工业机器人运动学-逆运动学
- 格式:ppt
- 大小:508.50 KB
- 文档页数:27
机械臂的运动学与逆运动学分析机械臂是一种能够模拟人类手臂运动的自动化机器人。
它广泛应用于工业领域,用于完成各种复杂的操作任务。
机械臂的运动控制是实现其功能的关键,其中运动学和逆运动学分析是研究机械臂运动的基础。
一、机械臂的运动学分析运动学分析主要关注机械臂的位置、速度和加速度等运动参数的计算。
机械臂主要由关节连接的刚性杆件组成,每个关节可以沿特定方向进行旋转或平移运动。
在机械臂运动学中,我们关注的是机械臂末端执行器的位置和姿态。
1. 正运动学分析正运动学分析指的是根据机械臂各关节的运动参数,计算机械臂末端执行器的位置和姿态。
通常,我们采用坐标变换矩阵的方法来进行计算。
通过将各个关节的运动连续相乘,可以得到机械臂末端执行器相对于机械臂基座标系的位姿矩阵。
以一个3自由度的机械臂为例,设第一关节绕Z轴旋转角度为θ1,第二关节绕Y轴旋转角度为θ2,第三关节绕X轴旋转角度为θ3。
则机械臂末端执行器相对于基座标系的位姿矩阵可以表示为:[cos(θ2+θ3) -sin(θ2+θ3) 0 a1*cos(θ1)+a2*cos(θ1+θ2)+a3*cos(θ1+θ2+θ3)][sin(θ2+θ3) cos(θ2+θ3) 0 a1*sin(θ1)+a2*sin(θ1+θ2)+a3*sin(θ1+θ2+θ3)][0 0 1 d1+d2+d3][0 0 0 1]其中,a1、a2、a3和d1、d2、d3分别为机械臂的长度和位移参数。
通过这个矩阵,我们可以得到机械臂末端执行器的位置和姿态。
2. 速度和加速度分析除了机械臂末端执行器的位置和姿态,机械臂的速度和加速度也是非常重要的运动参数。
通过对机械臂运动学模型的导数运算,我们可以得到机械臂的速度和加速度表达式。
机械臂的速度可以表示为:v = J(q) * q_dot其中,v为机械臂末端执行器的速度向量,J(q)为机械臂的雅可比矩阵,q为机械臂各关节的角度向量,q_dot为各关节的角速度向量。
第4章机器人逆运动学(一)引言概述:机器人逆运动学是研究机器人动作规划和控制的重要内容之一。
在工业领域和服务领域中,机器人逆运动学能够帮助机器人根据预设的目标位置和姿态,确定关节角度和长度,从而实现准确的动作控制。
本文将介绍机器人逆运动学的基本原理,以及逆运动学的求解方法和实际应用。
正文:1. 基本原理1.1 前向运动学和逆运动学的关系1.2 关节角度和长度的确定方法1.3 机器人姿态表示方法2. 逆运动学的求解方法2.1 解析法2.2 数值法2.3 迭代法2.4 优化算法2.5 约束条件的处理方法3. 逆运动学的实际应用3.1 机器人轨迹规划3.2 机器人运动控制3.3 机器人碰撞检测与避障3.4 机器人抓取和操作4. 逆运动学问题的局限性和挑战4.1 多解性问题4.2 存在性问题4.3 运动优化问题4.4 环境约束问题4.5 实时性和稳定性问题5. 逆运动学的发展趋势5.1 智能化和自适应控制5.2 机器学习与优化算法的结合5.3 非线性逆运动学求解方法的研究5.4 多机器人协同控制的逆运动学问题5.5 逆运动学在虚拟现实和增强现实中的应用总结:机器人逆运动学是机器人控制领域的重要研究方向之一。
本文介绍了机器人逆运动学的基本原理,包括前向运动学与逆运动学的关系、关节角度和长度的确定方法,以及机器人姿态表示方法。
同时,还介绍了逆运动学的求解方法和实际应用,包括机器人轨迹规划、运动控制、碰撞检测与避障,以及抓取和操作等。
此外,还探讨了逆运动学问题面临的局限性和挑战,并展望了逆运动学的发展趋势,包括智能化和自适应控制、机器学习与优化算法的结合等。
逆运动学的研究将有助于推动机器人应用在更广泛的领域中,提高机器人的灵活性和性能。
工业机器人运动学逆解的几何求解方法黄晨华【摘要】工业机器人运动学逆解求解方法的不同,其计算量也有很大的差别。
常用的代数法求逆解存在计算繁琐,不易理解等缺点,几何法求逆解具有直观、计算量小的特点。
以5自由度工业机器人为算例,详细介绍了几何法求逆解的过程,总结出了几何法求逆解的一般步骤:首先对机器人的结构进行分析,确定影响机器人末端操作器位置的相关关节,按机器人的结构直接求出各相关关节的逆解,然后利用所求的位置关节的逆解,通过简单的矩阵运算,可求得剩余关节的逆解。
用仿真的方法验证了所求逆解的正确性:假设机器人各关节的转动不受限制,首先让各关节随机转过一定的角度,用机器人正运动学方程,获得机器人任意位姿,然后以此位姿为已知,用所求的逆解求相应的各关节所转过的角度,从而验证了方法的正确性。
【期刊名称】《制造业自动化》【年(卷),期】2014(000)015【总页数】4页(P109-112)【关键词】工业机器人;运动学方程;逆运动学;几何法【作者】黄晨华【作者单位】韶关学院物理与机电工程学院,韶关512005【正文语种】中文【中图分类】TP242.20 引言工业机器人的运动学是工业机器人控制与轨迹规划的基础,其内容包括正运动学和逆运动学。
