电磁感应中的“杆导轨”类问题(3大模型)解题技巧
- 格式:doc
- 大小:396.00 KB
- 文档页数:14
电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
⾼中物理⽼师呕⼼沥⾎总结的电磁感应“导棒-导轨”模型,太绝了
单杆问题是电磁感应与电路、⼒学、能量综合应⽤的体现,往往成为物理⾼考的出题点,因此
相关问题应从以下⼏个⾓度去分析思考:
(1)电学⾓度:判断产⽣电磁感应现象的那⼀部分导体(电源)→利⽤或求感应动电动势的⼤⼩→利
⽤右⼿定则或楞次定律判断电流⽅向→分析电路结构→画等效电路图。
(2)⼒电⾓度:与“导体单棒”组成的闭合回路中的磁通量发⽣变化→导体棒产⽣感应电动势→感应
电流→导体棒受安培⼒→合外⼒变化→加速度变化→速度变化→感应电动势变化→……,循环结束
时加速度等于零,导体棒达到稳定运动状态。
(3)功能⾓度:电磁感应现象中,当外⼒克服安培⼒做功时,就有其他形式的能转化为电能;当
安培⼒做正功时,就有电能转化为其他形式的能。
(4)功能⾓度:电磁感应现象中,通过动量定理+微元法的视⾓,建⽴⼒、时间、速度三者关系;
从⽜顿第⼆定律+微元法的视⾓建⽴⼒、时间、位移三者关系。
单杆+⽔平导轨基本模型
单杆+导轨模型变形
发电式单杆模型
电容式单杆模型。
电磁感应现象中的“杆+导轨”模型问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零。
变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
一、命题演变“杆+导轨”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3x )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值. 又∵E=BLv总R EI =∴F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大值 ∵L max =22sinπ =2(m )38R 2121=+=R R R R 总(Ω)∴总R v L B F 2max 2max = 代入数据得F max =0.3(N )(2)R 1、R 2相并联,由电阻丝R 1上的功率121R E P =,可知当max L L =时P 1有最大功率,即140.522.0 222122max 212max max =⨯⨯===R v L B R E P (W ) (3)金属棒与导轨接触点间的长度随时间变化 L =2sin (3πx )(m )且x=vt ,E=BLv ∴ I=总总R BLv R E == 43sin (35πt )(A ) 2.金属棒(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力;图1(2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB=∆∆ ∵感应电动势2S kl tBt E =∆∆=∆∆Φ=∴感应电流rkl r E I 2==由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b →a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl lB B +=02.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为BLv E =,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,d图2距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlvR E =∴I=0时v=0∴x =av 2 2=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反(3)开始时v=v 0,F 安=BI m l=R v l B 022F+F 安=ma ,F=ma- F 安=ma- Rv l B 022∴当v 0<22l B maR=10m/s 时,F >0,方向与x 轴相反当v 0>22l B maR=10m/s 时,F <0,方向与x 轴相同 (2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的. E 1=B 2av =0.2×0.8×5 =0.8(V )4.028.011===R E I (A ) (2)将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º后,圆环的有效面积为半圆.其中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a t B t E π (V )RE P 221)2(==1.28×102(W ) 另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。
v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。
连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。
在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。
g取10 m/s2。
求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。
