北师大版九年级数学《投影与视图》回顾与思考教案
- 格式:docx
- 大小:330.37 KB
- 文档页数:6
第五章投影与视图----回顾与思考(复习课)
上,他测得地面上的影长为21米,留在墙上的影高为2米,请你帮忙计算该旗杆的高度?
活动注意事项:本题对于学生来说,与前面的随堂练习相比较,难度有所增加,因此采取小组合作的学习方式,让学生进行展示,进行不同解题方法的交流。
学生可能会有不同的辅助线添加方法,教师应让学生一一进行展示,学生根据自己的理解进行最优化方法的选择。
小组合作
交流、展示
教师巡视并参与其
中,探索结束后教
师引导学生交流展
示
四、
知识
拓展
游戏环节:开宝箱,完成一组练习。
四、
课堂小结谈谈你这节课有什么收获?
(1)整节课的感悟:如在画三视图时,要使用刻度尺,画图尽可能精确;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;
(2)对于某个知识点的困惑;
(3)通过本节课的学习,自己的最大收获。
七、布置作业思考题:小明家的楼房前面要盖新楼了,但是他有很多困惑,你能帮助他吗?
为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
链接中考,应强调正确的书写格式及分析问题的方法,可以由小组同学课后合作探究解决问题。
板书设计5.3投影与视图——回顾与思考
1、中心投影与平行投影的区别与联系
2、物体的三视图。
第四章视图与投影1.视图(一)一、教学目标1. 知识与技能:经历探索基本几何体(圆柱、圆锥、球)与其三视图之间的关系。
能根据三视图描述基本几何体或实物图形,培养和发展学生推理能力和空间观念。
2. 过程与方法:结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。
3. 情感态度与价值观:让学生在课堂活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。
二、教学重点和难点1、重点:会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转. 画几何体的三视图。
会画直棱柱的三种视图。
2、难点:画直棱柱的三种视图要明确图中实线和虚线的区别。
三、教学过程第一环节:情境问题引入活动内容:1还记得一个物体的主视图、左视图和俯视图吗?2你能自己或者与同伴画出下图的主视图、左视图和俯视图吗?附答案1、主视图:2、左视图:3、俯视图:第二环节:活动探究(获取信息,体会特点)活动内容:110页的图中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,他们的形状各是什么样的?活动目的:首先让学生经历将实物抽象成几何体的过程,培养学生的抽象能力和想象能力,并通过亲身体验归纳总结三种视图的不同特点,及在现实生活中的实际意义。
第三环节:合作学习活动内容:(1)在下图中找出上图中各物体的主视图。
(1) (2) (3)(4) (5) (6)(2) 上图中各物体的左视图是什么?俯视图呢?与同伴进行交流。
活动目的:以问题串的形式引导学生逐步深入地思考三种视图的区别与联系。
前一个问题的设置帮助培养学生的空间想象能力,问题(2)的设置帮助学生体会:三种视图在长、宽、高等方面的联系。
在以上两个问题的铺设下,图表的设置起到归纳总结的作用 。
第四环节:练习提高活动内容:如图是一个蒙古包的照片。
小明认为这个蒙古包可以看成下图所示的几何体,并画出这个几何体的三种视图,你同意小明的做法吗?主视图 左视图俯视图活动目的:对本节知识进行巩固练习。
第1课时中心投影课时目标1.通过实例了解投影、中心投影的概念.2.在具体操作活动中,初步感受在点光源下物体影子的变化情况;在具体情境中了解在点光源下影响物体影子长度的一些因素;会进行中心投影的有关画图.3.通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.学习重点中心投影的概念及相关画图.学习难点根据物体的影子找光源.课时活动设计情境引入成影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动.(1)让学生尽可能多收集生活中各类成影现象(用电子图片形式呈现).(2)小组长整理所收集的图片(如图),统一规格要求,交给数学教师.要求学生通过观察真实成影现象(包括生活中观察的成影、视频看到的成影现象、上网调查的成影问题等),得到有关成影图片资源,收集的资源尽量多样化.