第八章 机器人运动学
- 格式:pdf
- 大小:879.39 KB
- 文档页数:42
机器人运动学随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿位姿是机器人运动学中的另一个重要概念,用于描述机器人的位置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
机器人运动学机器人运动学机器人运动学是研究机器人运动规律和运动控制的学科。
它是机器人技术的重要组成部分,对于机器人的设计、控制和应用具有重要意义。
机器人运动学主要研究机器人在空间中的运动规律,包括位置、速度和加速度等。
通过研究机器人的运动学特性,可以实现对机器人的精确控制和规划。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指根据机器人关节的位置和长度,求解机器人末端执行器的位置。
它通过解析几何、向量运算和矩阵变换等数学方法,将机器人关节的位置参数转化为末端执行器的位置参数,从而实现对机器人的位置控制。
逆运动学是指根据机器人末端执行器的位置,求解机器人关节的位置和长度。
逆运动学是机器人运动学的核心内容,也是机器人控制的关键问题之一。
通过逆运动学,可以实现对机器人末端执行器的精确控制,从而实现机器人在空间中的精确定位和定向。
机器人运动学的研究还包括机器人的姿态和轨迹规划。
姿态是指机器人在空间中的朝向和姿势,轨迹是指机器人在运动过程中的路径和速度。
通过研究机器人的姿态和轨迹规划,可以实现机器人在复杂环境中的灵活运动和避障控制。
机器人运动学的应用非常广泛。
在工业领域,机器人运动学被应用于自动化生产线的控制和优化,实现了生产效率的提高和生产成本的降低。
在医疗领域,机器人运动学被应用于手术机器人的控制和操作,实现了微创手术和精确手术的目标。
在军事领域,机器人运动学被应用于无人飞机和无人车辆的控制和导航,实现了作战效能的提高和战场风险的降低。
机器人运动学的发展离不开先进的传感器和控制技术的支持。
传感器可以实时感知机器人的位置和环境信息,控制技术可以根据机器人的位置和运动规律,实现对机器人的精确控制和运动规划。
总结起来,机器人运动学是研究机器人运动规律和运动控制的学科,主要包括正运动学、逆运动学、姿态和轨迹规划等内容。
机器人运动学的研究和应用对于机器人技术的发展和应用具有重要意义,将为我们创造更多的便利和机会。
机器人运动学机器人运动学是研究机器人运动和姿态变化的一门学科。
它通过分析机器人的构造和动力学参数,研究机器人在特定环境下的运动规律和遵循的动力学约束,以实现机器人的准确控制和运动规划。
本文将从机器人运动学的基本概念、运动学模型、运动学正解和逆解等方面进行介绍。
1. 机器人运动学的基本概念机器人运动学是机器人学中的一个重要分支,主要研究机器人在空间中的运动状态、末端执行器的位置和姿态等基本概念。
其中,运动状态包括位置、方向和速度等;末端执行器的位置和姿态是描述机器人末端执行器在空间中的位置和朝向。
通过研究和分析这些基本概念,可以实现对机器人运动的控制和规划。
2. 运动学模型运动学模型是机器人运动学研究的重要工具,通过建立机器人的运动学模型,可以描述机器人在运动过程中的运动状态和姿态变化。
常见的运动学模型包括平面机器人模型、空间机器人模型、连续关节机器人模型等。
每种模型都有其独特的参数和运动学关系,可以根据实际情况选择合适的模型进行分析和研究。
3. 运动学正解运动学正解是指根据机器人的构造和动力学参数,求解机器人末端执行器的位置和姿态。
具体而言,根据机器人的关节角度、关节长度和连杆长度等参数,可以通过连乘法求解机器人末端执行器的位姿。
运动学正解是机器人运动学中的常见问题,解决这个问题可以帮助我们了解机器人在空间中的运动规律和运动范围。
4. 运动学逆解运动学逆解是指根据机器人末端执行器的位置和姿态,求解机器人的关节角度。
反过来,控制机器人的运动状态就需要求解逆运动学问题。
运动学逆解是机器人运动学研究的重要内容之一,它的解决可以帮助我们实现对机器人的准确定位和控制。
总结:机器人运动学是研究机器人运动和姿态变化的学科,通过运动学模型、运动学正解和运动学逆解等方法,可以描述机器人的运动状态、末端执行器的位置和姿态。
深入研究机器人运动学,可以实现对机器人的准确控制和运动规划。
随着机器人技术的不断发展,机器人运动学的研究也得到了越来越广泛的应用和重视。
机器人运动学知识介绍收藏21:53|发布者: dynamics|查看数: 1125|评论数: 2|来自: 东方早报摘要: 现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。
随着书页的翻动,你也许会在无意识里考虑这个问题。
作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。
而 ... 丹尼尔·威尔逊现在你可能正拿着一本书,边看边翻页,并时不时回头,越过肩膀察看后面是否有红眼的恶意机器人。
随着书页的翻动,你也许会在无意识里考虑这个问题。
作为人类,在物理世界移动是如此自然,只需要一丁点的意识即可。
而另一方面,机器人———就像最后一个选择踢球的孩子———为了避免伤到自己和别人,每一个动作都必须经过仔细考虑。
