正弦函数、余弦函数的性质3 习题课
- 格式:ppt
- 大小:359.50 KB
- 文档页数:14
高中数学-正弦函数、余弦函数的性质(单调性和奇偶性)课后练习基础达标1.函数f(x)=sin(2x+23π)的奇偶性为( ) A.奇函数 B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 解析:∵f(x)=sin(2x+2π+π)=-sin(2π+2x)=-cos2x 由于y=-cos2x 是偶函数. ∴f(x)=sin(2x+23π)为偶函数.故选B. 答案:B2.下列命题中正确的个数是( ) ①y=sinx 的递增区间是[2kπ,2kπ+2π](k∈Z ) ②y=sinx 在第一象限是增函数 ③y=sinx 在[-2π,2π]上是增函数 A.1个 B.2个 C.3个 D.0个 解析:①y=sinx 的递增区间是[2kπ-2π,2kπ+2π],k∈Z . ②函数的单调性是相对于某一区间来说,与所在象限无关.③正确,故选A. 答案:A3.函数y=2-sinx 的最大值及取最大值时x 的值为( )A.y=3,x=2π B.y=1,x=2π+2kπ(k∈Z ) C.y=3,x=-2π+2kπ(k∈Z ) D.y=3,x=2π+2kπ(k∈Z )解析:要求y=2-sinx 的最大值,sinx 取最小值.答案:C4.下列不等式中成立的是( )A.sin(8π-)<sin(10π-) B.sin(π521-)<sin(π417-) C.sin3>sin2 D.sin 57π>sin(52-π)解析:∵-2π<8π-<10π-<0,且y=sinx 在(-2π,0)上是增函数,∴si n(8π-)<sin(10π-).答案:A 5.下列函数,在[2π,π]上是增函数的是( ) A.y=sinx B.y=cosx C.y=sin2x D.y=cos2x解析:①将x=2π与x=π代入可得;②结合图象求解;③结合正、余弦函数的单调性求解. 答案:D6.使函数y=sin(2x+φ)为奇函数的φ值可以是( ) A.4π B.2πC.πD.23π解析:代入验证法,当φ=π时,y=sin(2x+π)=-sin2x 为奇函数.答案:C 综合运用7.函数y=xx sin 192+-的定义域是( )A.[-3,0)B.(0,3]C.[-3,3]D.(2kπ,2kπ+π)(k∈Z ) 解析:函数的定义域由下列不等式组解得:⎩⎨⎧+<<≤≤-⇔⎩⎨⎧>≥-,)12(2,33,0sin ,092ππk x k x x x ⇔0<x≤3. 答案:B8.函数y=3cos 2x-4cosx+1,x∈[3π,32π]的最小值是( ) A.31-B.415C.0D.41- 解析:y=3(cos 2x-34cosx+94)+1-34=3(cosx-32)2-31.∵x∈[3π,32π],∴cosx∈[-21,21],当cosx=21时,y 取到最小值且y 最小=3(3221-)2-31=41-.答案:D9.设函数f(x)=sin2x,若f(x+t)是偶函数,则t 的一个可能值是______________. 答案:4π,π43,…,4)12(+k π,k∈Z 中的一个拓展探究10.已知函数f(x)=sin 2x+acosx+2385-a 在x∈[0,2π]上的最大值为1,求实数a 的值. 解析:本题通过换元转化为二次函数问题.但对称轴变化,区间给定,故需要对a 进行分类讨论.解:设cosx=t,则f(x)=1-cos 2x+acosx+85a-23=-(t-2a )2+218542-+a a . ∴0≤x≤2π, ∴0≤cosx≤1,即t∈[0,1]. (1)当0≤a≤2时,则t=2a时, f(x)max =218542-+a a ,令218542-+a a =1,得a=23.(a=-4舍去). (2)当a <0时,当t=0时,f(x)max =2185-a ,令2185-a =1得a=512>0(舍去). (3)当a >2时,则t=1时,f(x)max =a+2385-a =1,所以a=1320<2(舍去).综上可知a=23.备选习题11.函数y=sinx+|sinx|的最大值是__________,最小值是__________. 解析:y=)0(sin )0(sin 0sin 2<≥⎩⎨⎧x x x 或者结合函数的图象求解.答案:2 012.