余弦函数图像和性质练习含答案
- 格式:doc
- 大小:63.50 KB
- 文档页数:7
2021年沪教版高一数学暑假作业:余弦函数的图像与性质【含答案】一、单选题1.下列命题中正确的是( ) A .cos y x =在第二象限是减函数 B .tan y x =在定义域内是增函数 C .|cos(2)|3y x π=+的周期是2π D .sin ||y x =是周期为2π的偶函数【答案】C【分析】根据函数的图象与图象变换进行判断.【详解】解:由余弦函数图象可知cos y x =在[]()2,2k k k Z πππ+∈上单调递减,故单调递减,但是在第二象限内不具有单调性,故A 错误;由正切函数的图象可知tan y x =在每一个周期内都是增函数,故tan y x =在定义域内不是增函数,故B 错误.cos(2)3y x π=+的周期为π,则|cos(2)|3y x π=+的图象是由cos(2)3y x π=+的图象将x 轴下方的部分翻折到x 轴上方得到的,故周期减半, |cos(2)|3y x π∴=+的周期是2π,故C 正确. sin ||y x =是偶函数,其图象是将sin y x =在y 轴右侧的函数图象翻折到y 轴左侧,所以函数sin ||y x =不是周期函数,故D 错误. 故选:C .2.若()y f x =的图像与cos y x =的图象关于x 轴对称,则()y f x =的解析式为( ) A .()cos y x =- B .cos y x =- C .cos y x = D .cos y x =【答案】B【分析】根据()f x -、()f x -、()fx 与()f x 的图象特征依次判断即可得到结果.【详解】对于A ,()cos cos y x x =-=,图象与cos y x =重合,A 错误; 对于B ,()y f x =与()y f x =-图象关于x 轴对称,cos y x ∴=-与cos y x =图象关于x 轴对称,B正确;对于C ,当0x ≥时,cos cos y x x ==,可知其图象不可能与cos y x =关于x 轴对称,C 错误; 对于D ,将cos y x =位于x 轴下方的图象翻折到x 轴上方,就可以得到cos y x =的图象,可知其图象与cos y x =的图象不关于x 轴对称,D 错误.故选:B.3.函数cos y x =在区间(),3ππ上的图像的对称轴是( ) A .3x π= B .52x π=C .2x π=D .x π=【答案】C【分析】根据余弦函数的性质即可求出对称轴.【详解】由余弦函数的性质可得函数cos y x =关于,x k k Z π=∈对称, 又(),3x ππ∈,则2x π=,故函数cos y x =在区间(),3ππ上的图像的对称轴是2x π=. 故选:C.4.若函数()3sin 12f x x ππ⎛⎫=-- ⎪⎝⎭,则()f x 是( ) A .周期为1的奇函数 B .周期为2的偶函数C .周期为1的非奇非偶函数D .周期为2的非奇非偶函数.【答案】B【分析】先化简()f x 的解析式可得()3cos 1f x x π=-,由正弦函数的周期公式和奇偶性的定义法可得答案.【详解】()3sin 13cos 12f x x x πππ⎛⎫=--=-⎪⎝⎭所以()f x 的最小正周期为22T ππ==又()()()3cos 13cos 1f x x x f x ππ-=--=-=,所以()f x 为偶函数. 故选:B二、填空题5.已知余弦函数过点,6m π⎛⎫-⎪⎝⎭,则m 的值为__________. 3【分析】将,6m π⎛⎫-⎪⎝⎭代入余弦函数即可求解. 【详解】设余弦函数为cos y x =, 由函数过点,6m π⎛⎫-⎪⎝⎭可得3cos 6m π⎛⎫=-= ⎪⎝⎭. 36.方程2cos 303⎛⎫++= ⎪⎝⎭x π的解集是____________. 【答案】22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭【分析】由题意可得出3cos 3x π⎛⎫+= ⎪⎝⎭,可得出3x π+的等式,由此可求得原方程的解集. 【详解】2cos 303x π⎛⎫+= ⎪⎝⎭,3cos 3x π⎛⎫∴+= ⎪⎝⎭ ()5236x k k Z πππ∴+=±∈,解得22x k ππ=+或()726x k k Z ππ=-∈,因此,方程2cos 303⎛⎫+= ⎪⎝⎭x π的解集是22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭. 故答案为:22x x k ππ⎧=+⎨⎩或72,6x k k Z ππ⎫=-∈⎬⎭. 【点睛】本题考查余弦方程的求解,考查计算能力,属于基础题. 7.函数2sin 3cos =+y x x 的值域为_____________. 【答案】[3,3]-【分析】设cos x t =,[]1,1t ∈-,得到231324y t ⎛⎫=--+⎪⎝⎭,根据二次函数性质得到值域.【详解】22sin 3cos 1cos 3cos y x x x x =+=-+,设cos x t =,[]1,1t ∈-,则223133124y t t t ⎛⎫=-++=--+ ⎪⎝⎭,函数在[]1,1t ∈-上单调递增,故1t =时,max 1313y =-++=,1t =-时,min 1313y =--+=-,故值域为[3,3]-. 故答案为:[3,3]-.【点睛】本题考查了三角函数的值域,意在考查学生的计算能力和转化能力,换元是解题的关键. 8.