【人教版】中职数学(拓展模块)2.2《双曲线》教案设计
- 格式:doc
- 大小:672.50 KB
- 文档页数:8
授课题目3.2双曲线选用教材高等教育出版社《数学》(拓展模块一上册)授课时长4课时授课类型新授课教学提示本课以“广州塔”为例创设情境,帮助学生形成对双曲线的直观感受,然后通过一个实验展示了双曲线形成的过程,引导学生分析双曲线上的点所满足的几何条件,为建立双曲线的标准方程创造条件.然后,与椭圆标准方程的推导类比进行双曲线标准方程的推导,有理化过程学生课后自行完成,在类比介绍焦点在y轴上的双曲线标准方程.最后,借助双曲线的图像,分别研究焦点不同坐标轴的双曲线的几何性质.教学目标知道双曲线的概念及形成过程,知道如何化简形成双曲线的标准方程,能区分不同焦点坐标对应的不同方程;会根据双曲线的方程说出双曲线的几何性质,能根据条件求出双曲线的标准方程;逐步提升直观想象、数学运算和数学建模等核心素养.教学重点根据条件求双曲线的标准方程,根据标准方程分析双曲线的几何性质.教学难点双曲线标准方程的推导与化简.教学环节教学内容教师活动学生活动设计意图情境导入广州塔是目前世界上已经建成的最高的塔桅建筑,广州塔的两侧轮廓线是什么图形?有什么特点?提出问题引发思考思考分析回答帮助学生形成双曲线形状的直观感受新知探索可以看出,广州塔两侧的轮廓线是关于塔中轴对称的两条曲线,它们分别从塔的腰部向上下两个方向延伸,人们称这样的曲线为双曲线.那么,如何画出双曲线呢?我们可以通过一个实验来完成.(1)取一条拉链,把它拉开分成两条,将其中一条剪短.把长的一条的端点固定在点F1出,短的一条的端点固定在点F2处;(2)将笔尖放在拉链锁扣M处,随着拉链的拉开或闭合,笔尖就画出一条曲线(图中右边的曲线);(3)再把拉链短的一条的端点固定在点F1处,长的一条的端点固定在点F2处.类似地,笔尖可面出另一条曲线(图中左边的曲线).拉链是不可伸缩的,笔尖讲解说明展示图形引发思考理解思考结合图形思考问题通过实验展示画双曲线的过程,为建立双曲线的标准方程创造条件以经过双曲线两焦点F 1、F 2的直线为x 轴,以线段F 1F 2的垂直平分线为y 轴,建立平面直角坐标系,如图所示.设M (x ,y )为双曲线上的任意一点,双曲线的焦距为2c (c >0),则焦点F 1、F 2的坐标分别为(-c ,0)、(c ,0). 又设双曲上的点M 与焦点的距离之差的绝对值为2a (a >0),即||MF 1|-|MF 2||=2a ,则有|MF 1|-|MF 2|=±2a . 于是,有 2222()()2x c y x c y a ++--+=±,移项得 2222()()2x c y x c y a ++=-+±两边平方得 2222222()()4()4x c y x c y a x c y a ++=-+±-++,整理得 222()cx a a x c y -=±-+, 两边再平方,整理得 422222222+a c x a x a c a y =++,移项并整理得 22222222()()c a x a y a c a --=-.由双曲线的定义可知2c >2a >0,即a >c >0,因此220c a ->.令222(0)c a b b -=>,则上式可化为 222222b x a y a b -=.两边同时除以22a b ,得222210x ya ba b-= (>0,>).方程称为双曲的标准方程. 此时双曲线的焦点F1和F2在x轴上,焦点坐标分别为(-c,0)和(c,0).如图所示,以经过双曲线两焦点F1、F2的直线为y轴,线段F1F2的垂直平分线为x 轴,建立平面直角坐标系.类似地,可以求得双曲线的标准方程为222210y xa ba b-= (>0,>).此时双曲线的焦点F1和F2的坐标分别为(0,-c)、(0, c). 