下列命题:①点(kπ,0)是正弦曲线的对称中心(k∈Z ); ②点(0,0)是余弦曲线y=cosx 的一个对称中心; ③把余弦函数y=cosx 的图象向左平移2π个单位,即得y=sinx 的图象; ④在余弦曲线y=cosx 中,最高点与它相邻的最低点的水平距离是2π; ⑤在正弦曲线y=sinx 中,相邻两个最高点的水平距离是2π; 其中正确命题的序号是__________________. 解析:②错,是因为y=cosx 的对称中心是(kπ+2π,0)k∈Z ; ③错,是由于得到的是y=-sinx; ④错,是由于所得水平距离为π; ①⑤正确可由正弦函数的性质得到. 答案:①⑤13.判断下列函数的奇偶性:(1)f(x)=lg(1-sinx)-lg(1+sinx); (2)f(x)=x·cosx2. 解:(1)先求定义域:⎩⎨⎧-><⇔⎩⎨⎧>+>-1sin 1sin 0sin 10sin 1x x x x ⇒-1<sinx <1, ∴x≠kπ+2π,k∈Z ,定义域关于原点对称. ∵f(-x)=lg(1+sinx)-lg(1-sinx)=-[lg(1-sinx)-lg(1+sinx)]=-f(x).∴原函数为奇函数.(2)f(-x)=-x·cos(-x2)=-x·cosx2=-f(x), ∴原函数是奇函数.14.求下列函数的单调区间. (1)y=sin(3x-3π);(2)y=cos(-2x+3π). 解:(1)令3x-3π=u ,y=sinu 的单调增区间为[2k π-2π,2k π+2π],(k∈Z ). 即2kπ-2π≤3x -3π≤2kπ+2π.∴原函数单调增区间为[18532,1832ππππ+-k k ](k∈Z ). 又y=sin u 的单调减区间为[2kπ+2π,2kπ+23π],(k∈Z ),即2kπ+2π≤3x -3π≤2kπ+23π,∴原函数的单调减区间为[181132,18532ππππ++k k ](k∈Z ). (2)∵y=cos(-2x+3π)=cos(2x-3π),令2x-3π=u,y=cosu 的单调增区间为[2kπ-π,2kπ],(k∈Z )即2kπ-π≤2x -3π≤2kπ,解得:kπ-3π≤x≤kπ+6π(k∈Z ).∴原函数的增区间为:[kπ-3π,kπ+6π],k∈Z .∵y=cosu 的单调减区间为[2kπ,2kπ+π],k∈Z .即:2kπ≤2x -3π≤2kπ+π,解得:kπ+6π≤x≤kπ+32π,k∈Z . ∴原函数的减区间为[kπ+6π,kπ+32π],k∈Z .15.求下列函数的定义域: (1)y=)sin(cos x ;(2)y=x cos 21-+lg(2sinx-1)的定义域.解:(1)要使y=)sin(cos x 有意义,须有sin(cosx)≥0,又因-1≤cosx≤1,必有0≤cosx≤1,由下图甲可知:2kπ-2π≤x≤2kπ+2π,k∈Z .图甲所以原函数的定义域为: {x|-2π+2kπ≤x≤2π+2kπ,k∈Z }. (2)要使函数有意义,只要⎩⎨⎧>-≥-,01sin 2,0cos 21x x即⎪⎪⎩⎪⎪⎨⎧>≤.21sin ,21cos x x 由图乙可得:图乙cosx≤21的解集为{x|3π+2kπ≤x≤35π+2kπ,k∈Z }.sin >21的解集为{x|6π+2kπ<x <65π+2kπ,k∈Z }.它们的交集{x|3π+2kπ≤x<65π+2kπ,k∈Z }即为函数的定义域.。
第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
第三章 第三节 正弦、余弦、正切函数的图像与性质题组一三角函数的定义域问题1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( ) A .{x |x ≠π4,x ∈R}B .{x |x ≠-π4,x ∈R}C .{x |x ≠kπ+π4,k ∈Z ,x ∈R}D .{x |x ≠kπ+3π4,k ∈Z ,x ∈R}解析:∵x -π4≠kπ+π2,∴x ≠kπ+34π,k ∈Z.答案:D2.求下列函数的定义域:(1)y =cos x +tan x ; (2)y =lg(2sin x -1)+-tan x -1cos(x 2+π8)解:(1)要使函数有意义,则⎩⎪⎨⎪⎧cos x ≥0,tan x ≥0,即⎩⎨⎧2kπ-π2≤x ≤2kπ+π2,kπ≤x <kπ+π2,(k ∈Z),所以2kπ≤x <2kπ+π2(k ∈Z).所以函数y =cos x +tan x 的定义域是 {x |2kπ≤x <2kπ+π2,k ∈Z}.