函数()lg cos f x x x =-在(,)-∞+∞内的零点个数为__________. 【答案】4【分析】在同一平面直角坐标系中作出函数|lg |y x =和cos y x =的图像如图, 结合图像的对称性可以看出两函数|lg |y x =和cos y x =的图像应有4个交点, 即函数()lg cos f x x x =-在(),-∞+∞内有4个零点, 故答案为:4.点睛:本题旨在考查化归转化的数学思想、函数方程思想、数形结合思想等数学思想的综合运用,求解时依据函数的对称性,先画出y 轴右边的函数的图像相交的情形,再根据对称性确定y 轴左边的函数的图像相交的情形,最终使得问题获解. 9.当3,44x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()arcsin cos y x =的值域是______. 【答案】,42ππ⎡⎤-⎢⎥⎣⎦ 【分析】令cos t x =,3,44x ππ⎡⎤∈-⎢⎥⎣⎦,再利用反正弦函数的性质求解. 【详解】令cos t x =,3,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以212t -≤≤, 因为arcsin y t =在2⎡⎤⎢⎥⎣⎦上递增, 所以arcsin 42t ππ-≤≤,所以函数()arcsin cos y x =的值域是,42ππ⎡⎤-⎢⎥⎣⎦. 故答案为:,42ππ⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查反正弦函数的图象和性质,还考查了转化化归的思想和运算求解的能力,属于中档题.10.函数2()sin cos 2f x x x =+-的值域是________ 【答案】3[3,]4--【分析】化简得到2()cos cos 1f x x x =-+-,设cos x t =,得到21324y t ⎛⎫=--- ⎪⎝⎭,根据二次函数性质得到值域.【详解】22()sin cos 2cos cos 1f x x x x x =+-=-+-,设cos x t =,[]1,1t ∈-,则2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭, 当12t =时,函数有最大值为34-;当1t =-时,函数有最小值为3-.故函数值域为3[3,]4--. 故答案为:3[3,]4--.【点睛】本题考查了三角函数的值域,意在考查学生的计算能力和转化能力,换元转化为二次函数是解题的关键.11.方程2cos 210x -=的解集是___________. 【答案】{|6x x k ππ=+或,}6x k k Z ππ=-∈【分析】根据余弦函数的图象与性质解三角方程即可. 【详解】由2cos 210x -=可得:1cos 22x =, 所以223x k ππ=+或223x k ππ=-,()k ∈Z即6x k ππ=+或6x k ππ=-故答案为:{|6x x k ππ=+或,}6x k k Z ππ=-∈【点睛】本题主要考查了余弦函数的图象与性质,三角方程的解法,属于中档题. 三、解答题12.作出函数[]32cos ,,y x x ππ=-∈-的大致图象,并分别写出使0y >和0y <的x 的取值范围. 【答案】图象见解析;当,,66⎡⎫⎛⎤∈--⋃⎪ ⎢⎥⎣⎭⎝⎦x ππππ时,0y >;当,66x ππ⎛⎫∈- ⎪⎝⎭时,0y <. 【分析】利用五点作图法可得函数大致图象,令0y =,确定函数零点,数形结合得到所求x 的取值范围. 【详解】由五点作图法可知:x π-2π-2ππcos x1-0 11-y32+ 3 32- 3 32+由此可得函数大致图象如下图所示:令0y =32cos 0x =,3cos 2x ∴=,又[],x ππ∈-,6x π∴=-或6π,结合图象可知:当,,66⎡⎫⎛⎤∈--⋃⎪ ⎢⎥⎣⎭⎝⎦x ππππ时,0y >;当,66x ππ⎛⎫∈- ⎪⎝⎭时,0y <. 【点睛】本题考查五点作图法的应用、与余弦函数有关的不等式的求解;求解不等式可确定函数零点后,通过数形结合的方式来求解.13.利用“五点法”作出函数1cos y x =-,[]0,2x π∈的图像. 【分析】根据“五点法”的步骤先描点,再画出图象. 【详解】先找出五个关键点,列表如下:x2ππ32π 2π1cos y x =-0 121描点作出函数图象如下:14.求下列函数的单调递增区间: (1)3sin 24y x π⎛⎫=-⎪⎝⎭; (2)2cos 24y x π⎛⎫=+ ⎪⎝⎭; (3)sin y x =;(4)()22sin 2sin cos 3cos ,f x x x x x x R =++∈.【答案】(1)37,88k k ππππ⎡⎤++⎢⎥⎣⎦;(2)5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦;(3),2k k πππ⎡⎤+⎢⎥⎣⎦;(4)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦.【分析】(1)利用诱导公式变形,由正弦型复合函数的单调性求解; (2)余弦型复合函数的单调性求解; (3)画出函数图象,结合函数图象即可判断;(4)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得.【详解】解:(1)2sin 22sin 244y x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭.