正余弦函数的性质练习题
- 格式:doc
- 大小:83.00 KB
- 文档页数:3
正弦定理与余弦定理1.已知△ABC 中,a=4,ο30,34==A b ,则B 等于( )A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30°3.已知ABC ∆中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A .6πB .3πC .32π D .65π 4.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若sin sin CA=2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( )A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ∆中,756,8,cos 96BC AC C ===,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A .2π B .3π C .4π D .6π 8.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9.在ABC ∆中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A.14 B.23 C.23- D.14- 10.在ABC ∆中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰或直角三角形 11.在△ABC 中,cos2=,则△ABC 为( )三角形.A .正B .直角C .等腰直角D .等腰 12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C .B=45°D .以上答案都不对13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π14.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 15.已知在ABC ∆中,2cos 22A b cc+=,则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .正三角形 D .等腰直角三角 16.已知ABC ∆内角,,A B C 的对边分别是,,a b c ,若1cos ,2,sin 2sin 4B bC A ===,则ABC ∆的面积为( ) A.156 B. 154 C. 152D. 15 17.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =3π,a =3,b =1,则c =( ) A . 3-1 B .3 C. 2 D. 1 评卷人 得分一、解答题(题型注释)18.在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c .已知4A π=,22212b ac -=. (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.19.在△ABC 的内角A ,B ,C 对应的边分别是a ,b ,c ,已知,(1)求B ;(2)若b=2,△ABC 的周长为2+2,求△ABC 的面积.ABC C B A ,,c b a ,,B c C b a sin cos +=B2=b ABC21.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知()222332b c a bc +=+ (1)求sinA ; (2)若32a =,△ABC 的面积S =22,且b>c ,求b ,c .22.已知ABC △的内角A B C ,,的对边分别为a b c ,,,且满足sin(2)22cos()sin A B A B A+=++.(Ⅰ)求ba的值; (Ⅱ)若17a c ==,,求ABC △的面积.23.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2a =,5c =, (1)求b 的值; (2)求sin C 的值.二、填空题 24.已知在中,,,,则___.25.△ABC 中,若222a b c bc =+-,则A = .26.在中,角,,A B C 所对边长分别为,,a b c ,若,则b=___________.27.在C ∆AB 中,已知,C 4A =,30∠B =o ,则C ∆AB 的面积是 . 28.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,,则C 的大小为___________. 29.在∆ABC ,则这个三角形的形状是参考答案1.D 【解析】试题分析:B b A a sin sin =,2342134430sin 34sin sin 0=⋅=⋅==a A b B ;b a <Θ,030=>∴A B , 060=∴B 或0120=B ,选D.考点:正弦定理、解三角形2.B 【解析】试题分析:33sin 4321sin 21=⋅⋅=⋅⋅=∆C C BC AC S ABC ,则23sin =C ,所以060=C ,选B.考点:三角形面积公式3.C 【解析】试题分析:由已知和正弦定理得(2sin sin )cos sin cos 0,A C B B C ++=展开化简得2sin cos sin 0A B A +=,由于A 为三角形内角,所以0,sin 0A A ≠≠,所以1cos 2B =-,23B π=,选C. 考点:1.正弦定理;2.两角和的正弦公式;3.已知三角函数值求角.4.C 【解析】试题分析:由正弦定理可得,sin 22sin C c c a A a==⇒=,又222237b a ac b a -=⇒=,由余弦定理可得,2222221cos 242a cb a B ac a +--===-,又()0,B π∈,所以120B ︒∠=. 考点:1.正弦定理;2.余弦定理.5.D 【解析】解:=, ∴sinC=•sinA=×=,∵0<C <π,∴∠C=45°或135°, ∴B=105°或15°, 故选D .【点评】本题主要考查了正弦定理的应用.解题的过程中一定注意有两个解,不要漏解. 6.D 【解析】试题分析:由余弦定理得22275682682596AB =+-⨯⨯⨯=,所以最大角为B 角,因为226258cos 0265B +-=<⨯⨯,所以B 角为钝角,选D.考点:余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 7.A 【解析】试题分析:由正弦定理得()2sin cos 2sin cos sin sin B C C A B C -==+sin cos cos sin B C B C =+,2sin cos 3sin cos ,sin 2cos 3sin cos 2B C C B C C C C ==,()2222cos 3cos sin C C C =-,213tan ,tan 33C C ==,2,B C C =∴Q 为锐角,所以,,632C B A πππ===,故选A.考点:1、正弦定理两角和的正弦公式;2、三角形内角和定理.8.C 【解析】试题分析:由题可根据正弦定理,得a 2+b 2<c 2,∴cos C =2222a b c ab+-<0,则角C 为钝角考点:运用正弦和余弦定理解三角形. 9.D 【解析】试题分析:sin :sin :sin 3:2:4,::3:2:4A B C a b c =∴=2221cos 24a b c C ab +-∴==- 考点:正余弦定理解三角形10.C 【解析】试题分析:在给定的边与角的关系式中,可以用余弦定理,得22222a b c a b ab+-=g ,那么化简可知所以 2222=a a b c +-,即 22=b c ,=b c ,所以三角形ABC 是等腰三角形.故选C .考点:余弦定理判断三角形的形状. 11.B 【解析】试题分析:根据二倍角的余弦公式变形、余弦定理化简已知的等式,化简后即可判断出△ABC 的形状. 解:∵cos2=,∴(1+cosB )=,在△ABC 中,由余弦定理得,=,化简得,2ac+a 2+c 2﹣b 2=2a (a+c ),则c 2=a 2+b 2,∴△ABC 为直角三角形, 故选:B . 12.C 【解析】试题分析:由A 的度数求出sinA 的值,再由a 与b 的值,利用正弦定理求出sinB 的值,由b 小于a ,得到B 小于A ,利用特殊角的三角函数值即可求出B 的度数. 解:∵A=60°,a=4,b=4, ∴由正弦定理=得:sinB===,∵b <a ,∴B <A , 则B=45°. 故选C 13.A 【解析】试题分析:利用正弦定理化简得:sinAsinBcosC+sinCsinBcosA=12sinB , ∵sinB ≠0,∴sinAcosC+cosAsinC=sin (A+C )=sinB=12, ∵a >b ,∴∠A >∠B ,∴∠B=6π 考点: 14.B 【解析】试题分析:()22cos cos sin sin cos cos sin sin sin sin b C c B a A B C B C A B C A +=∴+=∴+=sin 12A A π∴=∴=,三角形为直角三角形考点:三角函数基本公式 15.A【解析】试题分析:22cos 2cos 11cos 1cos 222A b c A b c b b b A A c c c c c++=⇒==+⇒+=+⇒= ()sin sin cos sin cos 0cos 0,sin sin 2A CB A AC C C C C π+==⇒=∴==,选A考点:正弦定理,二倍角的余弦,两角和的正弦16.B【解析】试题分析:2222214sin 2sin 2cos 242a c b a c C A c a B ac ac +-+-=∴==∴=Q Q 1,2a c ∴==111515sin 122244S ac B ∴==⨯⨯⨯= 考点:正余弦定理解三角形17.C 【解析】试题分析:由余弦定理可得2222113cos 2222b c a c A c bc c+-+-=∴=∴= 考点:余弦定理解三角形 18.