例1根据条件,求双曲线的标准方程.探索新知x≤-a或x≥a.这说明,双曲线的两支分别位于直线x=-a的左侧与直线x=a的右侧,如图所示.2.对称性类似于前面关于椭圆对称性的研究,借助于方程()2222100x ya ba b-=>> ,可以发现,双曲线关于x轴、y轴和坐标原点都是对称的.x轴与y轴都称为双曲线的对称轴,坐标原点称为双曲线的对称中心(简称中心).3.顶点令y=0,得到x=±a.因此,双曲线与x轴有两个交点A1(-a,0) 和A2(a,0)(如图).双曲线与它的对称轴的两个交点A1、A2称为双曲线的顶点,线段A1A2称为双曲线的实轴,它的长等于2a,a是双曲线的实半轴长.令x=0,得到y²=-b²,这个方程没有实数解. 因此,双曲线与y轴没有交点. 我们仍将点B1(0,-b)与B2(0,b)画在y轴上,如图所示.线段B1B2称为双曲线的虚轴,它的长等于2b,b是双曲线的虚半轴长.显然,双曲线的焦点、顶点与实轴都在同一个坐标轴上.4.渐近线经过点A1、A2分别作y 轴的平行线x=-a,x=a,经过点B1、B2分别作x轴的平行线y=-b,y=b. 这四条直线围成一个矩形,如图所示. 矩形的两条对角线所在直线的方程为by xa=±.观察右图可以看出,双曲线的两支向外延伸时,分别与这两条直线逐渐接近但又永不相交,我们把这两条直线讲解说明展示讲解讲解说明展示讲解理解思考领会理解理解思考领会理解椭圆的范围和对称性易于直观判断,运用代数方法进行界定可以帮助学生习得几何问题代数化的思想方法,培养学生科学严谨的科学精神.确定双曲线范围的目的是用描点法画图时可以不取范围称为双曲线22221x y a b-= 的渐近线.借助双曲线的标准方程,可以更严格地描述渐进线的性质. 将双曲线的标准方程变为可以看到,当|x |无限增大时,y 的值无限接近于bx a或bx a-的值.这说明,当|x |无限增大时,双曲线与直线b y x a =或b y x a =-无限接近(但不能相交). 5.离心率 双曲线的焦距与实轴长的比c a称为双曲线的离心率,记作e .即ce a=. 因为c >a >0,所以双曲线的离心率e >1. 由2222211b c a c e a a a-==-=- 可以看出,e 越大,b a 的值越大,从而渐近线by xa=±的斜率的绝对值越大,双曲线的“张口”就越大.因此,离心率e 反映了双曲线的“张口”大小.探究与发现为什么冷却塔的塔身大多是双曲线的形状?例3 求双曲线4y ²-16x ²=64实轴长、虚轴长、焦点坐标、为()0,25-,()0,25,顶点坐标为(0,-4)、(0,4),离心率52c e a ==,渐近线方程为2b y x a =±=±.例4 求满足下列条件的双曲线的标准方程. (1)一个焦点的坐标为(10,0),一条渐近线的方程为3x -4y =0; (2)焦距为12,离心率为32.解 (1) 由题设可知,双曲线的焦点在x 轴上,渐近线的方程为 34y x =. 于是有22100,3.4a b b a +==⎧⎪⎨⎪⎩ 解得28,6.a b ==⎧⎨⎩ 因此,所求的双曲线的标准方程为 2216436x y -= ; (2)由已知条件可知2c =12,因此c =6.又32c e a ==,故a =4,故b ²=c ²-a ²=20.于是,当双曲线的焦点在x 轴上时,所求双曲线的标准方程为2211620x y -= .当双曲线的焦点在y 轴上时,所求双曲线的标准方程为2211620y x-= .例5 用“描点法”画出双曲线221169x y -= 的图形. 分析 双曲线具有对称性,因此只需先画出双曲线在第一象限内的图形,然后对称性地画出全部图形. 解 当y ≥0时,双曲线的方程可以变形为23164y x =-(x ≤-4或x ≥4). 