同对流采暖相比,↑辐射换热的比例,但仍存在对流换热。
↑辐射换热比例=f(热媒的温度、辐射热表面的位置)各种辐射采暖方式的辐射放热量比例:顶面式70%-75%;地面式30%-40%;墙面式30%-60%2.辐射采暖时沿房间高度方向温度比较均匀,温度梯度小,房间无效热损失减少,节省采暖能耗。
图5-8给出不同采暖方式下沿高度方向室内温度的变化。
比较条件:以房间高h 为1.5m 处,空气温度R t 为18℃。
从图上可看出:⑴热风采暖时(曲线1),沿高度方向温度变化最大,房间上部区域温度偏高,工作区温度偏低。
⑵采用辐射采暖(曲线3和4),特别是地面辐射采暖(曲线4)时,工作区温度较高,地面附近温度升高,有利于改善人的舒适度。
⑶设计辐射采暖时相对于对流采暖时规定的房间平均温度可低1-3℃,使人体对流放热量↑,人的舒适感↑,并↓房间上部温度升高增加的无效热损失。
因此辐射采暖可节省采暖能耗。
图5-8 不同采暖方式下沿房间高度室内温度的变化1-热风采暖 2-窗下散热器采暖3-顶面辐射采暖 4-地面辐射采暖3.辐射供暖对流散热量少,室内气流速度低,避免了尘土飞扬,卫生条件好。
4.辐射供暖出投资大。
5.2 辐射采暖系统5.2.1 辐射采暖系统的热媒可用:热水、蒸汽、空气和电。
1.用热水作热媒温升慢,混凝土板不易出现裂缝;可以采用集中质调节。
2.蒸汽作热媒温升快,混凝土板易出现裂缝;不能采用集中质调节。
混凝土板热惰性大,与蒸汽迅速加热房间的特点不相适应。
3.用热空气作热媒将墙板或楼板内的空腔作风道,使建筑结构厚度要增加。
4.用电热媒用电加热的辐射板,具有许多优越性,板面温度容易控制,调节方便,但要消耗高品位电能。
5.2.2 热水辐射采暖系统1.采暖辐射板的加热管采暖辐射板加热管的型式与采暖辐射板的位置、尺寸及类型有关。
⑴窗下辐射板加热管如图5-9所示。
图5-9 窗下采暖辐射板的加热管(a)蛇型管 (b)排管⑵踢脚板式采暖辐射板加热管一般采用图5-10所示的U形加热管。
图5-10 踢脚板式采暖辐射板(a)侧视图 (b)正视图⑶墙面采暖辐射板加热管如图5-11所示,(a)为用于带闭合管单管系统;(b)用于双管系统;(c)用于垂直双线系统。
图5-11 墙面采暖辐射板的加热管(a)用于带跨越管的单管系统 (b)用于双管系统;(c)用于垂直双线系统⑷地面采暖辐射板加热管如图5-12所示,(a)平行排管式;(b)蛇形排管式;(c)和蛇形盘管式。
加热管可采用铝塑复合管等热塑性管材,埋设部分无接头,避免了渗漏之忧。
图5-12 地面采暖辐射板的加热管(a)平行排管式 (b)蛇形排管式 (c)蛇形盘管式埋设方案见图5-13。
图5-13 地面采暖辐射板中铝塑复合管的设置l-面层 2-混凝土 3-加热管 4-锚固卡钉5-隔热层和防水层 6-楼板 7-侧面隔热层与建筑结构结合或贴附的顶面采暖辐射板的加热管与地面采暖辐射板类似。
⑸单体悬挂式金属采暖辐射板加热管如图5-14所示。
图中尺寸a、b、c分别为辐射板的长度、高度和厚度。
图5-14 单体悬挂式辐射板的加热管(a)加热管为蛇形管,波形辐射屏 (b)加热管为排管,平面辐射屏l-加热管 2-辐射屏 3-隔热材料2.辐射采暖系统设计要点⑴系统型式热水辐射采暖系统:上供式或下供式,单管或双管系统。
①窗下辐射板可采用单管系统、双管系统或双线系统,如图5-11。
②地面辐射板、顶面辐射板、地面-顶面辐射板应采用双管系统,以利于调节和控制。
a.地面-顶面辐射板如图5-15所示,采用下供上回式双管系统中的辐射板与管路连接方式。
图5-15 下供上回双管系统中的地面-顶面采暖辐射板1-地面-顶面采暖辐射板 2-供水立管 3一回水立管4-关闭调节阀 5-放水阀辐射板1并联于供水立管2和回水立管3之间,可用阀门4独立地关闭,用放水阀5放空和冲洗。
b.墙面采暖辐射板可按图5-11的型式采用单管、双管或双线系统。
可只在建筑物的个别房间(例如公用建筑的进厅)装设混凝土辐射板。
如安装窗下辐射板,可连到供水管上;如安装顶面、地面辐射板,可连到回水管上。
如图5-16所示。
图5-16地面采暖辐射板与回水干管的连接 l-地面采暖辐射板 2-集气罐 3-温度计4-阀门 5-回热源的回水干管 6-来自采暖系统的回水于管7-旁通管上的调节阀 8-放水阀3.辐射板水平安装时,其加热管内的水流速不应小于0.25m/s ,以便排气。