(1)2;(2)3.【解析】试题分析:(1)先运用余弦定理求得b c 322=,进而求得b a 35=,再运用正弦定理求C sin 的值即可获解;(2)利用三角形的面积公式建立关于b 方程求解. 试题解析:(1)由余弦定理可得222222⨯-+=bc c b a , 即bc c a b 2222=+-,将22212b a c -=代入可得b c 322=,再代入22212b ac -=可得b a 35=, 所以522sin sin ==a c A C ,即52sin =C ,则51cos =C ,所以2tan =C ; (2)因3sin 21=A bc ,故322322212=⨯⨯b ,即3=b . 考点:正弦定理余弦定理等有关知识的综合运用. 19.(1)B=(2)【解析】解:(1)由正弦定理可得:=,∴tanB=,∵0<B <π, ∴B=;(2)由余弦定理可得b 2=a 2+c 2﹣2accosB ,即a 2+c 2﹣ac=4,又b=2,△ABC 的周长为2+2, ∴a+c+b=2+2, 即a+c=2, ∴ac=,∴S △ABC =acsinB=××=.【点评】本题考查了正弦定理、余弦定理、三角形周长、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 20.(1)B=.4π(2)21+ 【解析】试题分析:(1)由题为求角,可利用题中的条件B c C b a sin cos +=,可运用正弦定理化边为角, 再联系两角和差公式,可求出角B 。
正余弦函数图像和性质练习题1.4.1 正弦函数、余弦函数的图像和性质一、选择题1.下列说法只有一个不正确的是:A) 正弦函数、余弦函数的定义域是R,值域是[-1,1];B) 余弦函数当且仅当x=2kπ(k∈Z)时,取得最大值1;C) 余弦函数在[2kπ-π/3,2kπ+π/3](k∈Z)上都是减函数;D) 余弦函数在[2kπ-π,2kπ](k∈Z)上都是减函数。
2.函数f(x)=sinx-|sinx|的值域为:A) {0}B) [-1,1]C) [0,1]D) [-2,0]3.若a=sin46,b=cos46,c=cos36,则a、b、c的大小关系是:A) c>a>bB) a>b>cC) a>c>bD) b>c>a4.对于函数y=sin(π/3-x),下面说法中正确的是:A) 函数是周期为π的奇函数B) 函数是周期为π的偶函数C) 函数是周期为2π的奇函数D) 函数是周期为2π的偶函数5.函数y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是:A) 4B) 8C) 2πD) 4π6.为了使函数y=sinωx(ω>0)在区间[0,1]内至少出现50次最大值,则ω的最小值是:A) 98πB) 197π/199C) πD) 100π/22二、填空题7.函数值sin1.sin2.sin3.sin4的大小顺序是:sin1 < sin3 < sin2 < sin4.8.函数y=cos(sinx)的奇偶性是:奇函数。
9.函数f(x)=lg(2sinx+1)+2cosx-1的定义域是:x∈[0,π/2]。
10.关于x的方程cos2x+sinx-a=0有实数解,则实数a的最小值是:-1.三、解答题11.用“五点法”画出函数y=sinx+2,x∈[0,2π]的简图。
12.已知函数y=f(x)的定义域是[0,1],求函数y=f(sin2x)的定义域。
1.函数y =sin(x +θ)(0<θ≤π)是R 上的奇函数,则θ的值是( )A .0B.π4C.π2 D .π解析:选D.当θ=π时,y =sin(x +π)=-sin x 是奇函数,故选D.2.已知函数f (x )=sin(πx -π2)-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数解析:选B.∵f (x )=-cosπx -1,∴f (-x )=-cos(-πx )-1=-cosπx -1=f (x ),周期T =2ππ=2. 3.若函数f (x )=2cos(ωx +π3)的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是__________.解析:1<2πω<3⇒2π3<ω<2π, ∵ω∈N *,∴ω的最大值是6.答案:64.函数y =2sin(π6-2x )(x ∈(0,π])的递增区间为________. 解析:y =2sin(π6-2x )=-2sin(2x -π6), 欲求函数y =2sin(π6-2x )的增区间,只需求y =2sin(2x -π6)的减区间. 由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z , 又∵x ∈[0,π],∴π3≤x ≤5π6. 答案:⎣⎡⎦⎤π3,5π6[A 级 基础达标]1.下列函数中,周期为π2的是( ) A .y =sin x 2B .y =sin 2xC .y =cos x 4D .y =cos 4x解析:选D.对于函数y =cos 4x ,周期T =2π4=π2. 2.函数y =cos 2x 在下列哪个区间上是减函数( )A .[-π4,π4] B .[π4,3π4] C .[0,π2] D .[π2,π] 解析:选C.函数y =cos x ,x ∈R 在[0,π]上是减函数,所以函数y =cos 2x 在[0,π2]上是减函数.3.函数y =cos(x +π2),x ∈R 是( ) A .奇函数B .偶函数C .非奇非偶函数D .无法判定解析:选A.y =cos(x +π2)=-sin x ,为奇函数. 4.函数y =|sin x |+sin x 的值域是__________.解析:∵y =|sin x |+sin x =⎩⎪⎨⎪⎧2sin x (sin x ≥0),0 (sin x <0), ∴y ∈[0,2],即函数的值域为[0,2].答案:[0,2]5.函数y =sin 2x -sin x +1(x ∈R)的最大值为__________.解析:y =sin 2x -sin x +1=(sin x -12)2+34. ∵-1≤sin x ≤1,∴当sin x =-1时,y 取得最大值,且最大值为3.答案:36.比较下列各组数的大小:(1)cos(-235π)与cos(-174π); (2)sin194°与cos160°;(3)sin1,sin2,sin3.解:(1)cos(-235π)=cos(-6π+75π)=cos 75π, cos(-174π)=cos(-6π+74π)=cos 74π, ∵π<75π<74π<2π,且y =cos x 在(π,2π)递增, ∴cos 75π<cos 74π, 即cos(-235π)<cos(-174π). (2)sin194°=sin(180°+14°)=-sin14°,cos160°=cos(180°-20°)=-cos20°=-sin70°.∵0°<14°<70°<90°,且y =sin x 在(0°,90°)递增,∴sin14°<sin70°.从而-sin14°>-sin70°,即sin194°>cos160°.(3)∵1<π2<2<3<π, 又sin(π-2)=sin2,sin(π-3)=sin3,0<π-3<1<π-2<π2,而y =sin x 在(0,π2)上递增, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.[B 级 能力提升]7.若0<α<β<π4,a =2sin(α+π4),b =2sin(β+π4),则( ) A .a <bB .a >bC .ab <1D .ab > 2解析:选A.∵0<α<β<π4,∴π4<α+π4<β+π4<π2. 而正弦函数y =sin x ,x ∈[0,π2]是增函数, ∴sin(α+π4)<sin(β+π4). ∴2sin(α+π4)<2sin(β+π4),即a <b . 8.设函数f (x )=sin 3x +|sin 3x |,则f (x )为( )A .周期函数,最小正周期为π3B .周期函数,最小正周期为23π C .周期函数,最小正周期为2πD .非周期函数解析:选B.f (x )=⎩⎪⎨⎪⎧0,sin 3x ≤02sin 3x ,sin 3x >0的图象大致如图所示:由图可知,f (x )为周期函数,最小正周期为23π,故选B. 9.函数y =2sin(π3+ωx )的最小正周期是4π,则ω=__________. 解析:由最小正周期的定义,经计算可知最小正周期为2π|ω|.令2π|ω|=4π,∴|ω|=12,∴ω=±12. 答案:±1210.若函数y =a -b sin x (b >0)的最大值为32,最小值为-12,求函数y =-4a sin bx 的最值和最小正周期.解:∵y =a -b sin x (b >0),∴函数的最大值为a +b =32,① 函数的最小值为a -b =-12,② 由①②可解得a =12,b =1. ∴函数y =-4a sin bx =-2sin x .其最大值为2,最小值为-2,最小正周期T =2π.11.(创新题)已知函数f (x )=log 12|sin x |.(1)求其定义域和值域;(2)判断奇偶性;(3)判断周期性,若是周期函数,求其周期;(4)写出单调区间.解:(1)|sin x |>0⇒sin x ≠0,∴x ≠k π(k ∈Z).∴定义域为{x |x ≠k π,k ∈Z}.∵0<|sin x |≤1,∴log 12|sin x |≥0,∴函数的值域是{y |y ≥0}.(2)∵f (-x )=log 12|sin(-x )|=log 12|sin x |=f (x ),∴函数f (x )是偶函数.(3)∵|sin x |在定义域{x |x ≠k π,k ∈Z}内是周期函数,且最小正周期是π,∴函数f (x )=log 12|sin x |是周期函数,最小正周期为π.(4)单调递增区间是[k π-π2,k π)(k ∈Z),单调递减区间是(k π,k π+π2](k ∈Z).。
