3.1工业机器人运动学概述
- 格式:pptx
- 大小:323.56 KB
- 文档页数:18
第三章机器人的机械结构系统3.1概述;3.2机器人机身及臂部结构【内容提要】本课主要学习工业机器人机身及臂部结构。
介绍了机器人的基本结构及特点;机器人的升降回转型、俯仰型、直移型、类人机器人型机身机构;机器人的臂部机构组成、配置及典型机构。
知识要点:✓机械结构系统✓机身结构✓臂部组成✓机身和臂部配置✓臂部结构重点:✓掌握机器人机械结构系统组成✓掌握机器人常用机身结构类型✓掌握机器人的机身和臂部配置形式✓掌握机器人的臂部结构难点:✓机器人的机身结构类型✓机器人的臂部结构关键字:✓机械结构系统、机身、臂部【本课内容相关资料】3.1概述机器人的机械结构系统指机器人机械结构和机械传动系统,也是机器人的支承基础和执行机构。
本章以工业机器人为主要对象介绍机器人机械结构系统的主要组成、特点、结构形式。
传统的工业机器人一般是由机座、腰部(或肩部)、大臂、小臂、腕部和手部以串联方式联接而成的开式链机器人机构,也称为串联式机器人,也就是通常所说的关节型机器人。
其特点是:工作空间大、手腕关节灵活、各关节驱动解耦性好。
并联式机器人是由单开链或复合开式链用并联形式联接于动、静二个平台之间的一类并联机构所组成。
其特点是:刚性好,结构稳定;承载能力大;误差小精度高;电机可置于固定平台。
本章主要讲解关节型机器人(简称机器人)。
串联型机器人与并联型机器人举例如图3-1、图3-2所示。
动平台伸缩杆球面副固定平台图3-1串联型机器人图3-2并联型机器人机器人机械结构系统是机器人的重要部分,所有的计算、分析和编程最终要通过机械结构系统的运动和动作完成特定的任务。
机器人机械结构系统各部分的基本结构、材料的选择将直接影响整体性能。
3.1.1 机械结构系统的基本结构形式机器人机械结构系统主要由手部(末端执行器)、腕部、臂部、机身、行走机构和驱动与传动部件组成。
机器人必须有一个便于安装的基础件机座。
机座往往与机身做成一体,机身与臂部相连,机身支承臂部,臂部又支承腕部和手部。
机器人运动学机器人运动学机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。
第3章工业机器人运动学和动力学机器人操作臂可看成一个开式运动链,它是由一系列连杆通过转动或移动关节串联而成。
开链的一端固定在基座上,另一端是自由的,安装着工具,用以操作物体,完成各种作业。
关节由驱动器驱动,关节的相对运动导致连杆的运动,使手爪到达所需的位姿。
在轨迹规划时,最感兴趣的是末端执行器相对于固定参考系的空间描述。
为了研究机器人各连杆之间的位移关系,可在每个连杆上固接一个坐标系,然后描述这些坐标系之间的关系。
Denavit和Hartenberg提出一种通用方法,用一个4*4的齐次变换矩阵描述相邻两连杆的空间关系,从而推导出“手爪坐标系”相对于“参考系”的等价齐次变换矩阵,建立出操作臂的运动方程。
称之为D-H矩阵法。
3.1 工业机器人的运动学教学时数:4学时教学目标:理解工业机器人的位姿描述和齐次变换;掌握齐次坐标和齐次变换矩阵的运算;理解连杆参数、连杆变换和运动学方程的求解;教学重点:掌握齐次变换及运动学方程的求解教学难点:齐次变换及运算教学方法:讲授教学步骤:齐次变换有较直观的几何意义,而且可描述各杆件之间的关系,所以常用于解决运动学问题。
已知关节运动学参数,求出末端执行器运动学参数是工业机器人正向运动学问题的求解;反之,是工业机器人逆向运动学问题的求解。
3.1.1 工业机器人位姿描述1.点的位置描述在选定的指教坐标系{A}中,空间任一点P的位置可用3*1的位置矢量表示,其左上标代表选定的参考坐标系。
2.点的齐次坐标如果用四个数组成4*1列阵表示三维空间直角坐标系{A}中点P,则该列阵称为三维空间点P的齐次坐标,如下:必须注意,齐次坐标的表示不是惟一的。
我们将其各元素同乘一个非零因子后,仍然代表同一点P,即其中:,,。
该列阵也表示P点,齐次坐标的表示不是惟一的。
3.坐标轴方向的描述用i、j、k分别表示直角坐标系中X、Y、Z坐标轴的单位向量,用齐次坐标来描述X、Y、Z轴的方向,则有,,从上可知,我们规定:4*1列阵中第四个元素为零,且,则表示某轴(某矢量)的方向。
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