在[4,+∞)上,选取几个整数作为x 的值,计算出对应的y 值,列表以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标系中依次描出相应的点(x,y),用光滑的曲线顺次链接各点得到双曲线在第一象限中的图形. 然后利用对称性,画出全部图形.温馨提示我们可以利用双曲线的顶点和渐近线,画出双曲线的大致图像.具体步骤如下:(1)由a²=16,得a=4,得到双曲线的两个顶点A1(-4,0)、A2(4,0);(2)由b²=9,得b=3,得到双曲线的虚轴端点B1(0,-3)、B2(0,3) ;(3)作出由直线x=±4、y=±3所围成的矩形,画出矩形两条对角线所在的直线,即双曲线的两条渐近线;(4)依据双曲线经过实轴端点,且逐渐接近渐近线这一特点,画出大致图像.例6已知A、B两个哨所相距 1600m,在A哨所听到炮弹爆炸声比在B哨所晚3s.求炮弹爆炸点所有可能位置构成的曲线的方程(声速为 340 m/s).分析根据题意,由A、B两处听到爆炸声的时间差可算出A、B两处与爆炸点的距离差,它是一个定值. 因此,爆炸点所有可能的位置都在某双曲线上,又因为爆炸点距离A 处比距离B处远,所以爆炸点应在该双曲线中靠近B处的一支上.解如图所示,建立平面直角坐标系,使A、B两点在x 轴上,且坐标原点为线段AB的中点.设爆炸点M的坐标为(x,y),则|MA|-|MB|=340×3=1020,于是有2a=1020,a=510,a²=260100.因为|AB|=1600,所以2c=1600,c=800,b²=c²-a²=379900.又|MA|-|MB|=1020>0. 故爆炸点M在双曲线的右支上,从而x≥510.因此,所求曲线方程为探究与发现能否用一根无弹性细绳、一把直尺、几颗图钉和一支笔画出双曲线?练习3.2.2。
2.2双曲线定义与标准方程的引入1.用实物体——拉链,定点 F 1、F 2 是两颗按钉,MN 是拉链上的点,点M 移动,12MF MF -为常数,这样可以画出一支曲线,当21MF MF -也是同一个常数,可以画出另一支曲线,这样做出的曲线叫双曲线.提出双曲线的概念.拉链法:2.简单实验(边演示、边说明)如图2-23,定点12F F 、是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出曲线的一支;由21MF MF -是同一常数,可以画出另一支.注意:常数要小于12F F ,否则作不出图形.这样作出的曲线就叫做双曲线.3.建筑艺术中:埃菲尔铁塔,双曲线形线条,简洁而又壮观的气势征服了全世界.4.城市交通中:北京为缓减城市交通拥堵准备修建双曲线型交通.工业生产中:双曲线型冷却塔,将物理的流体力学与数学完美结合.到底什么叫双曲线呢?请用几何画板动手操作:(1)如图,圆O的半径为定长r,A是圆O内一定点,P是圆O上任意一点.线段AP的垂直平分线L交直线OP于点Q,当点P在圆上运动时,画出图形,探索点Q的轨迹.(2)、把(1)中“A是圆O内一定点”改为“圆O外一定点”,探索点Q的轨迹.5.折纸实验课前准备印有圆1F 的白纸,每位学生发一张.教师可以用这种方式引入:大家经常做物理实验、化学实验、生物实验,可是你们做过数学实验吗?那么,我们今天一起来做一个数学实验,请拿出刚发下来的印有圆1F 的白纸,按如下步骤操作:第一步:在圆1F 外取一定点2F ;第二步:在圆1F 上任取一点1P ;第三步:将白纸对折,使1P 和2F 重合,并留下一条折痕;第四步:连接1P 和1F ,并延长交折痕于点1M ;第五步:再在圆周上任取其他点,将上述步骤2~4重复4~6次,便可以得到一系列点 ,,,321M M M ,最后将这些点连起来,得到一个很美的图形,大家想看到是什么图形吗?赶紧动手做吧! 等学生做作出图后,教师引导学生研究得到图形是的点的属性,这样便得出了双曲线的定义.6.据资料记载,在抗美援朝早期,我志愿军某炮兵团冒着生命危险,侦查出美军阵地,我方当机立断,火速炮击.可不久美军就将炮弹比较准确地打到我军阵地,美军为何这样准确呢?原来他们在阵地旁建有如图1所示的A 、B 、C 三个固定的观测站,根据听到我方阵地位置D 处打炮声的时间差及声速就能确定我方位置,而不需要冒任何生命危险.图1 DA B C。
