弧长和扇形面积讲义(学生版)
- 格式:doc
- 大小:271.00 KB
- 文档页数:11
辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。
弧长和扇形面积是数学中与圆相关的两个重要概念。
理解并掌握如何计算弧长和扇形面积对于解决与圆相关的几何问题非常重要。
在九年级数学课程中,弧长和扇形面积通常作为圆和圆的应用问题的基础知识出现。
以下是关于九年级弧长和扇形面积的讲义。
一、弧长的计算1.弧长的定义在圆中,弧由圆周上的两个点所确定。
弧长是圆周上的一部分弧对应的弧长。
弧长的单位通常是长度单位(如厘米、米)。
2.弧长的计算公式对于一个圆的弧长,可以使用以下公式进行计算:L=2πr×(θ/360°)其中,L表示弧长,r表示圆的半径,θ表示弧所对应的圆心角的度数。
3.弧的度数的计算弧所对应的圆心角的度数可以通过以下公式计算:θ=(L/2πr)×360°其中,L表示弧长,r表示圆的半径,θ表示弧所对应的圆心角的度数。
二、扇形面积的计算1.扇形的定义在圆中,扇形是由圆心、弧和两条半径构成的封闭图形。
2.扇形面积的计算公式扇形的面积可以使用以下公式进行计算:A=(θ/360°)×πr²其中,A表示扇形的面积,r表示圆的半径,θ表示扇形所对应的圆心角的度数。
3.圆的面积计算圆的面积是扇形面积的特殊情况,可以使用以下公式进行计算:A=πr²其中,A表示圆的面积,r表示圆的半径。
三、习题演练1.第一题:一个圆的半径为4 cm,计算这个圆的周长。
解答:周长= 2πr = 2 × 3.14 × 4 = 25.12 cm答案:这个圆的周长为25.12 cm。
2.第二题:一个扇形的圆心角为60°,半径为6 cm,计算这个扇形的面积。
解答:扇形的面积= (60/360) × 3.14 × 6² = 18.84 cm²答案:这个扇形的面积为18.84 cm²。
3.第三题:一个扇形的面积为12.56 cm²,半径为4 cm,计算这个扇形的圆心角。
第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
二、知识点回顾
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
新课:
一、导入
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
二、知识梳理+经典例题
1.弧长公式
圆的面积C 与半径R 之间存在关系R 2C π=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是
360
R
2π。
n °的圆心角所对的弧长是180
R
n π 180
R
n π=
∴l
*这里的180、n 在弧长计算公式中表示倍分关系,没有单位。
2.扇形面积
由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。
发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。
在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角
为n °的扇形面积是: R 2
1360R n S 2l =π=扇形
(n 也是1°的倍数,无单位) 3. 圆锥的概念
观察模型可以发现:圆锥是由一个底面和一个侧面围成的。
其中底面是一个圆,侧面是一个曲面,如果把这个侧面展开在一个平面上,展开图是一个扇形。
如图,从点S 向底面引垂线,垂足是底面的圆心O ,垂线段SO 的长叫做圆锥的高,点S 叫做圆锥的顶点。
锥也可以看作是由一个直角三角形旋转得到的。
也就是说,把直角三角形SOA 绕直线SO 旋转一周得到的图形就是圆锥。
其中旋转轴SO 叫做圆锥的轴,圆锥的轴通过底面圆的圆心,并且垂直于底面。
另外,连结圆锥的顶点和底面圆上任意一点的线段SA 、SA 1、SA 2、……都叫做圆锥的母线,显然,圆锥的母线长都相等。
母线定义:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。
P 122 4. 圆锥的性质 由图可得
(1)圆锥的高所在的直线是圆锥的轴,它垂直于底面,经过底面的圆心; (2)圆锥的母线长都相等 5. 圆锥的侧面展开图与侧面积计算
圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线、圆心是圆锥的顶点、弧
长是圆锥底面圆的周长。
圆锥侧面积是扇形面积。
如果设扇形的半径为l ,弧长为c ,圆心角为n (如图),则它们之间有如下关系: 180
n c l
π=
同时,如果设圆锥底面半径为r ,周长为c ,侧面母线长为l ,那么它的侧面积是: l l r c 2
1S π==圆侧面
圆锥的全面积为:2r r π+πl
圆柱侧面积:rh 2π。
例题赏析
1.在⊙中,120°的圆心角所对的弧长为cm 80π,那么⊙O 的半径为___________cm 。
2.若扇形的圆心角为120°,弧长为cm 10π,则扇形半径为_____________,扇形面积为____________________。
3.如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为____________。
4.已知扇形的周长为28cm ,面积为49cm2,则它的半径为____________cm 。
5.两个同心圆被两条半径截得的π=⋂10AB ,
π=⋂6CD ,又AC=12,求阴影部分面积。
6. 例:如图,已知正方形的边长为a,求以各边为直径的半圆所围成的叶形的总面积。
7.已知AB、CD为⊙O的两条弦,如果AB=8,CD=6,
⋂
AB的度数与
⋂
CD的度数的和为180°,
那么圆中的阴影部分的总面积为?