在必要的情况下,教师可以对学生选择调查对象方面给予一定的指导,使调查更有实效性.小结:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.设计意图:通过调查活动,指导学生利用现有手段获取有效信息,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;而在本节课和下节课的学习活动中,学生通过对他们自己收集且感兴趣的问题展开学习,将极大地激发学生学习的积极性与主动性,提高教学的实效性.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子.(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子分别发生了什么变化?小结:手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影.设计意图:通过具体操作,使学生体会在点光源下物体影子的变化情况.在此基础上,引出中心投影的概念.典例精讲结合中心投影的特点,完成确定点光源方法的学习.例确定图中路灯灯泡所在的位置.教师:结合你们刚才对中心投影的理解,请在图中尝试找一下灯泡的位置.学生:动手探究.教师:走入学生巡视,捕捉教学资源,进行教学指导.根据学生反应情况,教师选择下列方式进行过程性点拨.1.在同一灯光下,物体的影子与物体上对应点的连线过灯泡所在的位置吗?2.如何找物体与影子上的对应点?3.找一对对应点可以确定灯泡的位置吗?4.能够找到灯泡位置的同学,请思考你确定灯泡位置的原理和刚才的具体操作步骤并尝试在图旁边写下来.根据学生反应的情况,教师使用实物投影展示,对下列情境进行过程性打断纠错.1.找错对应点.2.所画光线不进行适当延长,没有相交.3.所画光线不考虑实际背景,画入了地平线以下.4.找到灯泡位置,未用字母表示.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤(确保学生有资源可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行汇总发言(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明确对应点的正确找取是确定灯泡位置的关键.注意事项:教师要注意欲速则不达,放手让学生进行探究,当出现较严重的知识性问题或较多学生出现错误时,再适时进行过程性的纠错和点拨,留更多的知识点、能力点让学生在探究和合作交流中得以自我发现学习.教师板书正确答案.解:如图,过一根木杆的顶端及其影子的顶端画一条直线,再过另一根木杆的顶端及其影子的顶端画一条直线,两线相交于点O.点O就是路灯灯泡所在的位置.设计意图:通过独立探究、合作交流,使学生对中心投影有更加深入的认识,并能够应用原理解决实际问题.议一议如图,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?那么什么情况下他们的影子一样长呢?请实际试一试,并与同伴交流.解:(1)高矮相同的两个人在这盏路灯下的影子不一定一样长.(2)高矮不同的两个人在这盏路灯下的影子有可能一样长.当他们到这盏路灯的距离一样时,他们的影子一样长.设计意图:让学生了解在点光源下影响物体影子长度的一些因素.巩固训练练习1两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置;(如图点O即为灯泡所在的位置)(2)画出图中表示婷婷影长的线段.(如图线段AB即为婷婷的影长)练习2请同学们在图中画出小红在走向路灯时三个时刻的影子的情况,并思考在中心投影现象中,物体离光源的远近的变化会对影子的长短带来怎样的变化.通过作图,引导学生发现中心投影,物体与光源距离的远近影响投影的长短.设计意图:通过练习1,进一步巩固学生对中心投影特点的认识,熟练找光源的方法;通过练习2,引导学生思考中心投影的各种情况.学生经历实践、探索的过程,既培养了学生的动手实践能力,积累了数学活动经验,又加深了对中心投影的了解.课堂小结谈谈今天的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括能力和表达能力.课堂8分钟.1.教材第128页习题5.1第1,2,3题.2.七彩作业.第1课时中心投影1.投影:物体在光的照射下,在地面或其他平面上留下它的影子,就是投影.2.中心投影:从一个点出发的光线所形成的投影称为中心投影.3.例题、练习题.教学反思第2课时平行投影课时目标1.