双曲线教学设计共3篇双曲线课程讲解下面是整理的双曲线教学设计共3篇双曲线课程讲解,以供参考。
双曲线教学设计共1双曲线及其标准方程教学设计一.教学目标: 1.知识目标:掌握双曲线的定义并会推导其方程.2.能力目标:能根据已知条件,选择恰当的形式的双曲线方程解题;加深对类比,化简,分类讨论的思想的理解与运用.3.情感目标:利用教学内容促进学生对量变,质变规律的理解和对学生进行爱国主义教育.二.教学重点与难点分析: 本节的教学重点是准确理解双曲线的定义.本节的教学难点是选择恰当的双曲线方程解题.三.教学方法和学习方法的设计: 教法:1.在教学目标的指导下,采用”信息环境下情境性问题解决”教学模式实施教学.这种方法是以问题为中心,以学生主动探索数学知识和强化创新意识为主要特征的探究型教学方式.在探索过程中经历”提出问题———分析问题———分组讨论———提炼总结———深化反思”五个不同的教学环节.在整个教学过程中,教师利用问题引路,学生独立思考和分组讨论,从而自己解决问题.2.通过课件和动画展示数学知识的发生﹑发展过程;帮助学生理解抽象的数学概念;借助信息技术实现数学思维的“再现”.学法:在教师的组织,点拨,引导作用下,通过学生积极思考,大胆想象,总结规律,自己不能解决的问题通过小组讨论解决,充分发挥他们的主体作用,让学生置身于提出问题﹑思考问题﹑解决问题的动态过程中.四.媒体选择:多媒体课件.39五.教学过程设计: 探索问题一: 定圆圆O1内含于定圆圆O2,当圆M与圆O2内切而与圆O1外切时, 圆M的圆心M的轨迹是什么曲线? 学生: 是椭圆.教师: 面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆.若将“距离之和”改为“距离之———差”.那将会出现什么情况呢? 探索问题二: 设圆O1,圆O2外离,其半径分别为r1,r2.动圆圆M与圆O1内切而与圆O2外切,求动圆M的圆心M的轨迹又是什么曲线? 分析: 设动圆M半径为r,有O2M?O1M??r2?rr?r1??r1?r2 教师: 谁能画出点M的轨迹?(没反应)困难在哪里呢? 学生: 动圆M有无数个,画起来困难.所以点M的轨迹画不出来! (课件演示) 教师:原来点M的轨迹是一条开口向左的,向外伸展的不封闭的一条曲线,这是单曲线吗?:是否还有其他情况? 学生:如果圆M与圆O1外切而与圆O2内切情况会怎样? 此时, O1M?O2M??r1?rr?r2??r1?r2.大概是开口向右的一条曲线吧.课件演示.教师:我们把上述两条曲线称为双曲线(演示课件).请给出双曲线的定义.学生:平面内与两个定点的距离的差的绝对值是常数的点的轨迹.教师:好.请看——(课件演示)当圆O1与圆O2外切时,虽然MO1?MO2?r1?r2?O1O2,但点在线段O1O2的两侧,是两条射线.动点M必定满足一个什么样的特定条件? 40学生:应在前面的叙述中,在”常数”后加上附加条件”小于O1O2”.教师:如果这个常数为0呢?这时点的轨迹是什么? 学生:平面内与两个定点O1,O2的距离的差的绝对值是0的点的轨迹是线段O1O2的垂直平分线.所以这个常数不能为0.教师:这就完整了.称O1,O2为双曲线的焦点.它与椭圆定义比较又有和联系呢? 