8.在△AOB中,∠O=90°,OA=OB=4cm,以O为圆心,OA为半径画
⋂
AB,以AB为直径
作半圆,求阴影部分的面积。
9.①、②……
○m是边长均大于2的三角形,四边形、……、凸n边形,分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧,4条弧,……
(1)图①中3条弧的弧长的和为_________________
图②中4条弧的弧长的和为_________________
(2)求图
○m中n条弧的弧长的和(用n表示)
10.如图,在Rt △ABC 中,已知∠BCA=90°,∠BAC=30°,AC=6m ,把△ABC 以点B 为中心逆时针旋转,使点C 旋转到AB 边的延长线上的点C'处,那么AC 边扫过的图形(阴影部分)的面积为?
11.如图,已知Rt △ABC 的斜边AB=13cm ,一条直角边AC=5cm ,以直线AC 为轴旋转一周得一个圆锥。
求这个圆锥的表面积。
如果以直线AB 为轴旋转一周,能得到一个什么样的图形?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
三、随堂检测
1. 已知扇形的弧长为6πcm ,圆心角为60°,则扇形的面积为____________
2. 已知弓形的弧所对的圆心角为60°,弓形弦长为a ,则这个弓形的面积是__________。
3. 如图,在平行四边形ABCD 中,34AB =,32AD =,BD ⊥AD ,以BD 为直径的⊙O 交AB 于E ,交CD 于F ,则图中阴影部分的面积为___________。
4. 如图,AB 是⊙O 1的直径,AO 1是⊙O 2的直径,弦MN//AB ,且MN 与⊙O 2相切于C 点,
若⊙O 1的半径为2,则O 1B 、⋂
BN 、CN 、⋂C O 1所围成的阴影部分的面积是_____________。
5. 如图,△ABC 为某一住宅区的平面示意图,其周长为800m ,为了美化环境,计划在住宅区周围5m ,(虚线以,△ABC 之外)作绿化带,则此绿化带的面积为___________。
6. 如图,两个同心圆被两条半径截得的cm 6AB π=⋂,cm 10CD π=⋂,⊙O'与⋂
AB ,⋂CD 都相切,则
图中阴影部分的面积为____________。
7. 如图,OA 是⊙O 的半径,AB 是以OA 为直径的⊙O ’的弦,O ’B 的延长线交⊙O 于点C ,且OA=4,∠OAB=45°,则由⋂
AB ,⋂
AC 和线段BC 所围成的图形面积是______。
8. 如图,一扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30cm ,贴纸部分BD 长为20cm ,贴纸部分的面积为( )
A.
2cm 3
800
π B.
2cm 3
500
π C. 2cm 800π D. 2cm 500π
9. 如图,在同心圆中,两圆半径分别为2、4,∠AOB=120°,则阴影部分的面积为( )
A. π4
B. π2
C.
π3
4 D. π
10. 一块等边三角形的木板,边长为1,现将木板沿水平翻滚(如图),那么,B 点从开始至结束所走过的路径长度为( )
A.
2
3π
B.
3
4π C. 4 D. 2
32π+
11. (2004·黄冈)如图,要在直径为50cm 的圆形木板上截出四个大小相同的圆形凳面,问怎样才能截出直径最大的凳面,最大直径是多少厘米?
.
12.在相距40km 的两个城镇A 、B 之间,有一个近似圆形的湖泊,其半径为10km ,圆心恰好位于A 、B 连线的中点处,现要绕过湖泊从A 城到B 城,假设除湖泊外,所有的地方均可行走,有如图所示两种行走路线,请你通过推理计算,说明哪条路线较短。
(1)的路线:线段→⋂
→CD AC 线段DB
(2)的路线:线段→⋂
→EF AE 线段FB (其中E 、F 为切点)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
四、归纳总结
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
五、课后作业
1.一个圆锥的模型,这个模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作,再用一块圆形铁皮做底,则这块图形铁皮的半径为______________。
2.若圆锥的轴截面是一个边长为2cm的等边三角形,则这个圆锥的侧面积是_______。
3.例:已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为______。
4.例:若圆锥的侧面积是底面积的2倍,则侧面展开图的圆心角是__________。
5.例:如图,圆锥形的烟囱帽的底面直径是80cm,母线长50cm。
(1)画出它的展开图;
(2)计算这个展开图的圆心角及面积。
6.例:一个圆锥的高是10cm,侧面展开图是半圆,求圆锥的侧面积。
7.例:蒙古包可以近似地看作圆锥和圆柱组成,如果想用毛毡搭建20个底面积为2
9 ,高为3.5m,
m
外围高4m的蒙古包,至少要多少平方米的毛毡?
. .word.资料. ..。