通过背景丰富的实例了解平行投影和正投影的概念.2.通过具体操作活动,初步感受太阳光下物体影子的变化情况;认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题.3.在具体情境中认识中心投影与平行投影的区别.4.经历操作、观察、分析、抽象、概括、想象、推理、交流等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.学习重点通过具体操作和实际观察活动,认识太阳光下物体影子的长短与方向的变化规律;能运用平行投影的基本规律解决一些简单问题;在具体情境中认识中心投影与平行投影的区别.学习难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结出有关结论.课时活动设计情境引入太阳光成影现象调查(提前一周布置,利用周末时间完成)以4人合作小组为单位,开展调查活动.活动:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?小结:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.图1,图2表示的都是平行投影,其中图2中的平行光线与投影面垂直,这种投影称为正投影.图1图2注意事项:在体会物体在太阳光下形成的影子随着物体与投影面的相对位置关系的改变而改变时,尤其要让学生观察两类特殊位置时的情形:①小棒或纸片与投影面平行;②光线与投影面垂直.对于①,要让学生观察物体影子的形状和大小的特点(物体与其影子“全等”).对于②,要让学生观察“物体影子的形状和大小”随“物体与投影面的相对位置”变化而变化的规律,如当物体平行于投影面时情况如何,当物体倾斜于投影面时情况如何,当物体垂直于投影面时情况又如何等等.设计意图:通过具体操作,体会物体在太阳光下形成的影子随着物体与投影面的位置关系的改变而改变,在此基础上引出平行投影与正投影的概念.提高学生观察生活的能力以及合作能力.在中心投影的学习后,自然对比中心投影与平行投影的异同,为本节课的学习创设学习氛围,提升本节课的学习效果.议一议1.如图所示的三幅图片是我国北方某地某天上午不同时刻的同一位置拍摄的.(1)在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.解:先后顺序为(丙)(乙)(甲).理由:太阳东升西落.在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向.在上午,随着太阳位置的变化,树的影子的长度逐渐变短,树的影子也由正西方向向正北方向移动.(2)在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴交流.解:在同一时刻,大树高度与其影长之比等于小树高度与其影长之比.2.教师课前整理太阳光成影现象调查,选择适合学生的资源进行多媒体展示,选1个小组代表结合照片与统计的数据表格对同一时刻.不同高度的物体的影子的长短的情况进行介绍,其他小组同学进行补充,使学生明晰同一时刻,不同高度的物体的影子的长短不相同,物高与影长之间存在“A物高∶A影长=B物高∶B 影长”.教师结合图片,适时引导学生运用相似的知识对原理进行解释.设计意图:通过两个问题的设置,让学生在亲身参与的基础上,进行展示及讨论交流,让学生初步学会本节课的研究内容,在小组讨论的基础上得出两个问题的答案,进一步培养学生探究知识的能力,体会到自主学习的乐趣,为学生以后更好地学习新知奠定基础.学生在探究完教师的问题后,教师出示课前准备的图片,让学生验证变化规律的成因,给学生一个完整的知识结构.典例精讲例某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示.你能画出此时乙木杆的影子吗?(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情形下,如果此时测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?解:(1)如图1,连接DD',过点E作DD'的平行线,交AD'所在的直线于点E'.BE'就是乙木杆的影子.图1图2(2)如图2,平移由乙木杆、乙木杆的影子和太阳光线所构成的图形(即△BEE'),直到乙木杆影子的顶端E'抵达墙根为止.(3)因为△ADD'∽△BEE'A B=A'B',即A1.5=1.241.所以,甲木杆的高度为AD=1.5×1.241=1.86(m).