学生:在椭圆定义中,由三角形两边之和大于第三边的要求,而双曲线的定义中应满足三角形的两边之差的绝对值小于第三边的要求.教师:如此复杂的曲线和平面几何中最简单的结论紧密联系,这充分反映了事物间的和谐的本质属性.问题延伸: 教师:利用平面直角坐标系,我们可以求出该曲线方程,这就是数形结合的思想.问题是如何建立平面直角坐标系? 学生:以O1,O2所在的直线为x轴,线段O1O2的中垂线为y轴,建立直角坐标系.教师:为什么不以O1或O2为原点建立直角坐标系呢? 学生:那样的话, O1与O2就不能关于y轴对称,从前面我们学习的椭圆方程的推导过程中知道,所得的方程较繁.教师:对.请同学们自行推导双曲线方程.(学生推演,教师归纳).教师:同学们都能得出方程?c2?a2?x2?a2y2??c2?a2?a2.仿照推导椭圆方程的方法.可x2y2令c?a?b.则得焦点在x轴上的双曲线方程: 2?2?1.类似地,当焦点在y轴上ab222时,(或者说以O1O2所在的直线为y轴.线段O1O2的中垂线为x轴建立直角坐标系).双曲线的方程是———y2x2 学生: 2?2?1ab 41教师:它们都是双曲线的标准方程.焦点在二次项系数为正的字母所表示的轴上.思考问题一: 例1.(1)已知双曲线两个焦点的坐标为F1??5,0?,F2?5,0?,双曲线上一点P到F1,F2的距离的差的绝对值等于6,求双曲线的标准方程.(2)已知双曲线的中心是坐标原点,焦点在y轴上,焦距为12,且经过点P?2,?5?,求双曲线的方程.(3).求过点A2,43和B?2,?4的双曲线标准方程.(第(1),(2)小题为课本的例习题.) (请三位同学板演,再请三位同学讲评.第(1),(2)小题略.第3小题不少学生仍分焦点在x,y轴的情况求解.过程较繁.) 学生:第(3)题他解对了,但比较繁.我认为只要设mx2?ny2?1.然后把两点坐标分别代入,1得到两个二元一次方程组成的方程组,解得m?1, n??,表明它是双曲线,同时表示不6存在过这两点的椭圆.教师:对!讲得有道理.求中心在原点的椭圆.双曲线标准方程,只需两个独立变量.这是它们的本质属性.理解这一点,解题运算量就小多了.教师:上述图形的变化过程反映了事物在一定范围内由量的积累引起质的变化情况.它包括了目前我们所学的几种曲线.现在让我们来了解双曲线在军事上的一些应用.思考问题二:一炮弹在某处爆炸,在A处听到爆炸声的时间比在B处晚2s.(1)爆炸点应在什么样的曲线上? (2)已知A,B两地相距800m,并且此时声速为340ms,求曲线的方程.(3)要想确定爆炸点的准确位置.应采取什么措施? (学生分组讨论.教师巡视指导.把学生解答用投影仪展示.) 学生(1)由声速及A,B两处听到爆炸声的时间差为2s,可知A,B两处与爆炸点的距离的42差为PA?PB?680?800,因此爆炸点应该位于以A,B为焦点的双曲线上.因为爆炸点离A处比离B处更远,所以爆炸点应在靠近B处的一支上.(2)如图,建立直角坐标系xoy,使A,B两点在x轴上,并且点O与线段AB中点重合.设爆炸点P的坐标为?x,y?.则PA?PB?340?2?680 ?AB 即2a?680,a?340.又AB?800 所以2c?800,c?400b2?c2?a2?因为PA?PB?680?0 所以x?0.x2y2所求双曲线方程为??1(x?0)(3).利用两个不同的观测点侧得同一炮弹爆炸声的时间差,可以确定爆炸点所在的双曲线的方程但不能确定爆炸点的准确位置.如果再增设一个观测点C,利用B, C (或A, C)两处侧得的爆炸声的时间差,可以求出另一个双曲线的方程.解这两个方程组成的方程组,就可以确定爆炸点的准确位置.变式一:若将“在A处听到爆炸声的时间比在B 处晚2s”改为“在A处听到爆炸声的时间比在B处晚40s”那么爆炸点P应在什么样的曲线上? 