机器人专家管这个过程叫做“操作研究”。
前进和逆转如果你醒来发现自己处在一具新的躯体中,拥有金属手臂,每只手只有三根手指,你会怎么样呢?如果不知道手臂的长度,拿东西会很困难;如果只有三根手指,那么你必须找到一个全新的抓取和握东西的方法;由于弯曲的金属手臂,你可能再也没有约会的机会。
这些就是身处各地的孤独的机器人们所面临的重大问题。
运动学研究旨在解决机器人的手臂转向何方(动力学则为了解决移动的速度和劲道)。
机器人运动学可分两类:前进和逆转。
前进运动学的问题是机器人运用它对自身的了解(关节角度和手臂长度)来判断自己在三维空间中到底身处何方。
这算是简单的部分,逆转运动学正好相反,它解决机器人如何移动才能达到合适的姿势(改变关节位置)这一问题。
机器人在握你手之前,需要知道你手的大概方位,以及从这里移向那里的最优顺序。
有时候,可能没有最好的解决方案(试试用你的右手碰你的右肘)。
对逆转运动学来说,大多数方案运用传感器(通常是视觉和力)来估计机器人身体的当前位置。
只要有了这个,机器人就能够计划下一步行动(握手、问好或绞断你的脖子)。
机器人的反应很敏捷,日本ATR实验室的类人机器人能够更新视觉,估计世界形势,并且在一秒钟里能够做60个动作。
机器人运动学介绍机器人运动学是机器人学中的一个重要分支,研究机器人的运动学原理和方法。
它关注的是机器人在二维或三维空间中的运动规律,包括位置、速度和加速度等。
机器人运动学是机器人控制的基础,它对于实现精确的运动控制和路径规划非常关键。
掌握机器人运动学理论和方法,能够帮助我们设计出更高效、更安全的机器人系统。
在本文档中,我们将介绍机器人运动学的基本概念和常用方法,包括前向运动学、逆向运动学和雅可比矩阵等。
前向运动学前向运动学是机器人运动学中的一种基本方法,用于计算机器人末端执行器的位置和姿态。
它通过将每个关节的运动传递下去,从而得到机器人的整体姿态。
在前向运动学中,我们需要了解机器人的连杆长度、关节角度和坐标系的定义。
通过这些参数,我们可以构建一个运动学模型,用于计算机器人的末端执行器位置和姿态。
通常,采用矩阵变换的方法来表示前向运动学。
我们可以通过一系列的坐标转换和旋转矩阵,将关节角度转化为末端执行器的位置和姿态。
逆向运动学逆向运动学是机器人运动学中的另一种重要方法,与前向运动学相反,它通过已知机器人末端执行器的位置和姿态,计算各个关节的角度。
逆向运动学常用于机器人路径规划和精确定位。
在机器人控制中,我们通常通过末端执行器的位置和姿态,来确定关节角度,从而实现期望的运动。
逆向运动学的计算过程相对复杂,通常采用优化算法或迭代求解的方法。
我们需要根据机器人的运动学模型和关节限制条件,对目标函数进行建模,并求解使目标函数最小化的关节角度。
雅可比矩阵雅可比矩阵是机器人运动学中的一个重要工具,用于描述机器人的运动学性能和控制能力。
它描述了机器人末端执行器的速度和姿态变化,对于路径规划和动力学分析非常有用。
雅可比矩阵的计算采用了线性近似的方法,通过对机器人运动学模型的导数进行计算。
它可以描述机器人关节角度和末端执行器的关系,从而可以帮助我们分析机器人的运动性能和控制精度。
雅可比矩阵在机器人运动学中有广泛的应用,例如用于机器人轨迹规划、碰撞检测和机器人力学优化等方面。
机器人运动学方程2.8机器人正运动学方程的D-H表示法在1955年,Denavit和Hartenberg在“ASME Journal of Applied Mechanics”发表了一篇论文,后来利用那个这篇论文来对机器人进行表示和建模,并导出了它们的运动方程,这已成为表示机器人和对机器人运动进行建模的标准方法,所以必须学习这部分内容。
Denavit-Hartenberg(D_H)模型表示了对机器人连杆和关节进行建模的一种非常简单的方法,可用于任何机器人构型,而不管机器人的结构顺序和复杂程度如何。
它也可用于表示已经讨论过的在任何坐标中的变换,例如直角坐标、圆柱坐标、球坐标、欧拉角坐标及RPY坐标等。
另外,它也可以用于表示全旋转的链式机器人、SCARA机器人或任何可能的关节和连杆组合。
尽管采用前面的方法对机器人直接建模会更快、更直接,但D-H表示法有其附加的好处,使用它已经开发了许多技术,例如,雅克比矩阵的计算和力分析等。
假设机器人由一系列关节和连杆组成。
这些关节可能是滑动(线性)的或旋转(转动)的,它们可以按任意的顺序放置并处于任意的平面。
连杆也可以是任意的长度(包括零),它可能被弯曲或扭曲,也可能位于任意平面上。
所以任何一组关节和连杆都可以构成一个我们想要建模和表示的机器人。
为此,需要给每个关节指定一个参考坐标系,然后,确定从一个关节到下一个关节(一个坐标系到下一个坐标系)来进行变换的步骤。
如果将从基座到第一个关节,再从第一个关节到第二个关节直至到最后一个关节的所有变换结合起来,就得到了机器人的总变换矩阵。
在下一节,将根据D-H表示法确定一个一般步骤来为每个关节指定参考坐标系,然后确定如何实现任意两个相邻坐标系之间的变换,最后写出机器人的总变换矩阵。
图2.25 通用关节—连杆组合的D-H表示假设一个机器人由任意多的连杆和关节以任意形式构成。
图2.25表示了三个顺序的关节和两个连杆。
虽然这些关节和连杆并不一定与任何实际机器人的关节或连杆相似,但是他们非常常见,且能很容易地表示实际机器人的任何关节。