1-4-1正弦函数、余弦函数的图象一、选择题 1.对于正弦函数y =sin x 的图象,下列说法错误的是( )A .向左右无限伸展B .与y =cos x 的图象形状相同,只是位置不同C .与x 轴有无数个交点D .关于y 轴对称 2.从函数y =cos x ,x ∈[0,2π)的图象来看,对应于cos x =12的x 有( )A .1个值B .2个值C .3个值D .4个值 3.函数y =1-sin x ,x ∈[0,2π]的大致图象是()4.下列选项中是函数y =-cos x ,x ∈[π2,5π2]的图象上最高点的坐标的是( )A .(π2,0)B .(π,1)C .(2π,1)D .(5π2,1)5.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )6.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是()7.如图,曲线对应的函数是()A .y =|sin x|B .y =sin|x |C .y =-sin|x |D .y =-|sin x |8.下列函数的图象与图中曲线一致的是()A .y =|sin x |B .y =|sin x |+12C .y =|sin2x |D .y =|sin2x |+129.在(0,2π)内,使sin x ≥|cos x |成立的x 的取值范围为( )A .[π4,3π4]B .[π4,5π4]C .[5π4,7π4]D .[π4,π2]10.方程sin x =x10的根的个数是( )A .7B .8C .6D .5 二、填空题11.已知函数f (x )=3+2cos x 的图象经过点(π3,b ),则b =________.12.方程sin x =lg x 的解有________个. 13.sin x >0,x ∈[0,2π]的解集是________.14.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是______.三、解答题15.用“五点法”作出函数y =2-sin x ,x ∈[0,2π]的图象.16.利用“五点法”作出y =sin(x -π2),x ∈[π2,5π2]的图象.17.根据函数图象解不等式sin x >cos x ,x ∈[0,2π]. 18.画出正弦函数y =sin x ,(x ∈R )的简图,并根据图象写出-12≤y ≤32时x 的集合.1-4-2-1周期函数一、选择题1.定义在R 上的函数f (x ),存在无数个实数x 满足f (x +2)=f (x ),则f (x )( ) A .是周期为1的周期函数 B .是周期为2的周期函数 C .是周期为4的周期函数 D .不一定是周期函数 2.函数y =sin 24x π⎛⎫-+ ⎪⎝⎭的最小正周期为( ) A .π B .2π C .4π D.π23.下列函数中,周期为π2的是( )A .y =sin x2 B .y =sin2xC .y =cos x4 D .y =cos4x4.下列函数中,不是周期函数的是( ) A .y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |5.函数y =2cos 3x πω⎛⎫- ⎪⎝⎭的最小正周期是4π,则ω等于( )A .2 B.12 C .±2 D .±126.函数y =7sin 35x π⎛⎫- ⎪⎝⎭的周期是( )A .2πB .πC .π3 D.π67.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( )A .10B .11C .12D .13 8.定义在R 上的周期函数f (x )的一个周期为5,则f (2011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 9.定义在R 上周期为4的函数,则f (2)=( ) A .1 B .-1 C .0 D .2 10.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈0,2π⎡⎤⎢⎥⎣⎦时,f (x )=sin x ,则f 53π⎛⎫⎪⎝⎭等于( ) A .-12 B .1 C .-32 D.32二、填空题11.若函数y =4sin ωx (ω>0)的最小正周期是π,则ω=________. 12.已知函数f (x )是定义在R 上周期为6的奇函数,且f (-1)=-1,则f (5)=________.13.若函数f (x )=2cos(ωx +π3)(ω>0)的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是________.14.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若412f απ⎛⎫+ ⎪⎝⎭=95,则sin α的值为________. 三、解答题15.求下列函数的周期.(1)f (x )=sin 43x π⎛⎫+⎪⎝⎭(x ∈R ); (2)y =|sin x |(x ∈R ).16.函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 17.已知函数y =12sin x +12|sin x |.(1)画出函数的简图.(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 18.已知函数y =5cos ()2136k x ππ+⎛⎫-⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[a ,a +3]上要使函数值54出现的次数不少于4次且不多于8次,求k 值.1-4-2-2正、余弦函数的性质一、选择题1.有下列三个函数:①y =x 3+1;②y =sin3x ;③y =x +2x,其中奇函数的个数是( )A .0B .1C .2D .3 2.使cos x =1-m 有意义的m 的取值范围为( )A .m ≥0B .0≤m ≤2C .-1<m <1D .m <-1或m >1 3.函数y =cos2x 在下列哪个区间上是减函数( ) A .[-π4,π4] B .[π4,3π4]C .[0,π2]D .[π2,π]4.y =2sin x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R 5.函数y =sin x2+cos x是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数6.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于( )A .0B .1C .-1D .±1 7.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)8.已知A ={x |y =sin x },B ={y |y =sin x },则A ∩B等于( )A .{y =sin x }B .{x |-1≤x ≤1}C .{x |x =2π}D .R9.函数y (x )=-cos x ln x 2的部分图象大致是图中的()10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2πD .4π 二、填空题11.比较大小:sin 3π5______cos π5.12.函数y =sin(x -π6),x ∈[0,π]的值域为________.13.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是________. 14.函数y =3sin 26x π⎛⎫+ ⎪⎝⎭的单调递减区间是_____. 三、解答题15.求函数y =sin x ,x ∈,4ππ⎡⎤⎢⎥⎣⎦的最大值和最小值.16.求函数y =13cos 24x π⎛⎫- ⎪⎝⎭+1的最大值,及此时自变量x 的取值集合. 17.已知函数f (x )=log 12|sin x |.(1)求其定义域和值域; (2)判断其奇偶性; (3)求其周期; (4)写出单调区间.18.已知ω是正数,函数f (x )=2sin ωx 在区间 [-π3,π4]上是增函数,求ω的取值范围.1-4-3正切函数的性质与图象一、选择题1.下列叙述正确的是( )A .函数y =cos x 在(0,π)上是增函数B .函数y =tan x 在(0,π)上是减函数C .函数y =cos x 在(0,π)上是减函数D .函数y =sin x 在(0,π)上是增函数 2.函数y =3tan 24x π⎛⎫+⎪⎝⎭的定义域是( ) A.{|,}2x x k k ππ≠+∈ B.3{|,}28k x x k ππ≠-∈ C.{|,}28k x x k ππ≠+∈ D.{|,}2k x x k π=≠∈ 3.