当给定机器人所有关节转过的角度时,可以通过机器人的正动学方程来确定其末端操作器的位解;当已知机器人末端操作器的位置时,则可根据运行学逆解获得各关节需转过后角度。
机器人运动学建模的标准方法,即D-H建模,可以很方便地得到机器人的正运动学方程,而要获得机器人的逆运动学方程,则难度较大,求解的方法可以分成两大类:数值解和封闭解。
Tsai[2]等研究了通用的6自由度和5自由度的机械臂的数值解,Nakamura[3]等研究了适用了机器人控制的带有奇点鲁棒控制的数值逆解,Baker[4]等研究了冗余机械臂的数值逆解,数值解的最大不足就是计算时比较耗时,对系统造成较大的负担。
封闭解是基于解析形式的解法,其又可分为代数法和几何法,用代数法求逆解在很多机器人经典教材和文献中都有详细的论述[5~7],在此不作具体讨论,刘达[8]等为了使机器人获得更好的实时性,提出了一种解析和数值相结合的机器人逆解算法,陈庆诚[9]等提出基于旋量理论的逆运动学子问题求解算法。
机器人的逆运动学名词解释机器人的逆向运动学是,已知末端的位置和姿态,以及所有连杆的几何参数下,求解关节的位置。
二、两大类求解逆运动学的方法逆运动学求解通常有两大类方法:解析法、数值法。
1.解析法(Analytical Solution)特点:运算速度快(达到us级),通用性差,可以分为代数法与几何法进行求解。
串联机械臂有逆运动学解析解的充分条件是满足Pieper准则。
即如果机器人满足两个充分条件中的一个,就会得到封闭解,这两个条件是:•三个相邻关节轴相交于一点;•三个相邻关节轴相互平行。
现在的大多数商品化的工业机器人在设计构型时,都会尽可能满足满足Pieper准则,因为解析法求解能够很快的使用较少的算力,使用较低成本的控制器就能求解,之后随着芯片算力的提升,感觉在未来,机器人公司也会在是否采用满足解析解的构型和采用特定构型并开发对应的逆解算法之间找一个平衡。
以PUMA560机器人为例,它的最后3个关节轴相交于一点。
我们运用Pieper方法解出它的封闭解。
对于UR5机械臂,其第2、第3、第4关节轴平行,满足Pieper准则其中的一条,即三个相邻的关节轴两两平行。
2.数值法(Numerical Solution)特点:通用性高,但是求解速度较慢(ms级)。
除了一些特殊的机械臂构型外,机械臂逆运动学问题很难用解析解求解,因此在许多情况下会使用数值解求解。
通常设定一个优化目标函数,是把逆解求解问题转化为一个优化问题求数值解。
Newton-Raphson(NR)是数值解的一种方法。
它需要基本的雅可比矩阵。
然而,当且仅当原始方程的函数具有逆函数,且原始方程可解时,NR方法才会成功。
从运动学的角度来看,前一个条件意味着机器人需要非冗余,机器人在从初始配置到最终配置的运动过程中不通过奇异点。
后一个条件意味着机械臂的期望位置和方向需要在机器人的工作空间内,是可解的。
由于这些限制,NR方法不能保证全局收敛性,因此它在很大程度上取决于初始值。
机器人逆运动学求解方法1. 嘿,你知道机器人逆运动学求解方法有多神奇吗?就像你要去一个陌生的地方,得先搞清楚怎么走!比如机器人要抓取一个杯子,它就得知道每个关节怎么动才能准确抓到。
2. 机器人逆运动学求解方法,哇哦,这可真是个厉害的玩意儿!好比解一道超级复杂的谜题,每一步都要精确无比。
想象一下机器人跳舞,那动作怎么来的,就是靠这个方法算出来的呀!3. 哎呀呀,机器人逆运动学求解方法可不简单呢!就如同在黑暗中摸索出一条正确的路。
像工业机器人精准焊接,没有这个方法可不行。
4. 机器人逆运动学求解方法真的是太重要啦!这简直就是机器人的“导航仪”啊!比如说机器人在仓库里搬运货物,靠的就是它来规划路线。
5. 哇塞,机器人逆运动学求解方法,这是让机器人变得聪明的关键呀!好比是给机器人装上了智慧的“大脑”。
你看那些能与人互动的机器人,就是因为有这个方法。
6. 嘿,想想机器人逆运动学求解方法,是不是很神奇?这就像是给机器人注入了灵魂!比如机器人医生做手术,每一个动作都依赖它。
7. 机器人逆运动学求解方法,那可是相当了不起啊!如同为机器人搭建了一座通往目标的桥。
像智能机器人给你送快递,怎么做到的?就是靠它呀!8. 哇,机器人逆运动学求解方法,这是开启机器人世界的钥匙啊!好比是一场刺激的冒险。
机器人踢足球,怎么精准射门,就靠这个方法啦。
9. 哎呀,机器人逆运动学求解方法真的超酷的!就像给机器人穿上了超级战甲。
比如机器人在危险环境中工作,全靠它保障安全和准确。
10. 机器人逆运动学求解方法,绝对是个厉害的存在!这就好像是机器人的魔法秘籍!像机器人在舞台上表演精彩节目,都是因为它呀!我的观点结论:机器人逆运动学求解方法是机器人领域中至关重要的一部分,它让机器人能够实现各种复杂而精确的动作,为我们的生活和工作带来了巨大的便利和可能性。
原创不易,请尊重原创,谢谢!。