【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题一、基础知识1、模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题1=1的综合性强,物理情景变化空间人,是我们复习屮的难点.“导轨+杆” 模型乂分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2、常见模型二、练习解析 ⑴设卬在磁场区域"cd 内运动时间为d 乙从开始运动到〃位置的时间为/2, 则由运动学公式得1 21 八2 L =〒2gsin 〃・斤,L=㊁gsin 0・£解得旷pi 爲’/2=需£(i 分)因为“勺2,所以甲离开磁场时,乙还没有进入磁场.(1分)设乙进入磁场时的速度为可,乙屮产牛的感应电动势为E ],回路屮的电流为厶,贝IJ 如嶄=mgLsin 0(]分)E\=BdsQ 分) Zi=Ei/2R (l 分) mgsin O=BJ {d (\ 分)解得2鬱需9分)(2)从释放金属杆开始计时,设经过时间/,甲的速度为“,甲中产牛的感应电动势为E,回路中的电流为/,外力为F,则1、如图弄示,两根足够长、电阻• * • % I•• »«^ZW«I4 I ・♦ Jtf-rr-W •- V ,I与水平面夹角为趴导轨平面内的矩形区域血cd• • • • • • ••••■• • • •• ••• ••••・M • ••••••• • •••垂首干斜面向卜•血与cd ・间相原为・令爆杆• • • • • • ■ 9■•■•••• • • • •明确电路结构,挖掘隐含梅抿荐族状杰犒牢税图6・甲、乙的阻值相同,质址均为九甲杆锂雹场区域的上边界血处,乙杆上方与甲相更[处,甲、乙两杆都与导轨垂直II 接触KI 好•由静止样放两杆的同 时,在甲杆上施加一个垂直于杆平行丁•导轨的外力F,使甲杆在冇磁场的矩形区域 内向下做匀期速直线运动,加速度大小炉2gsin0,甲离开磁场时撤去化乙杆 进人磁场后恰好做匀速运动,然后离开磁场・(1)求毎根金属杆的电E/?fl 多大?(2)从释放金居杆开始计时,求外力F 随时间t 的变化关系式,并说明F 的方向.(3)若整个过程中,乙金届杆共产生热昴Q,求外力F 对甲金届杆做的功W 是多少?⑤岀于甲、乙秀杆串联,产生的史 只有甲杆在磁场中运动的过程,刑 功和重力做功使两杆的内能和甲*• • • • • • • • • • ■ • • • • ■■■增加.甲杆离开磁场后,乙杆;切 勞能转化为两杆的内能.②说明乙杆受力平衡「应远期断i 磁场时甲杆是否离开磁场.③先分析两杆在导轨上各自运动」时间,可輛用乙杆在磁场中的匀殳析求解电阻R. ④用牛顿第二定律、法拉第电磁总X.・• • •• ..合电路知识求解.①可如甲般外为卩平行寻編卸 变力.v=at(\分)E=Bdv(\分)I=E/2R(]分)F+wgsin O~BId=nia (\ 分) <7=2gsin 6联立以上各式解得方向垂直于杆平行于导轨向下.(1分)(3)甲在磁场运动过程中,乙没冇进入磁场,设甲离开磁场时速度为%,甲、乙产生的热量相同,均设为0,则vl=2aL(\ 分)W+〃?g 厶sin 0=2Q]+苏就(2 分)解得 W=20x+mgLsmO乙在磁场运动过程中,甲、乙产生相同的热量,均设为g ,贝IJ 2@=吨厶sin 0(2分) 根据题意有0=01+0(1分) 解得"=20(1分)gsin 0(2) F=〃7gsin&+〃gsin0、^^^2(OW/W 寸瓷 命 方向垂直于杆平行于导轨向下 (3) 202、如图甲所示,足够长的光滑平行金属导轨MM P0竖直放置,其宽度厶=1 m, 一匀强 磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为/?=0.40 Q 的电阻,质量 为加=0.01 kg 、电阻为厂=0.30 Q 的金属棒ah 紧贴在导轨上•现使金属林ab [Il 静止开 始下滑,下滑过程中弘始终保持水平,且与导轨接触良好,其下滑距离x 与时间/的 关系如图乙所示,图彖中的04段为曲线,M 段为直线,导轨电阻不计,g=10m/s 1 2 3(忽 略〃棒运动过程中对原磁场的影响),求:解析(1)金属棒在段匀速运动,山题中图象乙得:1 磁感应强度B 的大小;2 金属棒ab 在开始运动的1.5 s 内,通过电阻尺的电荷量;3 金属棒〃在开始运动的1.5 s 内,电阻上产牛的热量. 答案(1)0.1 T (2)0.67 C (3)0.26 JF=wgsin 0+加gsin 0怦.gw0=石=7 m/sBLumg=BIL解得3 = 0.1 T⑵q="F △/— A01 ={R+r)\t\S△°F解得:g = 0.67 C1 2 (3)Q=〃?gx_ 尹矿解得 2=0.455 J 从而0?=专屈=0.26 J3、如图所示,足够长的光滑平行金属导轨cd 和前水平放置,在其左端连接倾角为〃=37。
电磁感应现象中的“杆+导轨”模型问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零。
变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。
一、命题演变“杆+导轨”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3x )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值. 又∵E=BLv总R EI =∴F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大值 ∵L max =22sinπ =2(m )38R 2121=+=R R R R 总(Ω)∴总R v L B F 2max 2max = 代入数据得F max =0.3(N )(2)R 1、R 2相并联,由电阻丝R 1上的功率121R E P =,可知当max L L =时P 1有最大功率,即140.522.0 222122max 212max max =⨯⨯===R v L B R E P (W ) (3)金属棒与导轨接触点间的长度随时间变化 L =2sin (3πx )(m )且x=vt ,E=BLv ∴ I=总总R BLv R E == 43sin (35πt )(A ) 2.金属棒图1(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力; (2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB=∆∆ ∵感应电动势2S kl tBt E =∆∆=∆∆Φ=∴感应电流rkl r E I 2==由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b →a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl lB B +=02.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为d图2BLv E =,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlvR E =∴I=0时v=0∴x =av 2 2=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反(3)开始时v=v 0,F 安=BI m l=Rv l B 022F+F 安=ma ,F=ma- F 安=ma- Rv l B 022∴当v 0<22l B maR=10m/s 时,F >0,方向与x 轴相反 当v 0> 22lB maR=10m/s 时,F <0,方向与x 轴相同(2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的. E 1=B 2av =0.2×0.8×5 =0.8(V )4.028.011===R E I (A ) (2)将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º后,圆环的有效面积为半圆.其中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a t B t E π (V )RE P 221)2(==1.28×102(W ) 图4另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