教案工业运动学基础教案一、引言1.1工业发展背景1.1.1工业革命与自动化需求1.1.2工业的起源与发展1.1.3工业在现代工业中的应用1.1.4工业运动学的重要性1.2工业运动学基础概念1.2.1运动学定义1.2.2工业运动学的研究内容1.2.3运动学在工业中的应用1.2.4运动学对工业性能的影响1.3教学意义与目的1.3.1培养学生对工业运动学的理解1.3.2提高学生的实际操作能力1.3.3激发学生对工业领域的兴趣1.3.4为进一步学习高级技术打下基础二、知识点讲解2.1工业运动学基本原理2.1.1的运动学模型2.1.2运动学方程的建立2.1.3运动学方程的求解方法2.1.4运动学参数对性能的影响2.2工业运动学参数2.2.1的自由度2.2.2的连杆参数2.2.3的关节参数2.2.4的运动范围与工作空间2.3工业运动学应用案例2.3.1工业在汽车制造中的应用2.3.2工业在电子组装中的应用2.3.3工业在物流搬运中的应用2.3.4工业在医疗领域的应用三、教学内容3.1工业运动学基本概念3.1.1的运动学模型3.1.2运动学方程的建立3.1.3运动学方程的求解方法3.1.4运动学参数对性能的影响3.2工业运动学参数3.2.1的自由度3.2.2的连杆参数3.2.3的关节参数3.2.4的运动范围与工作空间3.3工业运动学应用案例3.3.1工业在汽车制造中的应用3.3.2工业在电子组装中的应用3.3.3工业在物流搬运中的应用3.3.4工业在医疗领域的应用四、教学目标4.1知识目标4.1.1了解工业运动学的基本原理4.1.2掌握工业运动学参数的计算方法4.1.3理解工业运动学在实际工程中的应用4.2能力目标4.2.1培养学生的实际操作能力4.2.2提高学生的分析和解决问题的能力4.2.3培养学生的创新思维和团队合作能力4.3情感态度与价值观目标4.3.1激发学生对工业领域的兴趣4.3.2培养学生的科学精神和工匠精神4.3.3增强学生的社会责任感和使命感五、教学难点与重点5.1教学难点5.1.1工业运动学方程的建立与求解5.1.2工业运动学参数的计算方法5.1.3工业运动学在实际工程中的应用5.2教学重点5.2.1工业运动学的基本原理5.2.2工业运动学参数的含义与作用5.2.3工业运动学在实际工程中的应用案例六、教具与学具准备6.1教具准备6.1.1工业模型或实物6.1.2运动学计算软件或工具6.1.3多媒体教学设备6.2学具准备6.2.1笔记本电脑或平板电脑6.2.2学习资料或教材6.2.3计算器或数学工具七、教学过程7.1导入新课7.1.1引入工业运动学的背景7.1.2提出问题7.1.3引导学生思考工业运动学的应用场景7.2知识讲解7.2.1详细讲解工业运动学的基本原理7.2.2深入解析工业运动学参数的计算方法7.2.3通过案例分析工业运动学在实际工程中的应用7.3实践操作7.3.1演示工业运动学的实际操作过程7.3.2引导学生进行工业运动学的模拟操作7.3.3组织学生进行工业运动学的实际操作练习八、板书设计8.1工业运动学基本原理8.1.1运动学模型的建立8.1.2运动学方程的求解方法8.1.3运动学参数对性能的影响8.2工业运动学参数8.2.1自由度的定义与计算8.2.2连杆参数的测量与计算8.2.3关节参数的测量与计算8.2.4运动范围与工作空间的确定8.3工业运动学应用案例8.3.1汽车制造中的应用案例8.3.2电子组装中的应用案例8.3.3物流搬运中的应用案例8.3.4医疗领域的应用案例九、作业设计9.1工业运动学基础理论题9.1.1运动学方程的建立与求解9.1.2运动学参数的计算与分析9.1.3运动学在实际工程中的应用问题9.2工业运动学实践操作题9.2.1工业运动学模拟操作9.2.2工业运动学实际操作练习9.2.3工业运动学创新设计与实验9.3工业运动学拓展阅读与思考题9.3.1工业运动学相关学术论文阅读9.3.2工业运动学在实际工程中的应用案例分析9.3.3工业运动学未来发展趋势与挑战思考十、课后反思及拓展延伸10.1教学效果评估与反思10.1.1学生对工业运动学基本原理的掌握程度10.1.2学生对工业运动学参数计算方法的掌握程度10.1.3学生对工业运动学在实际工程中应用的了解程度10.2教学方法与手段的改进10.2.1引入更多实际工程案例进行教学10.2.2增加实践操作环节的时间与机会10.2.3利用现代教育技术提高教学效果10.3学生学习兴趣与动机的激发10.3.1通过实际工程案例激发学生学习兴趣10.3.2组织学生参加工业运动学相关竞赛或活动10.3.3引导学生进行工业运动学的创新设计与实验重点和难点解析1.工业运动学基本原理的讲解2.工业运动学参数的计算方法3.工业运动学在实际工程中的应用案例4.实践操作环节的设计与实施5.作业设计与课后反思对于这些重点环节,需要进行详细的补充和说明:1.工业运动学基本原理的讲解:这是整个教案的核心部分,需要通过生动的案例和图示,让学生更好地理解运动学的基本概念和原理。
