电磁感应中的双动式导轨问题(例题)
- 格式:doc
- 大小:151.30 KB
- 文档页数:4
电磁感应中的导轨问题训练题及解答在电磁感应的现象中,切割磁感线的导体或磁通量发生变化时回路将产生的感应电动势,导体或回路称为电源,,电路中常出现电、力结合、电、电结合等问题。
今对一些典题进行分析,给同学以启迪(07·广东·18)(17分)如图(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图(b)所示,两磁场方向均竖直向上。
在圆弧顶端放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧底端。
设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
⑵金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到t0时间内,回路中感应电流产生的焦耳热量。
⑶讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。
解析:⑴感应电流的大小和方向均不发生改变。
因为金属棒滑到圆弧任意位置时,回路中磁通量的变化率相同。
⑵0—t 0时间内,设回路中感应电动势大小为E 0,感应电流为I ,感应电流产生的焦耳热量为Q ,由法拉第电磁感应定律:0020t B L t E =∆∆Φ= ② 根据闭合电路的欧姆定律:R E I0= ③ 由焦耳定律及②③有:R t B L Rt I Q020402== ④ 解得:4200L B Qt R =一、 电磁感应中的力学问题1、磁悬浮列车是一种高速低耗的新型交通工具。
它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R ,金属框置于xOy 平面内,长边MN 长为l ,平行于y 轴,宽为d 的NP 边平行于x 轴,如图1所示。
列车轨道沿Ox 方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B 沿Ox 方向按正弦规律分布,其空间周期为λ,最大值为B 0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v 0沿Ox 方向匀速平移。
电磁感应中的双杆运动问题有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。
电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。
例1.2006年高考重庆卷第21题21.两根相距为L 的足够长的金属直角导轨如题21图所示放置,它们各有一边在同一水平内,另一边垂直于水平面。
质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R 。
整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。
当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀速运动。
重力加速度为g 。
以下说法正确的是A.ab 杆所受拉力F 的大小为μmg +RV L B 2122 B.cd 杆所受摩擦力为零C.回路中的电流强度为RV V BL 2)(21 D.μ与V 1大小的关系为μ=1222V L B Rmg 例2. 2004年高考全国I 卷第24题24.(18分)图中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的金属导轨,处在磁感强度B 的匀强磁场中,磁场方向垂直导轨所在平面(纸面)向里。
导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2。
x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1、m 2,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R 。
F 为作用于金属杆x 1y 1上竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
例3. 2004年高考广东卷第15题15.(15分)如图,在水平面上有两条平行导电导轨MN 、PQ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为12m m 、和1R 2、R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。
电磁感应(didnc—gdnying)中的双动式导轨问题一、等间距j伽北)水平导轨,无水平外力作用(安培力除外(ch d w汨),下同)例1两根足够长的固定的平行金属导轨位于同一(t6ngy f)水平面内,两导轨间的距离为'。
导轨上面(sh汕gmi a n)横放着两根导体棒"•和山,构成矩形回路,如图所示。
两根导体棒的质量皆为喘,电阻皆为回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为三。
设两导体棒均可沿导轨无摩擦地滑行,开始时,棒加静止,棒必有指向棒匚国的初速度二。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?3(2)当必棒的速度变为初速度的讨时,血棒的加速度是多少?解析必棒向加棒运动时,两棒和导轨构成的回路面积变小,磁通量变小,于是产生感应电流。
□出棒受到与其运动方向相反的安培力而做减速运动,匚出棒则在安培力的作用下向右做加速运动。