由3222242k x k πππππ+-+,得3878k x k ππππ++,k Z ∈. 3sin 24y x π⎛⎫∴=- ⎪⎝⎭的单调增区间为37,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈, (2)因为2cos 24y x π⎛⎫=+ ⎪⎝⎭由2224k x k ππππ-++,k Z ∈,得588k x k ππππ-+≤≤-+,k Z ∈. 2cos 24y x π⎛⎫∴=+ ⎪⎝⎭的单调增区间为5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈, (3)sin y x =的图象是由sin y x =位于x 轴下方的图象关于x 轴翻折上去,函数图象如下所示:由函数图象可得函数的单调递增区间为,2k k πππ⎡⎤+⎢⎥⎣⎦,k Z ∈ (4)因为()22sin 2sin cos 3cos ,f x x x x x x R =++∈所以()sin 2cos 222224f x x x x π⎛⎫=++=++ ⎪⎝⎭令222,242k x k k Z πππππ-+≤+≤+∈,解得3,88k x k k Z ππππ-+≤≤+∈,故函数的单调递增区间为3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦15.如图,设A 、B 是半径为1的圆O 上的动点,且A 、B 分别在第一、二象限,C 是圆O 与x 轴正半轴的交点,△AOB 为等边三角形,记以Ox 轴正半轴为始边、射线OA 为终边的角为θ.(1)若点A 的坐标为34(,)55,求5sin()5cos()3cot()2πθπθθ--++-值;(2)设2()||f BC θ=,求函数()f θ的解析式和值域. 【答案】(1)3;(2)()22cos()3f πθθ=-+,值域为(2,23).【分析】(1)根据A 的坐标,利用三角函数的定义,求出sin θ,cos θ,再利用诱导公式,即可得到结论; (2)由题意,cos cos()3COB πθ∠=+,利用余弦定理,可得函数()f θ的解析式,从而可求函数的值域.【详解】解:(1)A 的坐标为34,55⎛⎫ ⎪⎝⎭,以Ox 轴正半轴为始边,射线OA 为终边的角为θ∴根据三角函数的定义可知,4sin 5θ=,3cos 5θ=,4tan 3θ=∴5sin()5cos()3cot()2πθπθθ--++-5sin 5cos 3tan θθθ=-++4345533553=-⨯+⨯+⨯=;(2))AOB 为正三角形,3AOB π∴∠=.cos cos()3COB πθ∴∠=+222()||||||2||||cos 22cos 3f BC OC OB OC OB COB πθθ⎛⎫∴==+-∠=-+ ⎪⎝⎭62ππθ<<, 5236πππθ∴<+<, 3cos 03πθ⎛⎫<+< ⎪⎝⎭,所以222cos 233πθ⎛⎫<-+< ⎪⎝⎭(2()2,3f θ∴+∈.【点睛】本题考查任意角的三角函数的定义,考查余弦定理求边长的平方,考查学生的计算能力,属于中档题.。
第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
2020-2021学年新教材人教B版数学必修第三册课时分层作业:7.3.3余弦函数的性质与图像含解析课时分层作业(十)余弦函数的性质与图像(建议用时:40分钟)一、选择题1.函数y=-cos x的图像与余弦函数图像()A.关于x轴对称B.关于原点对称C.关于原点和x轴对称D.关于原点和坐标轴对称C[由y=-cos x的图像知关于原点和x轴对称.]2.设函数f(x)=sin错误!,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为错误!的奇函数D.最小正周期为π2的偶函数B[因为sin错误!=-sin错误!=-cos 2x,所以f(x)=-cos 2x。
又f(-x)=-cos(-2x)=-cos 2x=f(x),所以f(x)的最小正周期为π的偶函数.]3.下列函数中,周期为π,且在错误!上为减函数的是() A.y=sin错误!B.y=cos错误!C.y=sin错误!D.y=cos错误!A[因为函数的周期为π,所以排除C、D.又因为y=cos错误!=-sin 2x在错误!上为增函数,故B不符.只有函数y=sin错误!的周期为π,且在错误!上为减函数.]4.在(0,2π)内使sin x〉|cos x|的x的取值范围是()A.错误!B.错误!∪错误!C.错误!D.错误!A[因为sin x〉|cos x|,所以sin x〉0,所以x∈(0,π),在同一坐标系中画出y=sin x,x∈(0,π)与y=|cos x|,x∈(0,π)的图像,观察图像易得x∈错误!。
]5.三个数cos 32,sin 错误!,-cos 错误!的大小关系是()A.sin 错误!>cos 错误!>-cos 错误!B.cos 错误!>-cos 错误!>sin 错误!C.cos 错误!<sin 错误!<-cos 错误!D.-cos 错误!<sin 错误!<cos 错误!C[sin 错误!=cos错误!,-cos 错误!=cos错误!。