设计意图:通过问题(1)深化学生所学知识,发现物体、影子、光线这三者之间,确定其中的两个因素即可确定第三个因素;通过问题(2),让学生学会动态看待投影问题;通过问题(3),使学生能够运用所探究到的知识解决实际问题,借助例题讲解的形式,让学生深入了解并运用上一环节所学的相关知识.巩固训练请完成以下两道题目,并与同伴交流你的方法.1.图中是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它们是太阳的光线还是灯光的光线?与同伴交流.解:如图即为所作,它们是灯光的光线.2.图中的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同伴交流这样做的理由.解:太阳光下形成的,如图,旗杆的影子为线段AB.理由:过大树的顶端及其影子的顶端作一条直线,再过小树的顶端及其影子的顶端作一条直线,两条直线是平行的,因而是太阳光下形成的影子,过旗杆的顶端作一条与前面所作的两条直线中的任意一条平行的直线,其与地面相交,则以该交点和旗杆的底端为两个端点线段AB即为旗杆的影子.2.如图1,中间是一盏路灯,周围有一圈栏杆,图2,图3表示的是这些栏杆的阴影,但没有画完,请你把图2,图3补充完整.图1图2图3图4图5解:图2是中心投影,图3是平行投影.补充完整的图如图4,图5所示.设计意图:通过活动进一步巩固学生对平行投影和中心投影的认识,能熟练确定投影类型.经历实践探索、交流讨论的过程,培养学生的动手实践能力,积累数学活动经验,掌握投影现象的特点.课堂小结谈谈你的收获是什么?与同伴进行交流.(从数学知识、数学方法和数学思想方面引导学生思考)设计意图:通过开放式小结,使学生自主回顾、总结梳理所学知识,培养学生归纳、概括和表达能力.课堂8分钟.1.必做题:教材第132页习题5.2第1,3题;选做题:教材第133页习题5.2第4题.2.七彩作业.第2课时平行投影投影教学反思。
第五章 投影与视图2 视图第3课时 由三种视图确定几何体教学目标1.能根据三视图想象出物体形状,进一步提高学生的空间想象能力.2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂的几何体的三视图.3.通过小组合作的方式,进一步培养学生的动手操作能力和合作意识.教学重难点重点:根据三视图还原简单的物体. 难点:根据三视图还原几何体.教学过程导入新课问题:下面是哪个几何体的三视图?主视图 左视图 俯视图A B C D通过前面的学习,同学们已经能够根据几何体的特点画出它的三视图,那么如果已知一个几何体的三视图,你能想象出这个几何体吗?本节课让我们继续来研究视图.引出本节课研究的问题——由三种视图确定几何体.探究新知一、知识回顾复习上一节课所学过的三种视图的画法.教学反思1.提问:画一个几何体的三种视图的顺序和位置是什么?2.完成下列练习:(1)如图1所示是一个几何体立体图形的三视图,请根据视图说出几何体的名称:______.图1 图2(2)某几何体的三种视图分别如图2所示,那么这个几何体可能是( )A.长方体B.圆柱C.圆锥D.球设置目的:因为练习(1)(2)提供的是前两课时常见的几何体,学生对这几种几何体的三视图很熟悉,所以大多数学生能很快找出正确答案.二、合作探究活动1 观察图1所示的三种视图,你能在图2中找到与之对应的几何体吗?图1 图2师生活动:让学生观察并判断比较两图,找出三视图与实物之间的对应关系,对于有困难的学生,小组内帮扶、交流,最后教师全面总结.设计意图:在回顾、练习之后引入的探索活动由浅入深,由简单到复杂,学生在观察与推理时有一定的难度,解决的办法可以先由主视图与实物对比,排除②③,再由左视图和俯视图排除①.选择的过程就是空间想象能力的提升过程,让学生体会由三视图推断几何体,逐步还原几何体或实物的过程,进一步理解三视图的位置与大小的对应关系,发展学生的空间想象能力、逆向思维能力.活动2议一议:根据图中的三种视图,你能想象出相应几何体的形状吗?教学反思师生活动:先独立思考,再小组交流,然后学生展示,展示时说出自己判断的依据以及先后顺序.必要的时候教师巡视学生的情况,借助实物帮助分析.设计意图:本活动主要是让学生进行更深层次的体验,脱离了实物,学生完全靠想象在头脑中勾勒几何体的形状,更能提升学生的空间想象能力,在出示图片时可以将三个视图分开呈现,先出示主视图,让学生猜想几何体可能的形状,然后依次出示左视图、俯视图,使几何体的形状范围逐渐缩小,令学生更能理解三视图与几何体之间的联系.活动3 拓展延伸一个几何体的三视图如图所示,根据图中的数据得这个几何体的表面积为( )A.2πB.6πC.7πD.8π思路引领:根据三视图确定几何体→确定几何体表面积的算法. 