(2)由函数式有意义得⎩⎪⎨⎪⎧2sin x -1>0,-tan x -1≥0,cos(x 2+π8)≠0,得⎩⎨⎧sin x >12,tan x ≤-1,x 2+π8≠kπ+π2,(k ∈Z).即⎩⎪⎨⎪⎧2kπ+π6<x <2kπ+5π6,kπ-π2<x ≤kπ-π4,x ≠2kπ+3π4,(k ∈Z).求交集得2kπ+π2<x <2kπ+3π4(k ∈Z).所以函数的定义域是{x |2kπ+π2<x <2kπ+3π4,k ∈Z}.3.若函数y =sin x +f (x )在[-π4,3π4]内单调递增,则f (x )可以是( )A .1B .cos xC .sin xD .-cos x解析:y =sin x -cos x =2sin(x -π4),-π2≤x -π4≤π2,满足题意,所以f (x )可以是-cos x .答案:D4.求y =3tan(π6-x4)的周期及单调区间.解:y =3tan(π6-x 4)=-3tan(x 4-π6),∴T =π|ω|=4π,∴y =3tan(π6-x4)的周期为4π.由kπ-π2<x 4-π6<kπ+π2,得4kπ-4π3<x <4kπ+8π3(k ∈Z),y =3tan(x 4-π6)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递增.∴y =3tan(π6-x 4)在(4kπ-4π3,4kπ+8π3)(k ∈Z)内单调递减.5.已知函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的值不可能是( )A.π3B.2π3C .π D.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值X 围为[2π3,4π3].答案:A6.已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则ω的最小值等于( )A.23B.32C .2D .3 解析:由题意知⎩⎨⎧T 4≤π3,T =2πω,解得ω≥32.答案:B7.设函数f (x )=2cos 2x +3sin2x +a (a 为实常数)在区间[0,π2]上的最小值为-4,那么a的值等于( )A .4B .-6C .-4D .-3解析:y =cos2x +3sin2x +a +1=2sin(2x +π6)+a +1,∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴y min =2×(-12)+a +1=a =-4.答案:C8.已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间[0,2π3]上的取值X 围. 解:(1)f (x )=1-cos2ωx 2+32sin2ωx=32sin2ωx -12cos2ωx +12=sin(2ωx -π6)+12. 因为函数f (x )的最小正周期为π,且ω>0, 所以2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin(2x -π6)+12.因为0≤x ≤2π3,所以-π6≤2x -π6≤7π6,所以-12≤sin(2x -π6)≤1,所以0≤sin(2x -π6)+12≤32,即f (x )的取值X 围为[0,32].9.(2009·某某高考)函数f (x )=(1+3tan x )cos x 的最小正周期为( )A .2πB.3π2C .πD.π2解析:f (x )=(1+3tan x )cos x =cos x +3sin x =2sin(x +π6),T =2π|ω|=2π.答案:A10.设函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图像关于直线x =π3对称,它的最小正周期是π,则函数f (x )的图像的一个对称中心是( ) A .(π3,1) B .(π12,0)C .(5π12,0)D .(-π12,0)解析:∵T =2πω=π,∴ω=2,又∵函数f (x )的图像关于直线x =π3对称,∴sin(2×π3+φ)=±1,∴φ=k 1π-π6,k 1∈Z ,由sin(2x +k 1π-π6)=0得2x +k 1π-π6=k 2π,k 1,k 2∈Z ,∴x =π12+(k 2-k 1)π2,当k 1=k 2时,x =π12,∴函数f (x )的图像的一个对称中心为(π12,0).