课时作业(十)余弦函数的性质与图像一、选择题1.下列对y=cos x的图像描述错误的是()A.在[0,2π]和[4π,6π]上的图像形状相同,只是位置不同B.介于直线y=1与直线y=-1之间C.关于x轴对称D.与y轴仅有一个交点2.x轴与函数y=cos x的图像的交点个数是()A.0B.1C.2 D.无数个3.函数y=1-2cos错误!x的最小值,最大值分别是() A.-1,3 B.-1,1C.0,3 D.0,14.y=|cos x|的一个单调增区间是()A.[-错误!,错误!] B.[0,π]C.[π,错误!] D.[错误!,2π]二、填空题5.函数y=cos(-x),x∈[0,2π]的单调递减区间是________.6.函数y=2cos错误!的最小正周期为4π,则ω=________。
7.利用余弦曲线,写出满足cos x>0,x∈[0,2π]的x的区间是________.三、解答题8.求函数y=3-2cos错误!的对称中心坐标,对称轴方程,以及当x为何值时,y取最大值或最小值.9.求函数y=sin2x+a cos x-错误!a-错误!的最大值为1时a的值.[尖子生题库]10.已知函数f(x)=2cos ωx(ω>0),且函数y=f(x)的图像的两相邻对称轴间的距离为错误!.(1)求f错误!的值;(2)将函数y=f(x)的图像向右平移π6个单位后,再将得到的函数图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)的单调递减区间.课时作业(十)余弦函数的性质与图像1.解析:由余弦函数的周期性可知A项正确,根据函数的图像可知B项与D项正确,y=cos x的对称轴方程为x=kπ,k∈Z,故C项错误.答案:C2.解析:函数y=cos x的图像与x轴有无数个交点,故选D.答案:D3.解析:∵cos错误!x∈[-1,1],∴-2cos错误!x∈[-2,2],∴y=1-2cos错误!x的最小值为-1,最大值为3。
§6 余弦函数的图像与性质6.1 余弦函数的图像 6.2 余弦函数的性质邓州市三高中:王豪欣1.会利用诱导公式,通过图像平移得到余弦函数的图像. 2.会用五点法画出余弦函数在[0,2π]上的图像.(重点) 3.掌握余弦函数的性质及应用.(重点、难点)[基础·初探]教材整理 余弦函数的图像与性质阅读教材P 31~P 33“思考交流”以上部分,完成下列问题. 1.利用图像变换作余弦函数的图像因为y =cos x =sin ⎝ ⎛⎭⎪⎫x +π2,所以余弦函数y =cos x 的图像可以通过将正弦曲线y =sin x 向左平移π2个单位长度得到.如图1-6-1是余弦函数y =cos x (x ∈R )的图像,叫作余弦曲线.图1-6-12.利用五点法作余弦函数的图像画余弦曲线,通常也使用“五点法”,即在函数y =cos x (x ∈[0,2π])的图像上有五个关键点,为(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫32π,0,(2π,1),可利用此五点画出余弦函数y =cos x ,x ∈R 的简图(如图1-6-2).图1-6-23.余弦函数的性质图像定义域 R 值域 [-1,1]最大值,最小值 当x =2k π(k ∈Z )时,y max =1; 当x =2kπ+π(k ∈Z )时,y min =-1周期性 周期函数,T =2π单调性 在[2k π-π,2k π](k ∈Z )上是增加的; 在[2k π,2k π+π](k ∈Z )上是减少的 奇偶性偶函数,图像关于y 轴对称判断(正确的打“√”,错误的打“×”)(1)余弦函数y =cos x 的图像关于坐标原点对称.( )(2)余弦函数y =cos x 的图像可由y =sin x 的图像向右平移π2个单位得到.( )(3)在同一坐标系内,余弦函数y =cos x 与y =sin x 的图像形状完全相同,只是位置不同.( )(4)正弦函数与余弦函数有相同的周期,最大值、最小值及相同的单调区间.( )【解析】 (1)错;余弦函数y =cos x =sin ⎝ ⎛⎭⎪⎫π2+x ,即可看作是y =sin x 向左平移π2个单位得到的,因而(2)错;(3)正确;正、余弦函数有相同的周期(都是2π),相同的最大值(都是1),相同的最小值(都是-1),也都有单调区间,但单调区间不同,因而(4)错.【答案】 (1)× (2)× (3)√ (4)×[小组合作型]五点法作图用“五点法”作函数y =1-cos x (0≤x ≤2π)的简图. 【精彩点拨】 利用“五点法”: 列表―→描点―→连线 【自主解答】 列表:x 0 π2 π 3π2 2π cos x 1 0 -1 0 1 1-cos x121作函数y =a cos x +b ,x ∈[0,2π]的图像的步骤1.列表:由x=0,π2,π,3π2,2π时,cos x=1,0,-1,0,1,求出y值.2.描点:在同一坐标系中描五个关键点.3.连线:用光滑曲线.[再练一题]1.作出函数y=1-13cos x在[-2π,2π]上的图像.【解】①列表:x 0π2π3π22πy=cos x 10-101y=1-13cos x23143123②作出y=1-13cos x在x∈[0,2π]上的图像.由于该函数为偶函数,作关于y轴对称的图像,从而得出y=1-13cos x在x∈[-2π,2π]上的图像.如图所示:余弦函数图像的应用已知(1)y≥12时x的集合;(2)-12≤y≤32时x的集合.【精彩点拨】画出函数y=cos x(x∈R) 的图像,观察图像,求出它在一个周期上的解集,再根据余弦函数的周期性,把它拓展为整个定义域上的解集.【自主解答】 用“五点法”作出y =cos x 的简图.