函数y =tan x +1tan x是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 4.下列直线中,与函数y =tan (2)4x π+的图象不相交的是( )A .x =π2B .y =π2C .x =π8D .y =π85.下列不等式中,正确的是( )A .tan 4π7>tan 3π7B .tan 2π5<tan 3π5C .tan 13()7π-<tan 15()8π- D .tan 13()4π->tan 12()5π- 6.当-π2<x <π2时,函数y =tan|x |的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .不是对称图形7.在区间(-3π2,3π2)范围内,函数y =tan x 与函数y =sin x 的图象交点的个数为( )A .2B .3C .4D .5 8.函数y =tan(sin x )的值域是( )A .[-π4,π4]B .[-22,22]C .[-tan1,tan1]D .[-1,1]9.已知函数y =tan ωx 在,22ππ⎛⎫-⎪⎝⎭内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1 10.函数f (x )=tan 23x π⎛⎫-⎪⎝⎭在一个周期内的图象是二、填空题11.函数y =tan x -3的定义域是________. 12.函数y =-2tan 34x π⎛⎫+⎪⎝⎭的单调递减区间是 .13.三个数cos10°,tan58°,sin168°的大小关系是 . 14.若tan 26x π⎛⎫-⎪⎝⎭≤1,则x 的取值范围是____.三、解答题15.求下列函数的单调区间:(1)y =tan 4x π⎛⎫- ⎪⎝⎭; (2)y =13tan2x +1; (3)y =3tan 64x π⎛⎫- ⎪⎝⎭16.求函数2tan 10tan 1,,43y x x x ππ⎡⎤=-+-∈⎢⎥⎣⎦的值域.17.已知函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,求f (π4)的值.18.已知函数f (x )=3tan(12x -π3).(1)求f (x )的定义域、值域;(2)讨论f (x )的周期性,奇偶性和单调性.1-4-1正弦函数、余弦函数的图象一、选择题1.D 2.B 3.B 4.B 5.D[析]32cos ,[0,][,2]22cos cos 30,[,]22x x y x x x πππππ⎧∈⎪⎪=+=⎨⎪∈⎪⎩ ,6.C [析]3sin ,[0,)[,)220,(,)2x x y x πππππ⎧∈⎪⎪=⎨⎪∈⎪⎩7.C 8.B 9.A [析] 在同一坐标系中画出函数sin y x =,x ∈(0,2π)与函数y =|cos x |,x ∈(0,2π)的图象,如图所示,则当sin x ≥|cos x |时,π4<x <3π4.10.A [析] 画出函数y =sin x ,y =x10的图象如图.两图象的交点个数为7,故方程sin x =x10的根有7个.二、填空题11.4 [析] b =f (π3)=3+2cos π3=4. 12.313.(0,π) [析] 如图所示是y =sin x ,x ∈[0,2π]的图象,由图可知满足题意的解集是(0,π). 14.350,22,266x x or k x k k ππππ⎧⎫-<<+<<+∈⎨⎬⎩⎭[解析] 在同一平面直角坐标系中画出函数f (x )和函数y =12的图象,如图所示,当f (x )>12时,函数f (x )的图象位于函数y =12的图象上方,此时有-32<x <0或π6+2k π<x <5π6+2k π(k∈N ).三、解答题15.略 16.略17.[解析] 在同一坐标系中画出函数y =sin x 和y =cos x 在x ∈[0,2π]上的图象,如图所示,可知,当π4<x <5π4时,sin x >cos x ,即不等式的解集是(π4,5π4).18.[解]过(0,-12)、(0,32)点分别作x 轴的平行线,从图象可看出它们分别与正弦曲线交于(7π6+2k π,-12),k ∈Z ,(π6+2k π,-12),k ∈Z 点和(π3+2k π,32),k ∈Z ,(2π3+2k π,32),k ∈Z 点,那么曲线上夹在对应两点之间的点的横坐标的集合即为所求,即当-12≤y ≤32时x 的集合为:{x |-π6+2k π≤x ≤π3+2k π,k ∈Z }∪{x |2π3+2k π≤x ≤7π6+2k π,k ∈Z }.1-4-2-1周期函数一、选择题1.D 2.C [解析] T =2π⎪⎪⎪⎪-12=4π. 3.D [解析] T =2π4=π24.D 5.D [解析] 4π=2π|ω|,∴ω=±12. 6.C [解析] T =12·2π3=π3.7.D [解析] T =2πk 4=8πk ≤2 ∴k ≥4π又k ∈N *∴k 最小为13,故选D8.A [解析] f (2011)=f (402×5+1)=f (1). 9.C [解析] ∵f (x )是奇函数,∴f (-2)=-f (2)又f (x )是4为周期的函数,∴f (-2)=f (-2+4)=f (2).∴f (2)=-f (2)∴f (2)=0,故选C.10.D [解析] f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-π=f ⎝⎛⎭⎫2π3=f ⎝⎛⎭⎫23π-π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 二、填空题11.2 12.-1 13.6 [解析] T =2πω,又1<T <3,∴1<2πω<3. ∴12π<1ω<32π.∴2π3<ω<2π.则正整数ω的最大值为6.14.±45 [解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6.由f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95,∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题 15.[分析] 解答本题(1)可结合周期函数的定义求解;(2)可通过画函数图象求周期.[解析] (1)∵f (x )=sin ⎝⎛⎭⎫14x +π3,∴f (x +8π)=sin ⎣⎡⎦⎤14(x +8π)+π3 =sin ⎝⎛⎭⎫14x +π3+2π =sin ⎝⎛⎭⎫14x +π3=f (x ).∴f (x )=sin ⎝⎛⎭⎫14x +π3的周期为8π. (2)函数y =|sinx |的图象如图所示.由图象知T =π.[点评] 求三角函数的周期,通常有三种方法.(1)定义法.根据函数周期的定义求函数的周期.如本例(1).(2)公式法.一般地,对于y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中A ,ω,φ是常数且A ≠0,ω≠0)形式的函数,其周期为T ,则T =2π|ω|.本例(1)可用公式求解如下:T =2π14=8π.(3)图象法,即大致画出函数的图象观察.如本例(2).其中公式法是最常用而且简单的方法.16.[解析] ∵f (x +4)=f ((x +2)+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.17.[解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ). 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.18.[解析] 由5cos(2k +13πx -π6)=54,得cos(2k +13πx -π6)=14.∵函数y =cos x 在每个周期内出现函数值为14的有两次,而区间[a ,a +3]长度为3,为了使长度为3的区间内出现函数值14不少于4次且不多于8次,必须使3不小于2个周期长度且不大于4个周期长度.即2×2π2k +13π≤3,且4×2π2k +13π≥3.∴32≤k ≤72.又k ∈N ,故k =2,3.1-4-2-2正、余弦函数的性质一、选择题 1.C [解析] 函数y =x 3+1不是奇函数也不是偶函数;函数y =sin3x 和y =x +2x是奇函数.2.B [解析] ∵-1≤cos x ≤-1,∴-1≤1-m ≤1.∴0≤m ≤2.3.C [解析] ∵y =cos2x ,∴2k π≤2x ≤2k π+π(k∈Z ),即k π≤x ≤k π+π2(k ∈Z ),亦即[k π,k π+π2](k∈Z )为y =cos2x 的单调递减区间.而C ,[0,π2]显然满足上述区间,故选C.[点评] 求形如y =A sin(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法来解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”(若ω<0,可利用三角函数的诱导公式化x 系数为正).②A >0(A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式的方向相同(反).4.A [解析] ∵x 2≥0,∴sin x 2∈[-1,1],∴y =2sin x 2∈[-2,2].5.A [解析] 定义域为R ,f (-x )=sin (-x )2+cos (-x )=-sin x2+cos x=-f (x ),则f (x )是奇函数.6.A [解析] 解法一:易知y =sin x 在R 上为奇函数,∴f (0)=0,∴a =0.