答案:B11.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)有最小值,无最大值,则ω=________. 解析:由f (π6)=f (π3),知f (x )的图像关于x =π4对称.且在x =π4处有最小值,∴π4ω+π3=2kπ-π2,有ω=8k -103(k ∈Z).又∵12T =πω>π3-π6=π6,∴ω<6,故k =1,ω=143.答案:14312.(文)若a =(3cos ωx ,sin ωx ),b =(sin ωx,0),其中ω>0,记函数f (x )=(a +b )·b +k .(1)若函数f (x )的图像中相邻两条对称轴间的距离不小于π2,求ω的取值X 围;(2)若函数f (x )的最小正周期为π,且当x ∈[-π6,π6]时,函数f (x )的最大值是12,求函数f (x )的解析式,并说明如何由函数y =sin x 的图像变换得到函数y =f (x )的图像. 解:∵a =(3cos ωx ,sin ωx ),b =(sin ωx,0), ∴a +b =(3cos ωx +sin ωx ,sin ωx ).故f (x )=(a +b )·b +k =3sin ωx cos ωx +sin 2ωx +k =32sin2ωx +1-cos2ωx 2+k =32sin2ωx -12cos2ωx +12+k =sin(2ωx -π6)+k +12.(1)由题意可知T 2=π2ω≥π2,∴ω≤1.又ω>0,∴0<ω≤1. (2)∵T =2π2ω=π,∴ω=1.∴f (x )=sin(2x -π6)+k +12.∵x ∈[-π6,π6],∴2x -π6∈[-π2,π6].从而当2x -π6=π6,即x =π6时,f (x )max =f (π6)=sin π6+k +12=k +1=12,∴k =-12.故f (x )=sin(2x -π6).由函数y =sin x 的图像向右平移π6个单位长度,得到函数y =sin(x -π6)的图像,再将得到的函数图像上所有点的横坐标变为原来的12倍(纵坐标不变),得到函数y =sin(2x -π6)的图像.(理)(2009·某某高考)设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图像关于直线x =1对称,求当x ∈[0,43]时,y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x=32sin π4x -32cos π4x =3sin(π4x -π3), 故f (x )的最小正周期为T =2ππ4=8.(2)法一:在y =g (x )的图像上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )). 由题设条件,点(2-x ,g (x ))在y =f (x )的图像上,从而 g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g max =3cos π3=32.法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图像关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g max =3sin π6=32.。
5.4.2正弦函数、余弦高一数学复习知综合应余弦函数的性质(第3课时)
复习知识讲解课件
综合应用
探究1 形如y =a sin 2
x +b sin x +c 设t =sin x ,从而转化为二次函数在给定区间
(a ≠0)的函数的处理思路是:利用换元法定区间上的最值问题.
探究2 正弦曲线、余弦曲线的对称轴高点或最低点,即此时的正弦值、余弦值取曲线的对称中心一定是正弦曲线、余弦曲线弦值为0.考查了整体代换的数学思想.
对称轴一定分别过正弦曲线、余弦曲线的最弦值取最大值或最小值;正弦曲线、余弦弦曲线与x 轴的交点,即此时的正弦值、余
探究3 整体研究三角函数的性质时性、奇偶性、对称性、单调性、最值、值域
质时,我们要从函数的定义域、图象、周期
值域等几个方面综合考虑.
自 助 餐
探究探究 已知三角函数单调区间求参数范子集法:求出原函数的相应单调区间等式
(组)求解. 参数范围的方法:
区间,由已知区间是该区间的子集,列不。