(1)过⎝ ⎛⎭⎪⎫0,12点作x 轴的平行线,从图像中看出:在[-π,π]区间与余弦曲线交于⎝ ⎛⎭⎪⎫-π3,12,⎝ ⎛⎭⎪⎫π3,12点,在[-π,π]区间内,y ≥12时,x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-π3≤x ≤π3.当x ∈R 时,若y ≥12,则x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-π3+2k π≤x ≤π3+2k π,k ∈Z .(2)过⎝ ⎛⎭⎪⎫0,-12,⎝ ⎛⎭⎪⎫0,32点分别作x 轴的平行线,从图像中看出它们分别与余弦曲线交于⎝ ⎛⎭⎪⎫-2π3+2k π,-12,k ∈Z , ⎝ ⎛⎭⎪⎫2π3+2k π,-12,k ∈Z 点和⎝ ⎛⎭⎪⎫-π6+2k π,32, k ∈Z ,⎝ ⎛⎭⎪⎫π6+2k π,32,k ∈Z 点,那么曲线上夹在对应两直线之间的点的横坐标的集合即为所求,即当-12≤y ≤32时x 的集合为:⎩⎪⎨⎪⎧ x ⎪⎪⎪ -2π3+2k π≤x ≤-π6+2k π或π6+2k π≤x ≤⎭⎬⎫2π3+2k π,k ∈Z利用余弦曲线求解cos α≥a 或cos α≤a (|a |<1)的步骤:1.作出余弦函数在一个周期内的图像(选取的一个周期不一定是[0,2π],应根据不等式来确定);2.作直线y =a 与函数图像相交;3.在一个周期内确定x 的取值范围;4.根据余弦函数周期性确定最终的范围.[再练一题]2.在同一坐标系中,画出函数y =sin x 与y =cos x 在[0,2π]上的简图,并根据图像写出sin x ≥cos x 在[0,2π]上的解集.【解】 用“五点法”画出y =sin x 与y =cos x 的简图如下:由上图可得sin x ≥cos x 在[0,2π]上的解集为[π4,5π4].余弦函数的单调性及应用(1)函数y =1-2cos x 的单调增区间是 ; (2)比较大小cos 263π cos ⎝ ⎛⎭⎪⎫-133π.【精彩点拨】 (1)y =1-2cos x 的单调性与y =-cos x 的单调性相同,与y =cos x 的单调性相反.(2)利用诱导公式将所给角转化到同一单调区间上比较.【自主解答】 (1)由于y =cos x 的单调减区间为[2k π,2k π+π](k ∈Z ),所以函数y =1-2cos x 的增区间为[2k π,2k π+π](k ∈Z ).(2)由于cos 263π=cos ⎝ ⎛⎭⎪⎫8π+2π3=cos 2π3,cos ⎝ ⎛⎭⎪⎫-13π3=cos ⎝ ⎛⎭⎪⎫13π3=cos ⎝ ⎛⎭⎪⎫4π+π3=cos π3, y =cos x 在[0,π]上是减少的. 由π3<2π3知cos π3>cos 2π3, 即cos263π<cos ⎝ ⎛⎭⎪⎫-13π3. 【答案】 (1)[2k π,2k π+π]k ∈Z (2)<1.形如y =a cos x +b (a ≠0)函数的单调区间 (1)当a >0时,其单调性同y =cos x 的单调性一致; (2)当a <0时,其单调性同y =cos x 的单调性恰好相反.2.比较cos α与cos β的大小时,可利用诱导公式化为[0,π]内的余弦函数值来进行.[再练一题]3.(1)比较大小:cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π;(2)求函数y =log 12(cos 2x )的增区间. 【解】 (1)cos ⎝ ⎛⎭⎪⎫-235π=cos 23π5=cos ⎝ ⎛⎭⎪⎫4π+3π5=cos 3π5,cos ⎝ ⎛⎭⎪⎫-174π=cos 17π4=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4. ∵0<π4<3π5<π,且y =cos x 在[0,π]上递减, ∴cos 3π5<cos π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π.(2)由题意得cos 2x >0且y =cos 2x 递减. ∴x 只须满足:2k π<2x <2k π+π2,k ∈Z , ∴k π<x <k π+π4,k ∈Z ,∴y =log 12(cos 2x )的增区间为⎝ ⎛⎭⎪⎫k π,k π+π4,k ∈Z .[探究共研型]与余弦函数有关的最值问题探究1 【提示】 不是.余弦函数y =cos x 在⎣⎢⎡⎦⎥⎤0,π2内是减函数,但不能说在第一象限是减函数.如390°和60°都是第一象限角,虽然有390°>60°,却有cos 60°<cos 390°.探究2 对于y =A cos 2x +B cos x +C 型的函数如何求最值? 【提示】 利用换元法转化为在固定区间上的二次函数求最值.求下列函数的最值. (1)y =-cos 2x +cos x ;(2)y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3.【精彩点拨】 本题中的函数可以看作是关于cos x 的二次函数,可以化归为利用二次函数求最值的方法求解.【自主解答】 (1)y =-⎝ ⎛⎭⎪⎫cos x -122+14.∵-1≤cos x ≤1, ∴当cos x =12时,y max =14. 当cos x =-1时,y min =-2.∴函数y =-cos 2x +cos x 的最大值为14,最小值为-2. (2)y =3cos 2x -4cos x +1 =3⎝ ⎛⎭⎪⎫cos x -232-13.∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y max =154; 当cos x =12,即x =π3时,y min =-14.∴函数在区间⎣⎢⎡⎦⎥⎤π3,2π3上的最大值为154,最小值为-14.求值域或最大值、最小值问题,一般依据为: (1)sin x ,cos x 的有界性;(2)sin x ,cos x 的单调性;(3)化为sin x =f (x )或cos x =f (x ),利用|f (x )|≤1来确定; (4)通过换元转化为二次函数.[再练一题]4.已知函数y =-cos 2x +a cos x -12a -12的最大值为1,求a 的值.【导学号:66470018】【解】 y =-cos 2 x +a cos x -12a -12 =-⎝ ⎛⎭⎪⎫cos x -a 22+a 24-a 2-12.∵-1≤cos x ≤1,于是①当a2<-1,即a <-2时,当cos x =-1时, y max =-32a -32.由-32a -32=1,得a =-53>-2(舍去);②当-1≤a 2≤1,即-2≤a ≤2时,当cos x =a 2时,y max =a 24-a 2-12. 由a 24-a 2-12=1,得a =1-7或a =1+7(舍去); ③当a 2>1,即a >2时,当cos x =1时,y max =a 2-32. 由a 2-32=1,得a =5. 综上可知,a =1-7或a =5.1.函数y =2cos x -1的最大值、最小值分别是( )A .2,-2B .1,-3C .1,-1D .2,-1【解析】 ∵-1≤cos x ≤1, ∴-2≤2cos x ≤2, ∴-3≤2cos x -1≤1, ∴最大值为1,最小值为-3. 【答案】 B2.函数y =sin x 和y =cos x 都是减少的区间是( ) A .⎣⎢⎡⎦⎥⎤2k π-π2,2k π(k ∈Z )B .⎣⎢⎡⎦⎥⎤2k π-π,2k π-π2(k ∈Z )C .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z )D .⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z )【解析】 结合函数y =sin x 和y =cos x 的图像(略)知都减少的区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z ). 【答案】 C3.函数y =cos x1+cos x的定义域是 .【导学号:66470019】【解析】 由题意知1+cos x ≠0,即cos x ≠-1,结合函数图像知⎩⎨⎧⎭⎬⎫x | x ≠2k π+π,k ∈Z . 【答案】{}x | x ≠2k π+π,k ∈Z4.满足2+2cos x ≥0(x ∈R )的x 的集合是 . 【解析】 ∵2+2cos x ≥0,∴cos x≥-22,结合图像(略)知:-34π+2kπ≤x≤3π4+2kπ(k∈Z).【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪2kπ-34π≤x≤2kπ+3π4,k∈Z5.画出y=1-3cos x在[0,2π]上的简图,并指出其最值和单调区间.【解】列表:x 0π2π32π2πcos x 10-1011-3cos x -2141-2由图像可知,函数y=1-3cos x在[0,2π]上的最大值为4,最小值为-2,单调增区间为[0,π],单调减区间为[π,2π].11。
6.1 余弦函数的图像 6.2 余弦函数的性质 填一填1.余弦函数图像的画法 (1)变换法:y =sin x 图像向左平移________个单位即得y =cos x 的图像.(2)五点法:利用五个关键点________,________,________,________,________画出[0,2π]上的图像,再左右扩展即可.2.余弦函数的性质函数 性质余弦函数y =cos x 图像定义域 R值域 [-1,1]最值 当x =2k π(k ∈Z )时,y max =1当x =(2k +1)π(k ∈Z )时,y min =-1周期性 是周期函数,最小正周期为________奇偶性 是偶函数,图像关于y 轴对称单调性在[(2k -1)π,2k π](k ∈Z )上是________的在[2k π,(2k +1)π](k ∈Z )上是________的判一判1.当余弦函数y =cos x 取最大值时,x =π+2k π,k ∈Z .( )2.函数y =cos 2x 在⎣⎢⎡⎦⎥⎤π2,π上是减函数.( ) 3.余弦函数的图像分别向左、右无限延伸.( )4.y =cos x 的定义域为[0,2π].( )5.余弦函数y =cos x 是偶函数,图像关于y 轴对称,对称轴有无数多条.( )6.余弦函数y =cos x 的图像既是轴对称图形,也是中心对称图形.( )7.函数y =a cos x (a ≠0)的最大值为a ,最小值为-a .( )8.函数y =cos x (x ∈R )的图像向左平移π2个单位长度后,得到函数y =g (x )的图像,那么g (x )=-sin x .(想一想1.提示:(1)平移法:这种方法借助诱导公式,先将y =cos x 写成y =sin ⎝⎛⎭⎪⎫x +π2,然后利用图像平移得到y =cos x 的图像.(2)“五点法〞:在函数图像特征的情况下,描出函数图像的关键点,画出草图.这种方法对图像的要求精度不高,是比拟常用的一种画图方法.