解法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即sin(-x )-|a |=-sin x +|a |,-sin x -|a |=-sin x +|a |.∴|a |=0,即a =0.7.A [解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数;选项B :y =cos(2x+π2)=-sin2x ,周期为π,在[π4,π2]上为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.8.B [解析] A =R ,B ={y |-1≤y ≤1},则A ∩B ={y |-1≤y ≤1}. 9.A [解析] 函数的定义域是(-∞,0)∪(0,+∞),f (-x )=-cos(-x )ln(-x )2=-cos x ln x 2=f (x ),则函数f (x )是偶函数,其图象关于y 轴对称,排除选项C 和D ;当x ∈(0,1)时,cos x >0,0<x 2<1,则ln x 2<0,此时f (x )>0,此时函数f (x )的图象位于x 轴的上方,排除选项B.10.D [解析] 如图所示.由图可知,S 1=S 2,S 3=S 4,因此函数y =2cos x (0≤x ≤2π)的图象与直线y =2所围成的图形面积即为矩形OABC 的面积.∵|OA |=2,|OC |=2π,∴S 矩形=2×2π=4π. 二、填空题11.> 12.[-12,1] 13.(-π,0] [解析]由y =cos x 在[-π,a ]上是增函数,则-π<a ≤0.14.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) [解析] 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 则k π+π6≤x ≤k π+2π3,k ∈Z . 三、解答题15.[解析] 函数y =sin x 在区间⎣⎡⎦⎤π4,π2上是增函数,在区间⎣⎡⎦⎤π2,π上是减函数,所以函数y =sin x在区间⎣⎡⎦⎤π4,π2上的最大值是sin π2=1,最小值是sin π4=22;函数y =sin x 在区间⎣⎡⎦⎤π2,π上的最大值是sin π2=1,最小值是sinπ=0. 所以函数y =sin x ,x ∈⎣⎡⎦⎤π4,π的最大值是1,最小值是0.16.[解析] ∵x ∈R ,∴-1≤cos ⎝⎛⎭⎫2x -π4≤1. ∴23≤13cos ⎝⎛⎭⎫2x -π4+1≤43. ∴函数y =13cos ⎝⎛⎭⎫2x -π4+1的最大值是43.此时2x -π4=2k π(k ∈Z ),∴x =k π+π8.即此时自变量x 的取值集合是 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π8,k ∈Z .17.[解析] (1)由|sin x |>0得sin x ≠0,∴x ≠k π(k ∈Z ).即函数定义域为{x ∈R |x ≠k π,k ∈Z }.又0<|sin x |≤1,∴log 12|sin x |≥0.∴函数的值域为[0,+∞).(2)∵f (x )的定义域关于原点对称,且f (-x )=log 12|sin(-x )|=log 12|-sin x |=log 12|sin x |=f (x ).∴f (x )为偶函数.(3)函数f (x )是周期函数,∵f (x +π)=log 12|sin(x +π)|=log 12|-sin x |=log 12|sin x |=f (x ),∴f (x )的周期T =π.(4)∵y =log 12u 在(0,+∞)上是减函数,u =|sin x |在⎝⎛⎦⎤k π,k π+π2(k ∈Z )上是增函数, 在⎣⎡⎭⎫k π-π2,k π(k ∈Z )上是减函数. ∴f (x )在⎣⎡⎭⎫k π-π2,k π(k ∈Z )上是增函数, 在⎝⎛⎦⎤k π,k π+π2(k ∈Z )上是减函数. 即f (x )的单调增区间是⎣⎡⎭⎫k π-π2,k π(k ∈Z ), 单调减区间是⎝⎛⎦⎤k π,k π+π2(k ∈Z ). 18.[解析] 由2k π-π2≤ωx ≤2k π+π2(k ∈Z )得-π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ). ∴f (x )的单调递增区间是⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ). 据题意,⎣⎡⎦⎤-π3,π4 ⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ).从而有⎩⎪⎨⎪⎧-π2ω≤-π3π2ω≥π4ω>0,解得0<ω≤32.故ω的取值范围是(0,32].1-4-3正切函数的性质与图象一、选择题1.C 2.C [解析] 要使函数有意义,则2x +π4≠k π+π2(k ∈Z ),则x ≠k 2π+π8(k ∈Z ). 3.A [解析]定义域是{|,}2x x k k ππ≠+∈{|,}x x k k π≠∈ ={|,}2k x x k π≠∈ .又f (-x )=tan(-x )+1tan (-x )=-1(tan )tan x x+=-f (x ),即函数y =tan x +1tan x是奇函数.4.C [解析] 由2x +π4=k π+π2得,x =k π2+π8 (k∈Z ),令k =0得,x =π8.5.D [解析] 433tan tan()tan 777πππ=-<; 322t a n t a n ()t a n 555πππ=-<, 1315t a n ()t a n ,t a n ()t a n ,7788ππππ-=-=1315t a n t a n t a n ()t a n (),7878ππππ>∴->- 13tan()tan(3)tan()tan4444πππππ-=--=-=-12222tan()tan(2)tan()tan 5555πππππ-=--=-=-又2tan tan 54ππ>,所以1213t a n ()t a n ()54ππ->-, 6.C 7.B 8.C 9.B [解析] 若ω使函数tan y x ω=在(,)22ππ-内是减函数,则有ω<0,并且周期T =π|ω|≥π2-()2π-=π.则-1≤ω<0.10.A[解析]3()tan()tan(),36363f ππππ=-=-=-则()f x 的图象过点3(,)33π-,排除选项C ,D ;2()tan()tan 00333f πππ=-==,则()f x 的图象过点2(,0)3π,排除选项B.故选A. 二、填空题11.⎩⎨⎧⎭⎬⎫x ⎪⎪π3+k π≤x <π2+k π,k ∈Z [解析] 要使函数有意义,自变量x 的取值应满足tan x -3≥0,即tan x ≥ 3.解得π3+k π≤x <π2+k π,k ∈Z .12.⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z )[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12,∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z . 13.sin168°<cos10°<tan58° [解析] ∵sin168°=sin12°<sin80°=cos10°<1=tan45°<tan58°,∴sin168°<cos10°<tan58°.14.⎝⎛⎭⎫-π6+k π2,5π24+k π2(k ∈Z ) [解析] 令z =2x -π6,在⎝⎛⎭⎫-π2,π2上满足tan z ≤1的z 的值是-π2<z ≤π4,在整个定义域上有-π2+k π<z ≤π4+k π,解不等式-π2+k π<2x -π6≤π4+k π,得-π6+k π2<x ≤5π24+k π2,k ∈Z .三、解答题15.(1)由k π-π2<x -π4<k π+π2得k π-π4<x <k π+3π4(k ∈Z ), 所以函数的单调递增区间是⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z .(2)由k π-π2<2x <k π+π2得k π2-π4<x <k π2+π4(k ∈Z ),所以函数的单调递增区间是⎝⎛⎭⎫k π2-π4,k π2+π4(k ∈Z ).(3)y =3tan ⎝⎛⎭⎫π6-x 4=-3tan ⎝⎛⎭⎫x 4-π6,由k π-π2<x4-π6<k π+π2得4k π-4π3<x <4k π+8π3,所以函数的单调递减区间是⎝⎛⎭⎫4k π-4π3,4k π+8π3(k ∈Z ). 16.[解析] 由x ∈⎣⎡⎦⎤π4,π3,得tan x ∈[]1,3, ∴y =-tan 2x +10tan x -1=-(tan x -5)2+24. 由于1≤tan x ≤3,∴8≤y ≤103-4, ∴函数的值域是[8,103-4].17.[解析] ∵ω>0,∴函数f (x )=tan ωx 的周期为πω,且在每个独立区间内都是单调函数,∴两交点之间的距离为πω=π4,∴ω=4,f (x )=tan4x ,∴f (π4)=tanπ=0.18.已知函数f (x )=3tan(12x -π3).(1)求f (x )的定义域、值域;(2)讨论f (x )的周期性,奇偶性和单调性.[解析] (1)由12x -π3≠π2+k π,k ∈Z ,解得x ≠5π3+2k π,k ∈Z .∴定义域为{x |x ≠5π3+2k π,k ∈Z },值域为R .(2)f (x )为周期函数,周期T =π12=2π.f (x )为非奇非偶函数.由-π2+k π<12x -π3<π2+k π,k ∈Z ,解得-π3+2k π<x <5π3+2k π,k ∈Z .∴函数的单调递增区间为(-π3+2k π,5π3+2k π)(k ∈Z ).。