学生活动:小组合作,根据思路引领进行探索.解析:由几何体的三视图可知该几何体为平放的圆柱,其底面半径为1,高为3,故其表面积S =2π·12+2π·1·3=8π.答案:D活动总结:由三视图计算几何体的体积或表面积的一般步骤:(1)根据三视图描述几何体的形状(或画出表面展开图);(2)根据三视图“长对正、高平齐、宽相等”的教学反思关系和轮廓线的位置确定各个方向的尺寸;(3)用面积公式求出表面积或用体积公式教学反思求出体积.(学生总结,老师点评)课堂练习1.某几何体的三种视图分别如下图所示,那么这个几何体可能是().A.长方体B.圆柱C.圆锥D.球2.如图所示是一个几何体的三视图,请根据视图说出该几何体的名称_______.3.由下列三视图想象出实物形状.4.已知一个几何体的三视图如图所示,画出这个几何体的草图.5.根据如图所示的三种视图,你能想象出相应几何体的形状吗?(画出几何体的草图)参考答案1.B2.圆锥3.解:A是四棱锥,B是球,C是三棱柱.4.解:根据三视图想象出的几何体是一个长方体上面竖立放置一个小圆柱,如图所示.5.解:(1)半球体,如图1所示.(2)四棱柱,如图2所示.图1 图2课堂小结(学生总结,老师点评)由三视图确定几何体的步骤布置作业1.课本142页随堂练习和习题5.52.(选作题)同桌两人合作,每人想象一个几何体并且画出三视图,另一人根据三视图描述几何体的形状.板书设计第五章投影与视图2 视图第3课时由三种视图确定几何体由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高.(2)由实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.。
第五章投影与视图5.1投影第1课时投影的概念与中心投影课题中心投影课型新授课教学目标1.经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用。
2.通过观察、想像,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化。
3.体会灯光投影在生活中的实际价值。
教学重点了解中心投影的含义。
教学难点在中心投影条件下物体与其投影之间相互转化的理解。
教学方法观察实践法教学后记教学内容及过程备注一、创设情境、操作感知皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐。
学生在灯光下做不同的手势,观察映射到屏幕上的表象。
学生小组合作,实验感悟。
概念:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)去照射这些小棒和纸片。
提问:(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子发生了什么变化?学生小组合作,实验感悟。
概念:手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线所形成的投影称为中心投影。
二、范例学习、理解领会例1确定图5-1中路灯灯泡所在的位置。
学生观察屏幕,动手实验,找出灯泡的位置。
三、联系生活、丰富联想议一议图5-3,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?如果不一定,那么什么情况下他们的影子一样长?请实际试一试,并与同伴交流.继续探索:(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?学生交流、画图。
四、随堂练习课本随堂练习1、2五、课堂总结本节课让同学们通过实践、观察、探索。
了解中心投影的含义,学会进行中心投影条件下的物体与其投影之间的相互转化。
第五章 投影与视图5.1 投 影第1课时 投影的概念与中心投影1.了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用;(重点)2.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.(难点)一、情景导入皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.学生在灯光下做不同的手势,观察映射到屏幕上的表象.二、合作探究探究点一:中心投影的概念下列投影中,不属于中心投影的是( ) A.晚上路灯下小孩的影子 B.汽车灯光照射下行人的影子 C.