只要必棒的速度大于皿棒的速度,回路总有感应电流,诅$棒继续减速,匸』棒继续加速,直到两棒速度相同后,回路面积保持不变,不产生感应电流,两棒以相同的速度卩做匀速运动⑴从开始到两棒达到相同速度V的过程中,两棒的总动量守恒,有朋吟=2加P,根据能量守恒定律,整个过程中产生的焦耳热Q=扌却「_^(2w)v3=”曲3⑵设必棒的速度(s j d j)变为「时,曲棒的速度(s j d j)为",贝g由动量3fr1聊比=—wv0+解讨v=—v0(d o ngli a ng)守恒可知心得,此时(c Y shO旳棒所受的—沁安培力』。
_F_心由牛顿第二(d]e r)定律可得:加棒的加速度"炕3亡。
二、不等间距水平导轨,无水平外力作用例2如图所示,光滑导轨刖、碍等高平行放置,椚f间宽度为间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
必、加是质量均为将的金属棒,现让处从离水平轨道〔高处由静止下滑,设导轨足够长。
电磁感应中的双导轨问题电磁感应中的双导轨问题等间距导轨一、无外力F作用1.如图所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的距离为L,导轨上横放着两根导体棒ab和cd,它们与两金属导轨组成闭合回路.已知两根导体棒的质量均为m,导体棒ab在导轨之间的电阻为2R,导体棒cd在导轨之间的电阻为R,导轨光滑且电阻可忽略不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B.开始时,导体棒cd静止,导体棒ab具有水平向右的初速度v0,此后的运动过程中,两导体始终与金属导轨垂直且接触良好.求:(1)闭合回路中电流的最大值;(2)两导体棒运动的整个过程中回路中产生的焦耳热;(3)当导体棒ab的速度大小变为v0时,导体棒ab发热的功率及其加速度大小。
【分析】当导体棒ab刚开始运动时,闭合回路中的磁通量变化率最大,感应电动势最大,所以电流最大,根据闭合电路欧姆定律列式求解即可;随着右边棒速度增加,必然有安培力的产生,右边棒收到的安培力向左做减速运动,左边棒受到的安培力向右做加速运动,随着速度减少,两棒的加速度也在减少,当二者速度一样时候,回路的电动势为零,没有电流也就没有安培力,两个棒稳定运动,解:(1)当导体棒ab刚开始运动时,闭合回路中的磁通量变化率最大,感应电动势最大,所以电流最大,最大电动势为E m=BLv0由闭合电路欧姆定律得:最大电流为:(2)运动过程中,两导体棒沿水平方向不受外力,动量守恒设共同速度为v,则:mv0=2mv解得:整个过程中两导体棒组成系统损失的动能全部转化为焦耳热,根据能量守恒定律得:(3)设ab棒的速度变为时,cd棒的速度为v',则由动量守恒可得:解得注意:由于两个棒都在切割产生感应电动势,方向相冲,所以产生的感应电动势要相减。
此时回路中的电动势为此时回路中的电流为导体棒的发热功率为:此时ab棒所受的安培力为由牛顿第二定律可得,ab棒的加速度为:答:(1)闭合回路中电流的最大值为;(2)两导体棒运动的整个过程中回路中产生的焦耳热为;(3)当导体棒ab 的速度大小变为v 0时,导体棒ab 发热的功率为,其加速度大小为2. 如图所示,平行金属导轨MN 、M ′N ′和平行金属导轨PQR 、P ′Q ′R ′固定在高度差为h(数值未知)的两水平台面上。
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1. 模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变. 2. 常见模型类型 “电—动—电”型“动—电—动”型示意图已知量棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计过程分析S 闭合,棒ab 受安培力F =BLER,此时加速度a =BLEmR,棒ab 速度v↑→感应电动势E ′=BLv ↑→电流I ↓→安培力F =BIL ↓→加速度a ↓,当安培力F =0时,a =0,v 最大,最后匀速运动棒ab 释放后下滑,此时加速度a =gsin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =ER ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mgsin α时,a =0,v 最大,最后匀速运动能 量 转 化 通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动 形式 变加速运动 变加速运动 最终 状态匀速运动,vm =E ′BL匀速运动vm =mgRsin αB2L2一、单棒问题 1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv (2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动 (5)最终状态:匀速直线运动 (6)两个极值①v=0时,有最大加速度:Fm F mg a mμ-=②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为: (1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向; (2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况; (4)列出牛顿第二定律或平衡方程求解. (一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙(1)磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得: v =Δx Δt =7 m/s I =BLv r +R,mg =BIL 解得B =0.1 T(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +RQ =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h时开始做匀速运动,在此过程中NM 22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-FB F( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。