17变式二:若将“A,B两地相距800m”改为“A,B两地相距600m” 那么爆炸点P应在什么样的曲线上? 变式三:假若在A,B两处同时听到爆炸声, 那么爆炸点P又在怎样的曲线上呢? 六.小结: 1.双曲线的定义,关键词是绝对值的差小于F1F2.432.求双曲线方程要注意选择方程的形式,以简化计算.3.主要思想方法有类比思想及特殊与一般量变与质变的辨证关系.七.教学效果: 这节课充分发挥了多媒体教学的优势,教学设计充分体现”主导----主体”现代教学思想,彻底地改变了传统教学过程汇总学生被动接受知识的状态,学生能够自主探索获取知识,愿意学习也学会学习;学生主动参与的意识提高了.通过多媒体教学,教师把学生引上探索问题之路,调动了每一个学生学习的主动性和创造性,体现了学生的主体地位,有利于学生潜能的开发和创造性思维的培养.44双曲线教学设计共2双曲线及其标准方程一、学习目标:【知识与技能】:1、通过教学,使学生熟记双曲线的定义及其标准方程,并理解这一定义及其标准方程的探索推导过程.2、理解并熟记双曲线的焦点位置与两类标准方程之间的对应关系.【过程与方法】: 通过“实验观察”、“思考探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观.【情感、态度与价值观】: 通过实例的引入和剖析,让学生再一次感受到数学来源于实践又反作用于实践;生活中处处有数学.二、学情分析:1、在学生已学习椭圆的定义及其标准方程和掌握“曲线的方程”与“方程的曲线”的概念之后,学习双曲线定义及其标准方程,符合学生的认知规律,学生有能力学好本节内容;2、由于学生数学运算能力不强,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动性.三、重点难点:教学重点:双曲线的定义、标准方程教学难点:双曲线定义中关于绝对值,2a三、教学过程:【导入】1、以平面截圆锥为模型,让学生认识双曲线,认识圆锥曲线;2、观察生活中的双曲线;【设计意图:让学生对圆锥曲线整体有所把握,体会数学来源于生活.】探究一活动1:类比椭圆的学习,思考:研究双曲线,应该研究什么?怎么研究?从而掌握本节课的主线:实验、双曲线的定义、建系、求双曲线的标准方程;活动二:数学实验:(1)取一条拉链,拉开它的一部分,(2)在拉链拉开的两边上各取一点,分别固定在点F1,F2 上,(3)把笔尖放在拉头点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线。
【课题】2.2双曲线(二)
【教学目标】
知识目标:
了解双曲线标准方程所表示的双曲线的范围、对称性、顶点、渐近线、离心率等几何性质.
能力目标:
学生的数学思维能力得到提高.
【教学重点】
双曲线的性质.
【教学难点】
双曲线的渐近线概念的理解.
【教学设计】
双曲线性质的教学,可以与椭圆的性质对比进行,着重指出他们的异同点.例3是双曲线的性质的训练题.利用对称性,作图会简便的多,可以让学生自行练习.例4与例5都是求双曲线方程的训练题.这些题目都属于基础性训练题.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
图2-11
.对称性
在双曲线的标准方程中,将y换成-y,方程依然成立.说明双曲线关于x轴对称.
同理可知,双曲线关于y轴对称,也关于坐标原点对称.
轴都叫做双曲线的对称轴,坐标原点叫做双曲线的
图2-12 【说明】
焦点在y轴的双曲线
22
22
1(0,0)
y x
a b
a b
-=>>的渐近线方程
图2-13
画双曲线的草图时,可以首先确定顶点,再画出双曲线的渐近线,然后根据双曲线与其渐近线逐渐接近的特点画出图
【教师教学后记】。