1-4-2-2正、余弦函数的性质一、选择题1.(2011~2012·山东日照调研)有下列三个函数:①y =x 3+1;②y =sin3x ;③y =x +2x,其中奇函数的个数是( )A .0B .1C .2D .3[答案] C[解析] 函数y =x 3+1不是奇函数也不是偶函数;函数y =sin3x 和y =x +2x是奇函数.2.使cos x =1-m 有意义的m 的取值范围为( ) A .m ≥0 B .0≤m ≤2 C .-1<m <1 D .m <-1或m >1 [答案] B[解析] ∵-1≤cos x ≤-1,∴-1≤1-m ≤1. ∴0≤m ≤2.3.函数y =cos2x 在下列哪个区间上是减函数( ) A .[-π4,π4]B .[π4,3π4]C .[0,π2]D .[π2,π][答案] C[解析] ∵y =cos2x , ∴2k π≤2x ≤2k π+π(k ∈Z ), 即k π≤x ≤k π+π2k ∈Z ),亦即[k π,k π+π2](k ∈Z )为y =cos2x 的单调递减区间.而C ,[0,π2]显然满足上述区间,故选C.[点评] 求形如y =A sin(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法来解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”(若ω<0,可利用三角函数的诱导公式化x 系数为正).②A >0(A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式的方向相同(反).4.y =2sin x 2的值域是( ) A .[-2,2] B .[0,2] C .[-2,0] D .R[答案] A[解析] ∵x 2≥0,∴sin x 2∈[-1,1], ∴y =2sin x 2∈[-2,2]. 5.函数y =sin x2+cos x 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数 [答案] A[解析] 定义域为R ,f (-x )=sin (-x )2+cos (-x )=-sin x2+cos x =-f (x ),则f (x )是奇函数.6.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于( ) A .0B .1C =.-1D .±1[答案] A[解析] 解法一:易知y =sin x 在R 上为奇函数,∴f (0)=0,∴a =0.解法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即sin(-x )-|a |=-sin x +|a |,-sin x -|a |=-sin x +|a |.∴|a |=0,即a =0.7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2上为减函数;选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.8.已知A ={x |y =sin x },B ={y |y =sin x },则A ∩B 等于( ) A .{y =sin x } B .{x |-1≤x ≤1} C .{x |x =2π} D .R[答案] B[解析]A=R,B={y|-1≤y≤1},则A∩B={y|-1≤y≤1}.9.函数y(x)=-cos x ln x2的部分图象大致是图中的()[答案] A[解析]函数的定义域是(-∞,0)∪(0,+∞),f(-x)=-cos(-x)ln(-x)2=-cos x ln x2=f(x),则函数f(x)是偶函数,其图象关于y轴对称,排除选项C和D;当x∈(0,1)时,cos x>0,0<x2<1,则ln x2<0,此时f(x)>0,此时函数f(x)的图象位于x轴的上方,排除选项B.10.若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积为()A.4 B.8C.2π D.4π[答案] D[解析] 如图所示.由图可知,S 1=S 2,S 3=S 4,因此函数y =2cos x (0≤x ≤2π)的图象与直线y =2所围成的图形面积即为矩形OABC 的面积.∵|OA |=2,|OC |=2π,∴S 矩形=2×2π=4π. 二、填空题11.比较大小:sin 3π5______cos π5.[答案] >12.(2011~2012·无锡高一检测)函数y =sin(x -π6),x ∈[0,π]的值域为________.[答案] [-12,1]13.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是________.[答案] (-π,0][解析] 由y =cos x 在[-π,a ]上是增函数, 则-π<a ≤0.14.函数y =3sin ⎝ ⎛⎭⎪⎫2x +π6的单调递减区间是________.[答案] ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z )[解析] 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z .三、解答题15.求函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π的最大值和最小值. [解析] 函数y =sin x 在区间⎣⎢⎡⎦⎥⎤π4,π2上是增函数,在区间⎣⎢⎡⎦⎥⎤π2,π上是减函数,所以函数y =sin x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是sin π2=1,最小值是sin π4=22;函数y =sin x 在区间⎣⎢⎡⎦⎥⎤π2,π上的最大值是sin π2=1,最小值是sinπ=0.所以函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π的最大值是1,最小值是0.16.求函数y =13cos ⎝ ⎛⎭⎪⎫2x -π4+1的最大值,及此时自变量x 的取值集合.[解析] ∵x ∈R ,∴-1≤cos ⎝ ⎛⎭⎪⎫2x -π4≤1.∴23≤13cos ⎝ ⎛⎭⎫2x -π4+1≤43.∴函数y =13cos ⎝ ⎛⎭⎪⎫2x -π4+1的最大值是43. 此时2x -π4=2k π(k ∈Z ),∴x =k π+π8.即此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+π8,k ∈Z .17.已知函数f (x )=log 12|sin x |.(1)求其定义域和值域; (2)判断其奇偶性; (3)求其周期; (4)写出单调区间.[解析] (1)由|sin x |>0得sin x ≠0,∴x ≠k π(k ∈Z ). 即函数定义域为{x ∈R |x ≠k π,k ∈Z }. 又0<|sin x |≤1,∴log 12|sin x |≥0.∴函数的值域为[0,+∞). (2)∵f (x )的定义域关于原点对称, 且f (-x )=log 12|sin(-x )|=log 12|-sin x |=log 12|sin x |=f (x ).∴f (x )为偶函数. (3)函数f (x )是周期函数,∵f (x +π)=log 12|sin(x +π)|=log 12|-sin x |=log 12|sin x |=f (x ),∴f (x )的周期T =π.(4)∵y =log 12u 在(0,+∞)上是减函数,u =|sin x |在⎝ ⎛⎦⎥⎤k π,k π+π2(k ∈Z )上是增函数,在⎣⎢⎡⎭⎪⎫k π-π2,k π(k ∈Z )上是减函数.∴f (x )在⎣⎢⎡⎭⎪⎫k π-π2,k π(k ∈Z )上是增函数, 在⎝ ⎛⎦⎥⎤k π,k π+π2(k ∈Z )上是减函数. 即f (x )的单调增区间是⎣⎢⎡⎭⎪⎫k π-π2,k π(k ∈Z ),单调减区间是⎝ ⎛⎦⎥⎤k π,k π+π2(k ∈Z ).18.已知ω是正数,函数f (x )=2sin ωx 在区间[-π3,π4]上是增函数,求ω的取值范围.[解析] 由2k π-π2≤ωx ≤2k π+π2(k ∈Z )得-π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ). ∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ). 据题意,⎣⎢⎡⎦⎥⎤-π3,π4 ⎣⎢⎡⎦⎥⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ).从而有⎩⎪⎨⎪⎧-π2ω≤-π3π2ω≥π4ω>0,解得0<ω≤32.故ω的取值范围是(0,32].。