余弦函数除以上两种常见的画图方法外,还有其他的作图方法(如与正弦函数类似的几何法等).2.如何理解余弦函数的对称性?提示:(1)余弦函数是中心对称图形,其所有的对称中心坐标为⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ),即余弦曲线与x 轴的交点,此时的余弦值为0. (2)余弦曲线是轴对称图形,其所有的对称轴方程为x =kx (k ∈Z ),即对称轴一定过余弦曲线的最高点或最低点,此时余弦值取得最大值或最小值.思考感悟:练一练1.函数y =-5cos(3x +1)的最小正周期为( )A.π3 B .3π C.2π3 D.3π22.函数y =sin x 和y =cos x 在区间M 上都是增函数,那么区间M 可以是( ) A.⎝ ⎛⎭⎪⎫0,π2 B.⎝ ⎛⎭⎪⎫π2,π C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭⎪⎫3π2,2π 3.用“五点法〞作出函数y =3-cos x 的图像,以下点中不属于五点作图中的五个关键点的是( )A .(π,-1)B .(0,2)C.⎝ ⎛⎭⎪⎫π2,3D.⎝ ⎛⎭⎪⎫3π2,3 4.函数y =-3cos x +2的值域为( )A .[-1,5]B .[-5,1]C .[-1,1]D .[-3,1]知识点一 用“五点法〞作函数的图像1.作出函数y =-2cos x +3(0≤x ≤2π)的图像.2.画出函数y =3+2cos x 的简图.知识点二 与余弦函数有关的定义域问题3.求y =32-cos x 的定义域. 4.求函数y =1-2cos x +lg(2sin x -1)的定义域.知识点三 余弦函数的单调性及应用5.求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-2π,3π2的单调区间和最值. 6.比拟cos 26π3与cos ⎝⎛⎭⎪⎫-13π3的大小. 综合知识 余弦函数值域(最值)问题7.求以下函数的最值.(1)y =-cos 2x +cos x ;(2)y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3.。
课时作业10 余弦函数、正切函数的图象与性质(一)
时间:45分钟 满分:100分
一、选择题(每小题6分,共计36分)
1.函数f (x )=cos(2x -π
6)的最小正周期是( )
A.π2 B .π C .2π
D .4π
解析:本题考查三角函数的周期.
T =
2π
2
=π. 余弦型三角函数的周期计算公式为2π
ω
(ω>0).
答案:B
2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π
3个
单位长度后,所得的图象与原图象重合,则ω的最小值等于( )
A.13 B .3 C .6
D .9
解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π
3)=
cos[ω(x -π3)]=cos(ωx -π3ω),则-π
3
ω=2k π,
∴ω=-6k ,又ω>0,∴k <0,当k =-1时,
ω有最小值6,故选C.
3.设f (x )是定义域为R ,最小正周期为3π
2
的函数,若f (x )=
⎩⎪⎨⎪⎧
cos x ⎝ ⎛⎭
⎪⎫
-π2≤x ≤0,sin x
0<x ≤π,
则f ⎝ ⎛⎭
⎪⎫
-15π4的值等于( ) A .1 B.2
2 C .0
D .-2
2
解析:f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫3π
2
×
-3+3π4=f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=2
2
.
答案:B
4.将函数y =cos x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π
6
)的图象,则φ等于( )
A.π6
B.2π3
C.4π3
D.11π6
解析:∵y =sin(x -π6)=cos[π2-(x -π6)]=cos(x -2π
3).
将y =cos x 的图象向右平移2π3个单位可得到y =cos(x -2π
3)的
图象,
∴要得到y =sin(x -π
6)的图象应将y =cos x 的图象左移φ=2π
-2π3=4π
3
个单位.
5.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集为( )
A.⎝ ⎛⎭⎪⎫
-3,-π2∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3
B.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫
π2,3 C.⎝
⎛⎭⎪⎫
-3,-π2∪(0,1)∪(1,3)
D .(-3,-1)∪(0,1)∪(1,3)
解析:f (x )>0的解集为(-1,0)∪(1,3),f (x )<0的解集为(-3,
-1)∪(0,1),当x ∈(-π,π)时,cos x >0的解集为⎝ ⎛⎭⎪⎫
-π2,π2,cos x <0
的解集为⎝ ⎛⎭⎪⎫-π,-π2∪⎝ ⎛⎭
⎪⎫π
2,π,
故f (x )cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭
⎪⎫
π2,3.