工业机器人运动学与动力学研究随着科技的不断进步,机器人已经不再是科幻电影中的特效,而是成为现实生活中不可或缺的一部分。
机器人技术在各个领域的应用也越来越广泛,其中最重要的之一便是工业机器人。
工业机器人的出现,不仅可以减少人力成本,提高生产效率,同时也能增加生产安全性。
但是,工业机器人的研究要涉及到运动学和动力学两个方面。
一、工业机器人运动学工业机器人的运动学研究主要是研究它的运动轨迹、运动状态和运动控制等方面。
工业机器人的运动学研究主要涉及以下三个方面:1. 运动规划运动规划是工业机器人控制系统设计和开发中重要的一步,其目的是规划机器人端执行器的运动控制路径。
运动规划分为离线规划和在线规划两种类型,离线规划是事先规划好机器人要执行的动作,然后将规划好的路线保存在计算机中,机器人执行时直接调用保存的路线;而在线规划则是在机器人运动过程中不断地对路线进行优化和改进,以达到更加精准的控制。
2. 运动学分析机器人的运动学分析主要研究的是机器人的动作轨迹和基于轨迹控制。
通过动作模型的建立和动作轨迹的分析,可以更好地实现机器人的运动控制,提高运动精度和稳定性。
3. 运动仿真运动仿真是利用计算机对机器人运动学特性进行模拟和分析的过程。
通过建立合理的仿真模型和仿真环境,可以更加有效地进行机器人运动的规划和控制设计,提高生产效率和效益。
二、工业机器人动力学另外一个重要的机器人研究方向则是动力学,也就是研究机器人的力学与动力学性质,以便更好地掌握机器人的运动规律和性能。
工业机器人动力学研究的过程主要包含以下三个方面:1. 机器人控制机器人控制是通过对机器人运动规律的研究和掌握,确定机器人运动状态的过程。
机器人控制的目的就是控制机器人输出的力或扭矩等物理变量,以达到精准控制机器人运动的目的。
2. 动力学分析机器人的动力学分析是研究机器人手臂运动过程中力和运动状态之间关系的过程。
通过建立机器人动力学模型,可以更准确地预测运动状态和力学响应,并对机器人进行优化设计和仿真计算。
工业机器人力学分析引言工业机器人作为现代制造业中的重要工具,广泛应用于各个领域。
然而,要想实现机器人的精确控制和高效运作,就需要对其力学特性进行深入分析。
本文将从工业机器人运动学、动力学和力控制等方面展开讨论,以期对工业机器人力学的理解能够更为深入。
一、工业机器人运动学分析工业机器人的运动学分析是指通过研究机器人的运动轨迹、关节角度和末端坐标等参数,来描述机器人在空间中的位置和姿态变化。
机器人的运动学分析可基于几何方法,利用三角函数和矩阵运算等数学工具来计算机器人的运动学参数。
其中,举足轻重的是机器人的正运动学问题,即根据给定的关节角度,计算机器人末端执行器的位置和姿态。
正运动学问题主要解决机器人的逆运动学问题,即已知机器人末端执行器的位置和姿态,计算关节角度,实现机器人的自主控制。
二、工业机器人动力学分析工业机器人的动力学分析是指通过研究机器人各个关节上的力和力矩,以及机器人的质量和惯性等参数,来描述机器人在运动过程中所受的力学作用。
机器人的动力学分析可基于牛顿研究动力学的基本定律,通过运用动力学方程和动力学模型,推导出机器人的运动学参数。
动力学分析可以帮助我们理解机器人在复杂工作环境下的受力情况,并为机器人的运动控制提供支持。
三、工业机器人力控制分析工业机器人力控制是指通过对机器人末端执行器的力和力矩进行精确测量和控制,实现机器人对外部物体进行柔和握持、装配和搬运等任务的能力。
力控制在工业机器人领域中起着至关重要的作用,它要求机器人能够根据物体的刚度和形状变化,调整握持力和接触力的大小和方向。
通过传感器和控制系统的结合,工业机器人可以实时感知和调整力量,以适应复杂工作环境和精细操作的需求。
结论工业机器人力学分析是实现机器人精确控制和高效运作的基础。
通过运动学分析,我们可以计算机器人的运动轨迹和关节角度,实现机器人的自主控制。
通过动力学分析,我们可以理解机器人在运动过程中所受的力学作用,并为机器人的运动控制提供支持。