阳光下沙滩上人的影子D.舞台上一束灯光下演员的影子解析:A 中晚上路灯的光线是从一个点发出的,故晚上路灯下小孩的影子是中心投影;B 中汽车灯的光线也是从一点发出的,故在汽车照射下行人的影子是中心投影;C 中阳光的光线是互相平行的,不是从一个点发出的,故不是中心投影;D 中舞台上的一束灯光也是从一个点发出的,灯光下演员的影子是中心投影.故选C.方法总结:形成中心投影的光线是从一点发出的,各光线相交于一点(即光源处).探究点二:中心投影的性质【类型一】中心投影的作图一天晚上,小丽在路灯下玩,如图所示.你能画出小丽在路灯下的影子吗?(用线段表示)解:光是沿直线传播的,以光源S为端点过点C作射线,交地面于点A,则线段AB即可看作是小丽的影子.如图所示.方法总结:作一物体在路灯下的影子时,连接点光源和物体的顶端的点并延长,与地面相交,则与地面的交点和物体的底端之间的线段即为该物体的影子.如图所示,由两根直立的木杆在一路灯下的影子判断路灯灯泡的位置.解:如图所示,两条光线的交点O即为灯泡所在的位置.方法总结:相交光线的交点即为点光源所在的位置.点光源下两个物体的影子可能在同一个方向,也可能不在同一个方向.【类型二】中心投影的变化规律如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长解析:在路灯下,路灯照人所形成的投影是中心投影.人的影子可以通过路灯和人的头顶作直线,该直线和地面的交点到人的距离即为他的影子的长度.因此人离路灯越远,他的影子就越长.由A到B这一过程中,人在地上的影子先逐渐变短,当他走到路灯正下方时,影子为一点,然后又逐渐变长.故选B.方法总结:在灯光下,垂直于地面的物体离点光源距离近时影子短,离点光源远时影子长.【类型三】中心投影的有关计算如图所示,晚上,小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC 下的影长为2m ,且影子的顶端恰好在A 点,接着他又走了6.5m 至点Q 处,此时他在路灯AD 下的影子的顶端恰好在B 点(已知小明的身高为1.8m ,路灯BC 的高度为9m ).(1)计算小明站在点Q 处时在路灯AD 下影子的长度; (2)计算路灯AD 的高度.解析:由路灯、小明都垂直于地面,知AD ∥PE ∥QH ∥BC ,用相似三角形中的比例线段可求解.解:(1)如图所示,∵EP ⊥AB , CB ⊥AB ,∴EP ∥BC ,∴∠AEP =∠ACB ,∠APE =∠ABC , ∴△AEP ∽△ACB .∴PE CB =AP AB ,即1.89=2AB, 解得AB =10(m ).∴QB =AB -AP -PQ =10-2-6.5=1.5(m ),即小明站在点Q 时在路灯AD 下影子的长度为1.5m ; (2)同理可证△HQB ∽△DAB ,∴HQ DA =QB AB ,即1.8AD =1.510,解得AD =12(m ). 即路灯AD 的高度为12m. 方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影⎩⎪⎨⎪⎧投影的概念:物体在光线的照射下,会在地面或其他平面上留 下它的影子,这就是投影现象中心投影⎩⎪⎨⎪⎧概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.第2课时平行投影与正投影1.知道平行投影和正投影的含义,能够确定物体在太阳光下的影子;(重点)2.了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的,理解在同一时刻,物体的影子与它们的高度成比例;(重点)3.会利用平行投影的性质进行相关计算.(难点)一、情景导入太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?二、合作探究探究点一:平行投影【类型一】平行投影的认识下列物体的影子中,不正确的是()解析:太阳光线是平行的,故影长与物体高度成比例,所以A项正确;太阳光线画得不平行,故B项错误;因为物体在光源两侧,故影子方向不同,因而C项正确;因灯光是发散的,故影子与物体高度不成比例且物体在光源同侧,影子方向相同,D项正确.故选B.方法总结:(1)平行投影的光源是太阳,平行投影的光线是平行的;而中心投影的光源是点光源,中心投影的光线是相交的.(2)同一时刻,太阳光下的影子长度都与物体高度成比例;灯光下的影子长度与物体高度不一定成比例.(3)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.