电磁感应“导棒-导轨”问题专题一、“单棒”模型【破解策略】单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t∆Φ=∆或E BLv =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
<1> 单棒基本型00≠v 00=v示 意 图(阻尼式)单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L(电动式)轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L (发电式)轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定 力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力R vL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLEa =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力 ↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E= 开始时mFa =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由 a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m = 图 像 观 点能 量 观 点 动能全部转化为内能:2021mv Q =电能转化为动能W 电212mmv = F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 运动 状态变减速运动,最终静止变加速运动,最终匀直变加速运动,最终匀直<2> 单棒模型变形类型“发电式”有摩擦“发电式”斜轨变形示意图已知量棒ab长L,质量m,电阻R;导轨不光滑且水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析导体棒相当于电源,当速度为v时,电动势E=Blv;安培力为阻力,并随速度增大而增大22BB l vF BIl vR==∝加速度随速度增大而减小22--==--BF F mg F B l va gm m mRμμ(1) v=0时,有最大加速度mF mgamμ-=(2) a=0时,有最大速度22-=()mF mg RvB lμ棒ab释放后下滑,此时加速度a=singα,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=sinmgα时,a=0,v最大,最后匀速运动能量转化212E mFs Q mgS mvμ=++克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动22-=()mF mg RvB lμ匀速运动22vmmgRsinB Lα=二、“双棒”模型类型等间距水平光滑导轨无水平外力不等间距水平光滑导轨无水平外力等间距水平光滑导轨受水平外力竖直导轨示意图终态分析两导体棒以相同的速度做匀速运动若两杆m,r,L全相同,末速度为02v两导体棒以不同的速度做匀速运动若两杆m,r全相同,122l l=末速度为212v v=两导体棒以不同的速度做加速度相同的匀加速运动两导体棒以相同的速度做加速度相同的匀加速运动速度图象解题策略动量守恒定律,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识动量定理,能量守恒定律及电磁学、运动学知识变形等间距水平不光滑导轨;受水平外力示意图速度图象F>2f2F f≤三、“电容”式单棒模型类型电容放电型电容无外力充电型电容有外力充电型示意图力学观点电容器放电,相当于电源;导体棒受安培力而运动。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
【答案】:见解析【解析】:分析金属杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F -mg sin θ-F 安-f =ma又F 安=BIL ,I =ER +R =BLv R +R ,所以F 安=BIL =B 2L 2v R +Rf =μN =μmg cos θ 故F -mg sin θ-B 2L 2vR +R-μmg cos θ=ma当速度v =0时,杆的加速度最大,最大加速度a m =Fm -g sin θ-μg cos θ,方向沿导轨平面向上当杆的加速度a =0时,速度最大,v m =222)cos sin (L B Rmg mg F ⋅--θμθ。
类型二:单杆+电容器(或电源)+导轨模型类【初建模型】【例题2】(2017·模拟)如图所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面,相距为L 。
一质量为m 的导体棒cd 垂直于MN 、PQ 放在轨道而上,与轨道接触良好。
轨道和导体棒的电阻均不计。
(1)如图1所示,若轨道左端M 、P 间接一阻值为R 的电阻,导体棒在拉力F 的作用下以速度v 沿轨道做匀速运动。
请通过公式推导证明:在任意一段时间Δt ,拉力F 所做的功与电路获得的电能相等。
(2)如图2所示,若轨道左端接一电动势为E、阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m,求此时电源的输出功率。