答案:B
6.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭
⎪⎫
4π3,0中心对称,
那么|φ|的最小值为( )
A.π6
B.π4
C.π3
D.π
2
解析:由题意可得f ⎝ ⎛⎭⎪⎫4π3=0,即3cos ⎝
⎛⎭
⎪⎫
8π3+φ=0 ∴8π3+φ=k π+π2(k ∈Z ) ∴φ=k π+π2-8π
3(k ∈Z ) ∴|φ|的最小值为|φ|=|2π+π2-8π3|=π6.
答案:A
二、填空题(每小题8分,共计24分)
7.若f (x )=cos x 在[-b ,-a ]上是增函数,那么f (x )在[a ,b ]上是________函数.
解析:∵f (x )=cos x 是偶函数,且偶函数在对称区间的单调性相反,
∴f (x )在[a ,b ]上是减函数. 答案:减
8.函数f (x )的定义域为[0,1],则f (cos x )的定义域为____________.
解析:由题意知0≤cos x ≤1, ∴2k π-π2≤x ≤2k π+π
2,k ∈Z .
答案:[2k π-π2,2k π+π
2
](k ∈Z )
9.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π
3
的交点,则φ的值是________.
解析:本题考查三角函数的图象及求值问题.
由题意cos π3=sin(2×π3+φ),即sin(2π3+φ)=12,2π
3
+φ=
k π+(-1)k
·π6,(k ∈Z ),因为0≤φ<π,所以φ=π
6
.
答案:π
6
三、解答题(共计40分,其中10题10分,11、12题各15分) 10.比较下列各组数的大小 (1)cos 32,sin 110,-cos 74
;
(2)cos ⎝ ⎛⎭⎪⎫sin 3π7,cos ⎝
⎛⎭⎪⎫
cos 3π7.
解:(1)∵sin 1
10=cos ⎝ ⎛⎭⎪⎫π2-110≈cos1.47,
-cos 74=cos ⎝ ⎛⎭
⎪⎫π-74≈cos1.39,cos 32=cos1.5,
又0<1.39<1.47<1.5<π,y =cos x 在[0,π]上是减函数, ∴cos1.5<cos1.47<cos1.39. 即cos 32<sin 110<-cos 7
4
;
(2)∵cos 3π7=sin ⎝ ⎛⎭⎪⎫π2
-3π7=sin π14,
而0<π14<3π7<π
2,y =sin x 在⎣
⎢⎡⎦⎥⎤0,π2上是增函数,
∴0<sin π14<sin 3π7<1<π
2
,
y =cos x 在⎣⎢⎡⎦⎥⎤
0,π2上是减函数,
∴cos ⎝ ⎛⎭⎪⎫sin π14>cos ⎝
⎛⎭⎪⎫
sin 3π7.
即cos ⎝ ⎛⎭⎪⎫cos 3π7>cos ⎝
⎛⎭⎪⎫
sin 3π7.
11.求当函数y =sin 2
x +a cos x -12a -3
2
的最大值为1时,a 的值.
解:y =1-cos 2
x +a cos x -12a -32=-cos 2
x +a cos x -12a -12
=-(cos x -a
2
)2
+a 2
4-12a -12
设cos x =t ,∵-1≤cos x ≤1,∴-1≤t ≤1.
∴求函数y =-(cos x -a
2)2
+a 24-12a -12
的最大值为1时a 的值,
等价于求闭区间上的二次函数y =-(t -a
2
)2
+a 24-12a -12
(-1≤t ≤1)
的最大值为1时a 的值.
(1)当a
2<-1,即a <-2时,
t =-1时,y 有最大值为-32a -3
2
,
由题设可知-32a -32=1,∴a =-5
3>-2(舍去).
(2)当-1≤a
2
≤1,即-2≤a ≤2时, t =a 2
时,y 有最大值为a 24
-a 2-1
2
,
由题设可知a 24-a 2-1
2
=1,
解得a =1-7,或a =1+7(舍去).
(3)当a 2>1,即a >2时,t =1时,y 有最大值为a 2-3
2
,
由题设可知a 2-3
2=1,∴a =5.
综上可得a =1-7或a =5. 12.已知函数f (x )=2cos(π
3
-2x ).
(1)若f (x )=1,x ∈⎣⎢⎡⎦⎥⎤
-π6
,π4,求x 的值;
(2)求f (x )的单调增区间. 解:(1)根据题意cos(π3-2x )=1
2,
因为π3-2x =2k π±π
3
(k ∈Z ),
而x ∈⎣⎢⎡⎦⎥⎤
-π6
,π4,故x =0.
(2)令2n π≤π
3-2x ≤2n π+π(其中n ∈Z ),
解得-n π-π3≤x ≤-n π+π
6(其中n ∈Z ),
即k π-π3≤x ≤k π+π
6
(k ∈Z ),
从而f (x )的单调增区间为[k π-π3,k π+π
6
](k ∈Z ).。