应设放气阀和放水阀。
4.采暖辐射板作为末端装置,其阻力损失比散热器大得多,且不同辐射板阻力损失差别较大,因此在一个采暖系统中宜采用同类辐射板,否则应有可靠的调节措施及调节性能好的阀门调节流量。
5.3 辐射采暖系统的设计计算5.3.1 辐射板的表面温度混凝土辐射板的表面温度t s 与加热管的管径d 、管间距s 、管子埋设厚度h 、混凝土的导热系数λ、热媒温度t hm 和房间温度t R 等有关,即) , , , , ,(R hm s t t h s d f t λ= (5-3) 一般采用铝塑复合管等热塑管,其管径规格为12/16、16/20、20/25(内径/外径)等,在给定R hm t t d , , ,λ的数值后,辐射板表面温度 ) , (h s f t s =。
s 越小,h 越大,板面温度越均匀,但造价越高。
⑴地面辐射板加热管周围温度分布地面辐射板在每一加热管周围的混凝土块内温度分布,如图5-17所示,图中实线为等温线,虚线表示热流。
①热流线起始于加热管,终止于辐射板表面。
沿不同的热流方向混凝土的热阻是变化的,使得辐射板表面是不等温面。
②加热管管顶所对应的混凝土表面温度最高,为t0,两相邻加热管之间(距离s/2处)的混凝土表面温度最低,为t s/2。
图5-17 两面放热的采暖辐射板中的温度场和板表面温度的变化1-地面-顶面混凝土辐射板 2-加热管 3-等温线 4-热流线⑵地面辐射板沿水的流程混凝土表面温度分布图5-18所示。
图5-18 地面采暖辐射板表面温度的变化(a)平行排管式 (b)蛇形排管式 (c)蛇形盘管式图中t --地面表面平均温度的变化范围。
s图(a)平行排管式:用单根管道平排成蛇形,辐射板表面平均温度沿水的流程逐步均匀降低;图(b)蛇形排管式:用供水管和回水管并列平排成蛇形,辐射板表面温度在小面积上波动大,平均温度分布较均匀;图(b)蛇形盘管式:供水管和回水管并列盘成螺旋形,辐射板表面平均温度也是沿水的流程波动的。
混凝土辐射板表面的平均温度是计算辐射采暖的基本数据,辐射板表面最高允许平均温度应根据卫生要求、人的热舒适性条件和房间的用途来确定。
对不同采暖辐射板,各房间的最高允许平均温度: ✧ 对地面采暖辐射板托儿所、幼儿园 24℃ 住宅 24℃ 厂房 26℃ 人员长期停留场所 26℃ 人员短期停留场所 30℃ 卫生间 31℃ ✧ 对顶面采暖辐射板层高 2.5-2.8m 28℃ 2.9-3.0m 30℃ 3.1-3.4m 33℃ 3.5-6m 36℃ ✧ 对墙面采暖辐射板离地面高度 <1m 95℃ l-3.5m 45℃ >3.5m 不规定顶面辐射板温度过高,使人头部不适;地面辐射板温度过高,时间长久之后,人体也会不适。
地面采暖辐射板表面的平均温度还应受地面覆盖层最高允许温度限制。
例如:镶木地板采用铝塑复合管辐射板时,最高允许温度为27℃。
5.3.2 盘管的水力计算1.铝塑复合管的沿程比摩阻Rdv R 22λρ=式中 λ--沿程阻力系数,可由下式计算:Kd K d b b i p i 7.3lg1Re lg 7.3lg )2(312.125.0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+=λ b--水的流动相似系数;K--管子的当量粗糙度,m ;对铝塑管:K =1×10-5m ;Re p --实际的雷诺数; d i --铝塑管的内径,m 。
热媒温度为80℃时,铝塑管的比摩阻R 值可查附录5-1“铝塑管的水力计算表”。
如热媒平均温度不等于80℃时,由附录5-1查出的比摩阻R 需用下式进行修正:R R t α= (5-8)式中 R t --热媒在计算温度和流量M下的比摩阻,Pa/m ; R--用M查附录5-1得到的比摩阻,Pa/m ; α--比摩阻修正系数,查表5-1。
2.管径计算铝塑管的材质和制造工艺与钢管不同。
在进行水力计算时应考虑管子的管径及壁厚的制造偏差。
用下式来确定管子的计算直径(内径):)242(5.0s s d d d e e i ∆--∆+= (5-9) 式中 d e --铝塑管外径,m ;Δd e --铝塑管外径的允许误差,m ; s--铝塑管壁厚,m ;Δs--铝塑管壁厚的允许误差,m 。
3.局部阻力损失铝塑管所有的局部阻力系数可由附录5-2确定。