(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。
电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。
求导体棒运动过程中受到的水平拉力大小。
【思路点拨】:(1)导体棒匀速运动→受力平衡→求出拉力做的功。
导体棒切割磁感线产生感应电动势→产生感应电流→求出回路的电能。
(2)闭合开关S→导体棒变加速运动→产生的感应电动势不断增大→达到电源的路端电压→棒中没有电流→由此可求出电源与电阻所在回路的电流→电源的输出功率。
(3)导体棒在外力作用下运动→回路中形成充电电流→导体棒还受安培力的作用→由牛顿第二定律列式分析。
【答案】:见解析【解析】:(1)导体棒切割磁感线,E=BLv导体棒做匀速运动,F=F安,又F安=BIL,其中I=ER在任意一段时间Δt,拉力F所做的功W=FvΔt=F安vΔt=B2L2v2 RΔt电路获得的电能ΔE=qE=EIΔt=B2L2v2 RΔt可见,在任意一段时间Δt,拉力F所做的功与电路获得的电能相等。
(2)导体棒达到最大速度v m时,棒中没有电流,电源的路端电压U=BLv m电源与电阻所在回路的电流I=E-U r电源的输出功率P=UI=EBLv m-B2L2v m2r。
(3)感应电动势与电容器两极板间的电势差相等BLv=U由电容器的U-t图可知U=U1 t1 t导体棒的速度随时间变化的关系为v=U1 BLt1t可知导体棒做匀加速直线运动,其加速度a=U1 BLt1由C=QU和I=Qt,得I=CUt=CU1t1由牛顿第二定律有F-BIL=ma可得F=BLCU1t1+mU1BLt1。
【化模型】单杆+电容器(或电源)+导轨模型四种题型剖析【变式】:例题2第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为μ,写出导体棒的速度大小随时间变化的关系式。
【答案】:v=F-μmgm+CB2L2t【解析】:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为:E=BLv电容器所带电荷量为:Q=CE=CBLv再经过很短一段时间Δt,电容器两端电压的增量和电荷量的增量分别为ΔU=ΔE=BLΔv ΔQ=CΔU=CBLΔv流过导体棒的电流:I=ΔQΔt=CBLΔvΔt=CBLa导体棒受到的安培力:f1=BIL=CB2L2a 导体棒所受到的摩擦力:f2=μmg由牛顿第二定律得:F-f1-f2=ma联立以上各式解得:a=F-μmg m+CB2L2显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为:v=F-μmgm+CB2L2t。
类型三:双杆+导轨模型类【初建模型】【例题3】(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。
(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab和cd,构成矩形回路。
在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd的初速度。
若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。
【思路点拨】:(1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断。
(2)导体棒ab运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况,即可得出结论。
【答案】:见解析【解析】:(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别由牛顿第二定律得:F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大。
(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流。
ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速。
两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动。
【化模型】三大观点透彻解读双杆模型示意图力学观点图像观点能量观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动棒1动能的减少量=棒2动能的增加量+焦耳热两棒以相同的加速度做匀加速直线运动外力做的功=棒1的动能+棒2的动能+焦耳热【变式】:若例题3(1)中甲、乙两金属杆受恒力作用情况如图所示,两杆分别在方向相反的恒力作用下运动(两杆不会相撞),试分析这种情况下甲、乙金属杆的收尾运动情况。
【答案】:见解析【解析】:设某时刻甲和乙的速度分别为v1和v2,加速度分别为a1和a2,甲、乙受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2) ①感应电流为:I=E2R②对甲和乙分别应用牛顿第二定律得:F1-BIl=ma1,BIl-F2=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得:a1=a2=F1-F22m⑤可见甲、乙两金属杆最终做加速度相同的匀加速运动,速度一直增大。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧训练题1.如图所示,一对光滑的平行金属导轨固定在同一水平面,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻。
一质量m=0.1kg、电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T。
棒在水平向右的外力作用下由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。
导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。
求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F。
2.(2017·检测)如图所示,水平面有两根足够长的平行导轨L1、L2,其间距d=0.5m,左端接有容量C=2000μF的电容。
质量m=20g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。