1.4.2正、余弦函数的性质(一)1.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )2.函数)62sin(2π+=x y 的最小正周期( )A .π4B .π2C .πD .2π3.满足函数x y sin =和x y cos =都是增函数的区间是()A .]22,2[πππ+k k , Z k ∈B .]2,22[ππππ++k k , Z k ∈C .]22,2[ππππ--k k , Z k ∈D .]2,22[πππk k -Z k ∈4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位5.函数)252sin(π+=x y 的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .45π=x6.函数y=cos2x –3cosx+2的最小值是( )A .2B .0C .41D .6二、填空题7、设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:X 0 3691215182124Y1215.1 12.1 9.111.9 14.9 11.9 8.9 12.1经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数有(填序号)________(1).]24,0[,6sin312∈+=t t y π(2).]24,0[),6sin(312∈++=t t y ππ(3).]24,0[,12sin312∈+=t t y π(4).]24,0[),212sin(312t t y ππ++=8.函数x x f cos 21)(-=的定义域是___________________________9、函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,则如下结论中正确的序号是 _____ ①、图象C 关于直线11π12x =对称; ②、图象C 关于点2π03⎛⎫ ⎪⎝⎭,对称; ③、函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数; ④、由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C .三、解答题:10. 已知函数f(x)=Asin(ωx+ϕ)的图象如图所示,试依图指出:(1)、f(x)的最小正周期; (2、)使f(x)=0的x 的取值集合; (3)、使f(x)<0的x 的取值集合; (4)、f(x)的单调递增区间和递减区间;(5)、求使f(x)取最小值的x 的集合; (6)、图象的对称轴方程;(7)、图象的对称中心.11.已知cos3(0)y a b x b =->的最大值为32,最小值为12-。
初三正弦余弦正切练习题正文:1. 已知角A的终边AB与单位圆x^2 + y^2 = 1相交于点B(-3/5, 4/5),求角A的三角函数值。
解析:根据给定条件,我们可以得知点B的坐标为(-3/5, 4/5)。
由此可得,三角函数sinA和cosA的值分别为y坐标和x坐标,即sinA = 4/5,cosA = -3/5。
根据三角函数的定义可知,tanA = sinA / cosA,即tanA = (4/5) / (-3/5) = -4/3。
2. 已知角B的终边BC与单位圆x^2 + y^2 = 1相交于点C(3/5, -4/5),求角B的三角函数值。
解析:根据给定条件,我们可以得知点C的坐标为(3/5, -4/5)。
由此可得,三角函数sinB和cosB的值分别为y坐标和x坐标,即sinB = -4/5,cosB = 3/5。
根据三角函数的定义可知,tanB = sinB / cosB,即tanB = (-4/5) / (3/5) = -4/3。
3. 若在直角三角形ABC中,已知∠A=30°,∠B=60°,求∠C的三角函数值。
解析:根据直角三角形的性质可知,三角函数中的sin、cos和tan分别对应直角三角形中的对边、邻边和斜边的比值。
且在该直角三角形中,∠A=30°,∠B=60°。
根据三角函数的定义可知,sinA = BC/AC,cosA= AB/AC,tanA = BC/AB,sinB = AC/BC,cosB = AC/AB,tanB =AB/BC。
代入已知条件,我们可以得到sinA = 1/2,cosA = √3/2,tanA = √3/3,sinB = √3/2,cosB = 1/2,tanB = √3。
根据三角函数的性质,我们知道sin和cos是以1为半径的单位圆上的点坐标,因此C点的坐标为(1, 0),即∠C=90°。
综上,∠C的三角函数值为sinC = 1,cosC = 0,tanC = 无穷大。
高中数学:正弦函数、余弦函数的性质(二)练习(25分钟60分)一、选择题(每小题5分,共25分)1.(·北京高一检测)已知函数y=sinx和y=cosx在区间M上都是增函数,那么区间M可以是( )A. B.C. D.【解析】选D.y=sinx在和上是增函数,y=cosx在(π,2π)上是增函数,所以区间M可以是.【补偿训练】下列函数中,周期为π,且在上为减函数的是( )A.y=sinB.y=cosC.y=sinD.y=cos【解析】选A.对于A,y=sin=cos2x,周期为π,在上为减函数,故A正确,对于B,y=cos=-sin2x,周期为π,在上为增函数,故B错误,对于C,D,两个函数的周期为2π,故C,D错误.2.当-≤x≤时,函数f(x)=2sin有( )A.最大值为1,最小值为-1B.最大值为1,最小值为-C.最大值为2,最小值为-2D.最大值为2,最小值为-1【解析】选D.因为-≤x≤,所以-≤x+≤,所以-≤sin≤1,所以-1≤2sin≤2,即f(x)的最大值为2,最小值为-1.【补偿训练】y=2sin在[π,2π]上的最小值是( ) A.2 B.1 C.-1 D.-2 【解析】选C.因为x∈[π,2π],所以+∈,所以当+=时y min=2×=-1.3.下列关系式中正确的是( )A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°【解析】选C.cos10°=sin80°,sin168°=sin12°,因为0°<11°<12°<80°<90°,且y=sinx在上为增函数,所以sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.4.(·衡阳高一检测)函数y=-cos的单调递增区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【解析】选D.转化为求函数y=cos的单调递减区间,由2kπ≤-≤2kπ+π,解得4kπ+≤x≤4kπ+,k∈Z.所以函数y=-cos的单调递增区间是,k∈Z.5.(·泉州高一检测)函数y=sin2x-sinx+2的最大值是( )A.2B.3C.4D.5【解析】选C.y=sin2x-sinx+2=+由x∈R知sinx∈[-1,1],所以当sinx=-1时y max=(-1)2-(-1)+2=4.二、填空题(每小题5分,共15分)6.函数y=sin的值域是________.【解析】因为∈[0,+∞),所以sin∈[-1,1].函数y=sin的值域是[-1,1].答案:[-1,1]7.(·宜昌高一检测)函数y=2sin,x∈[0,π]的单调递减区间是________.【解题指南】先求y=2sin的单调递减区间,再与[0,π]求交集.【解析】由2kπ+≤x+≤2kπ+,得2kπ+≤x≤2kπ+,k∈Z.设A=[0,π],B=,则A∩B=,所以y=2sin,x∈[0,π]的单调递减区间为.答案:8.(·三明高一检测)函数y=sin取最大值时自变量的取值集合是________.【解析】当-=2kπ+,即x=4kπ+,k∈Z时y max=1,所以函数y=sin取最大值时自变量的取值集合为.答案:三、解答题(每小题10分,共20分)9.比较下列各组数的大小:(1)sin250°与sin260°.(2)cos与cos.【解析】(1)因为函数y=sinx在[90°,270°]上单调递减,且90°<250°<260°<270°,所以sin 250°>sin 260°.(2)cos=cos=cos,cos=cos=cos.因为函数y=cosx在[0,π]上单调递减,且0<<<π,所以cos>cos,所以cos>cos.10.(·张家界高一检测)已知函数f(x)=sin(2x+)+1,x∈R.(1)写出函数f(x)的最小正周期.(2)当x∈时,求函数f(x)的最大值.【解析】(1)因为=π,所以函数f(x)的最小正周期为π.(2)当x∈时,2x+∈,所以当2x+=,即x=时,sin取得最大值,值为1,所以,函数f(x)的最大值为2. 【延伸探究】本题条件下(1)求f(x)的最小值及单调递减区间.(2)求使f(x)=时x的取值集合.【解析】(1)当2x+=2kπ-,即x=kπ-,k∈Z时[f(x)]min=-1+1=0.由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,所以f(x)=sin+1的单调递减区间为,k∈Z.(2)由f(x)=得sin=,所以2x+=2kπ+或2kπ+,即x=kπ或x=kπ+,k∈Z.所以使f(x)=时x的取值集合为.(20分钟40分)一、选择题(每小题5分,共10分)1.函数y=-2cos在区间上是单调函数,则实数a的最大值为( )A. B.6π C. D.【解析】选D.x∈得t=+∈(,+],则必有y=-2cost在上单调.由于=3π+∈[3π,4π],y=-2cost在[3π,4π]上为减函数,所以⊆[3π,4π],所以+≤4π,故a≤.所以a的最大值为.2.(·天水高一检测)若f(x)=3sin(2x+φ)+a,对任意实数x都有f=f,且f()=-4.则实数a的值等于( )A.-1B.-7或-1C.7或1D.±7【解析】选B.因为对任意实数x都有f=f,所以直线x=是函数f(x)图象的一条对称轴.当x=时,f(x)取得最大值或最小值.所以f=3+a或-3+a.由3+a=-4得a=-7;由-3+a=-4得a=-1.【拓展延伸】正弦曲线与余弦曲线的对称性探究(1)正弦曲线、余弦曲线的对称轴分别过曲线的最高点或最低点,正弦曲线的对称轴是直线x=kπ+(k∈Z),余弦曲线的对称轴是直线x=kπ(k∈Z).