.动态分析导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题)类“电—动—电”型“动—电—动”型型示M b意P图NaQ棒 ab 长为 L ,质量为 m,电阻为 R,棒 ab 长为 L ,质量为 m,电阻为 R,导轨光滑,电阻不计。
导轨光滑,电阻不计。
分开关闭合后,棒 ab 受安培力 F=BLE/R ,棒 ab 释放后下滑,此时a=gsin α,棒 ab 的析此时, a=BLE/mR, 棒 ab 的速度增加—速度 v增加——感应电动势E=BLv 增加感应电动势 BLv 增加—安培力 F=BIL 减——感应电流增加——安培力 F 增加——小—加速度 a 减小,当安培力 F=0 ( a=0)加速度 a 减小,当安培力F=mgsinα时, v 时, v 最大最大。
2、两根导体棒在导轨上滑动(双导体问题)初速度不为零,不受其他水平外力作用NQNQ V 0V 0示MP MP意图质量 =m 1=m 2电阻 =r1 =r2质量 =m 1=m 2电阻 =r1=r 2长度 =L 1=L 2长度 =L 1=L 2分杆 MN 做边减速运动,杆 PQ 做变稳定时,两杆的加速度为零,两杆的速度析加速运动,稳定时,两杆的加速度之比为 1: 2为零,以相等的速度匀速运动。
初速度为零,受其他水平外力的作用.N QNQ示F F意MP MP图质量 =m 1=m 2电阻 =r1=r2摩擦力 f 1=f 2,质量 =m 1=m 2长度 =L 1=L 2电阻 =r1=r2长度 =L 1=L 2分开始时,两杆做变加速运动;稳定时,稳定时,若 F≤2f,则 PQ 先变加速后匀析两杆以相同的加速度做匀变速直线运速运动;若 F>2f ,则 PQ 先变加速,之动。
后两杆匀加速运动。
一、“动—电—动”型1.(2007 山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒 ab.导轨地一端连接电阻R,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一水平恒力 F 作用下由静止起向右运动.则()A .随着 ab 运动速度的增大,其加速度也增大B .外力 F 对 ab 做的功等于电路中产生的电能C.当 ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率D .无论 ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能2、如图所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻 R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B,一根质量为 m 的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A .如果B 增大, v m将变大 B .如果变大, v m将变大C.如果 R 变大, v 将变大D.如果 m 变小, v将变大m m3.如图所示,一光滑平行金属轨道平面与水平面成θ角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上。
电磁感应中的双动式导轨问题1.如图所示,金属棒P从高h 处以速度沿光滑弧形平行导轨下滑,进入轨道的水平部分后,在自下而上垂直于导轨平面的匀强磁场中运动,磁感应强度为B,在轨道的水平部分原来静止放着另一根金属棒Q ,已知,假设导轨足够长,试问:(1)当P棒进入磁场后,P、Q棒各做什么运动?(2)P棒刚进入磁场时,P、Q两棒加速度之比为多少?(3)若两棒始终没有相碰,求P和Q的最大速度?(4)在整个过程中,回路中消耗的电能是多少?一、等间距水平导轨,无水平外力作用(安培力除外,下同)2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为。
导轨上面横放着两根导体棒和,构成矩形回路,如图所示。
两根导体棒的质量皆为,电阻皆为,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为。
设两导体棒均可沿导轨无摩擦地滑行,开始时,棒静止,棒有指向棒的初速度。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当棒的速度变为初速度的时,棒的加速度是多少?二、不等间距水平导轨,无水平外力作用3.图中1111a b c d和2222a b c d为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的11a b段与22a b段是竖直的.距离为小1l,11c d段与22c d段也是竖直的,距离为2l。
11x y与22x y为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m和2m,它们都垂直于导轨并与导轨保持光滑接触。
两杆与导轨构成的回路的总电阻为R。
F为作用于金属杆11x y上的竖直向上的恒力。
已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
(04全国2)三、等间距水平导轨,受水平外力作用4.两根平行的金属导轨,固定在同一水平面上,磁感强度的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。