(2)正弦曲线、余弦曲线的对称中心分别是正弦曲线、余弦曲线与x轴的交点,正弦曲线的对称中心是(k π,0)(k∈Z),余弦曲线的对称中心是(k∈Z).二、填空题(每小题5分,共10分)3.(·泰安高一检测)如果函数f(x)=sin(x+)++a在区间上的最小值为,则a的值为________.【解析】由x∈得x+∈.当x+=时,[f(x)]min=-++a=,所以a=.答案:4.(·唐山高一检测)定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则有下面三个式子:①f<f;②f<f;③f(sin1)<f(cos1);其中一定成立的是________.【解题指南】先用周期性求x∈[-1,0]时的解析式,再求[0,1]上的解析式,分析f(x)在[0,1]上的单调性,借助三角函数线比较sin与cos,sin与cos,sin1与cos1的大小.最后判断三个式子是否成立.【解析】当x∈[-1,0]时,x+4∈[3,4],所以f(x+4)=x+4-2=x+2.因为f(x)=f(x+2),所以f(x)是周期为2的函数,所以f(x)=f(x+4)=x+2.当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+2,又f(x)为偶函数,所以f(x)=f(-x)=-x+2,所以f(x)在[0,1]上为减函数.因为<<1<<,所以0<sin<cos<1,1>sin>cos>0,1>sin1>cos1>0,所以f>f,f<f,f(sin1)<f(cos1).答案:②③三、解答题(每小题10分,共20分)5.求函数y=1-2cos2x+5sinx的最大值和最小值.【解析】y=1-2cos2x+5sinx=2sin2x+5sinx-1=2-.令sinx=t,则t∈[-1,1],则y=2-.因为函数y=2t2+5t-1在[-1,1]上是增函数,所以当t=sinx=-1时,函数取得最小值-4,当t=sinx=1时,函数取得最大值6.【补偿训练】求函数y=2sin2x+2sinx-1的值域.【解析】将函数配方得y=2-.因为-1≤sinx≤1,所以当sinx=-时,y min=-;当sinx=1时,y max=3.所以函数的值域为.6.已知f(x)=log a cos(其中a>0且a≠1).(1)求f(x)的单调区间.(2)试确定f(x)的奇偶性和周期性.【解析】(1)当a>1时,函数f(x)的增区间为,k∈Z.函数f(x)的减区间为,k∈Z.当0<a<1时,函数f(x)的增区间为(kπ+,kπ+),k∈Z函数f(x)的减区间为,k∈Z.(2)函数f(x)的定义域不关于原点对称,函数f(x)既不是奇函数,也不是偶函数.函数f(x)的最小正周期是π.。
完整版)正余弦函数图象与性质练习题正弦函数和余弦函数是初中数学中常见的三角函数,它们的图像和性质也是高中数学中必须掌握的内容。
一、选择题1.函数 $y=2\sin(2x+\frac{\pi}{3})$ 的图像关于点($-\frac{\pi}{6}$,0)对称。
2.函数 $y=2\sin(\frac{\pi}{6}-2x)$ 在区间$[\frac{\pi}{12},\frac{\pi}{2}]$ 上是增函数。
3.设 $a$ 为常数,且 $a>1$,$-\frac{\pi}{2}\leq x\leq 2\pi$,则函数 $f(x)=\cos 2x+2a\sin x-1$ 的最大值为 $2a+1$。
4.函数 $y=\sin(2x+\frac{5}{2}\pi)$ 的一个对称轴方程是$x=\frac{5}{4}\pi$。
5.方程 $\cos(x+\frac{5}{2}\pi)=\frac{1}{2}x$ 在区间$(0,100\pi)$ 中有 $102$ 个解。
6.函数 $y=\sin(2x+\pi)$ 是以 $\pi$ 为周期的偶函数。
7.如果函数 $y=\sin 2x+\alpha\cos 2x$ 的图像关于直线$x=-\frac{\pi}{8}$ 对称,则 $\alpha=-2$。
8.函数 $y=2\cos 2x+1$ 的最小正周期为 $\pi$。
9.已知函数 $f(x)=\sin(\pi x-\frac{\pi}{2})-1$,则命题“$f(x)$ 是周期为 $2$ 的偶函数”是正确的。
10.函数 $y=-\cos x+\frac{\cos x}{\sin x}$ 的定义域为$(2k\pi+\pi,2k\pi+\frac{3}{2}\pi]$。
11.定义在 $\mathbb{R}$ 上的函数 $f(x)$ 既是偶函数又是周期函数,且最小正周期为 $\pi$,当$x\in[\frac{\pi}{2},\pi]$ 时,$f(x)=\sin x$,则$f(\frac{5\pi}{3})=-\frac{1}{2}$。
初三正弦和余弦练习题1. 已知一个直角三角形的斜边长为10cm,其中一个锐角的正弦值为0.6,求该锐角的余弦值。
解析:根据正弦值可以求出该锐角的弧度值,再通过余弦函数求出余弦值。
设锐角为θ,根据正弦函数的定义:sinθ = 对边 / 斜边,可以得到:0.6 = 对边 / 10解得:对边 = 0.6 * 10 = 6再利用勾股定理求出另一直角边的长度:假设另一直角边为x,则有:x² + 6² = 10²解得:x² = 100 - 36 = 64解得:x = √64 = 8根据余弦函数的定义:cosθ = 临边 / 斜边,可以得到:cosθ = x / 10 = 8 / 10 = 0.8所以该锐角的余弦值为0.8。
2. 在直角三角形ABC中,已知∠C = 90°,sinA = 0.5,cosB = 0.8,求∠A和∠B。
解析:已知sinA = 0.5,可以得到线段BC与斜边AB的比值,而cosB = 0.8,可以得到线段AC与斜边AB的比值。
由于ABC是直角三角形,所以角A和角B的角度之和为90°。
设∠A = α,∠B = β,则有:sinα = 0.5 (已知)cosβ = 0.8 (已知)α + β = 90° (直角三角形特性)根据第一个已知条件,我们可以求出角α的角度:α = arcsin(0.5)根据第二个已知条件,我们可以求出角β的角度:β = arccos(0.8)最后,根据第三个条件,我们可以得到:α + β = 90°将求得的角度数代入进行验证,如果等式成立,则结果正确。
3. 化简下列各式,并求其值:(1) sin²θ + cos²θ化简过程:根据三角恒等式sin²θ + cos²θ = 1,得到最简式为1。
(2) (1 + tan²θ) / sec²θ化简过程:secθ = 1 / cosθ (定义)tanθ = sinθ / cosθ (定义)将以上定义代入:(1 + sin²θ / cos²θ) / (1 / cos²θ)= 1 + sin²θ (化简)最后,根据具体角度的取值,可以求得该式的具体数值。
正余弦函数的性质练习题
1.已知函数y=sin(4π
ω+x )的最小正周期为=ωπ,则3
2
2.f(x)是定义在R 上的奇函数,且f(x+3)=f(x),当2
3
0≤≤x 时,f(x)= -x,则f(-12.5)=
3.设f(x)是定义在R 上以6为周期的函数,f(x)在[]30,内递减,且y=f(x)的图像关于直线x=3对称,则下面结论正确的是( )
A.f(1.5)<f(3.5)<f(6.5)
B.f(6.5)<f(1.5)<f(3.5)
C.f(6.5)<f(3.5)<f(1.5)
D.f(3.5)<f(1.5)<f(6.5)
4.若函数)φ+=x x f 2sin()(是偶函数,则φ的一个值是( ) A. φ=π B.2π
φ-= C. 4π
φ-= D. 8
π
φ-=
5.若函数f(x)=a -bcosx 的最大值为2
3
,最小值为21-,(b>0),
求函数y=-4asinbx 的最大值为 ,最小值为 ,周期为
6.函数
[]πππ
,),3
21sin(2-∈+=x x y 的值域为 7.函数[]πππ
2,2),321sin(2-∈+=x x y 的单调递增区间为
8.已知函数的))(03
sin()( ωπ
ω+=x x f 的最小正周期为
π,
则该函数的图像 ( )
A.关于直线4π
=
x 对称 B.关于点),(04
π
对称 C.关于点),(03π
对称 D.关于直线3
π
=x 对称 9.函数)23
s i n (x y -=π
的单调递减区间是 ( )
A.)(1252,122Z k k k ∈⎥⎦⎤⎢⎣⎡
+-ππππ B. )(3114,354Z k k k ∈⎥⎦
⎤⎢⎣⎡
+-ππππ
C. )(1211,125Z k k k ∈⎥⎦⎤⎢⎣⎡
+-ππππ
D. )(125,12Z k k k ∈⎥⎦⎤⎢⎣
⎡
+-ππππ
10.满足21
)4sin(≥-π
x 的x 的集合是 ( )
A.⎭
⎬⎫
⎩⎨⎧∈+≤≤+Z k k x k x ,121321252|ππππ B. ⎭
⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122|ππππ
C. ⎭
⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262|ππππ D.
⎭
⎬
⎫
⎩⎨⎧∈+≤≤Z k k x k x ,622|πππ
⎭
⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,)12(652|πππ
答案: 1.3
± 2. 0.5 3.D 4.B
5.
π
2,2,2min max =-==T y y 6.
[]2,1-
7.⎥⎦
⎤
⎢⎣⎡-3,35ππ 8.C 9.D 10.A。