【类型二】平行投影的作图如图,在某一时刻垂直于地面的物体AB在阳光下的投影是BC,请你画出此时同样垂直于地面的物体DE在阳光下的投影,并指出这一时刻是在上午、中午还是下午?解:如图,连接AC ,过点D 作DF ∥AC ,过点E 作EF ∥BC 交DF 于点F ,则EF 就是DE 的投影.由BC 是北偏西方向,判断这一时刻是上午.方法总结:(1)画物体的平行投影的方法:先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的末端的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定其影子.(2)物体在阳光下的不同时刻,不仅影子的大小在变,而且影子的方向也在改变,就我们生活的北半球而言,上午的影子的方向是由西向北变化,影子越来越短,下午的影子方向由北向东变化,影子越来越长.【类型三】 平行投影的有关计算如图,小王身高1.7m ,他想测量一栋大楼的高度,他沿着阳光下的楼影BA 由B向A 走去,当他走到点C 时,他的影子顶端正好与大楼的影子顶端重合,测得AC =19.2m ,BC =0.8m ,则大楼的高度为 m.解析:设大楼的高为x m ,楼和人均与地面垂直,由平行投影的特点可得到两三角形相似.由相似三角形的性质,得BC BA =人高楼高,即0.819.2+0.8=1.7x.解得x =42.5. 方法总结:本题也可用同一时刻,太阳光下不同物体的高度与影长成正比,即甲物体的高甲物体的影长=乙物体的高乙物体的影长来解答.一位同学想利用树影测树高,已知在某一时刻直立于地面的长1.5m 的竹竿的影长为3m ,但当他马上测量树影时,发现树的影子有一部分落在墙上(如图①).经测量,留在墙上的影高CD =1.2m ,地面部分影长BD =5.4m ,求树高AB.解:方法一:过点D 作DE ∥AC 交AB 于点E ,如图①. ∵四边形AEDC 为平行四边形, ∴AE =CD =1.2m. ∵EB BD =1.53,∴EB =2.7m , ∴AB =AE +EB =3.9m.方法二:延长AC 交BD 的延长线于点E ,如图②. ∵CD =1.2m ,CD DE =1.53,∴DE =2.4m. ∴BE =BD +DE =7.8m.∵ABBE=1.53,∴AB=3.9m.∴树高AB为3.9m.方法总结:解决这类问题较为常见的方法有两种,一是画出树影在墙脚对应的树高;二是透过墙,补全树在平地上的影长.探究点二:正投影观察如图所示的物体,若投影的方向如箭头所示,图中物体的正投影是下列选项中的()解析:我们观察图中的两个立体图形,分别按照所示投影线考虑它的正投影,得到圆柱的正投影是长方形,其中短边等于圆柱底面的直径,长边等于圆柱的高;正方体的正投影是与它一个面全等的正方形.因此本题画出的图形应是它们的组合,且长方形在正方形的左边.故答案为C.方法总结:本题是正投影性质的简单应用,通过观察和画图可以加深对正投影的理解,同时也可以发展我们的空间想象能力.本题还可以用实物进行实验,通过实验验证结果的正确性.三、板书设计平行投影与正投影⎩⎪⎨⎪⎧平行投影⎩⎪⎨⎪⎧概念:平行光线所形成的投影变化规律正投影:平行光线与投影面垂直时形成的投影本节课研究平行投影,让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观.本课时密切联系实际,涉及地理、物理等知识,体现了数学与各学科内容间的联系.让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流.5.2视图第1课时简单图形的三视图1.理解视图及三视图的概念;2.会辨别简单几何体的三种视图,能熟练画出简单几何体的三种视图;(重点)3.能根据三视图描述基本几何体或实物原型.(难点)一、情景导入一个物体从不同的角度观察,看到的形状可能是不相同的.观察一个毛绒玩具,我们从三个不同的角度看,得到三个图形,如图所示.你能说出它们是从哪个方向观察得到的吗?二、合作探究探究点一:三视图的识别【类型一】判断简单几何体的三种视图图中的四个几何体中,主视图、左视图和俯视图都相同的几何体共有()A.1个B.2个C.3个D.4个解析:圆柱的主视图、左视图都是长方形,而俯视图是圆;圆锥的主视图、左视图都是等腰三角形,而俯视图是带圆心的圆;球的三种视图都是圆;正方体的三种视图都是正方形,故选B.方法总结:常见的几何体有圆柱、圆锥、球以及直棱柱,竖直放置的圆柱、圆锥的主视图、左视图相同,一般的直棱柱的三种视图是不同的,而球和正方体的三种视图都是相同的,它们分别是圆和正方形.【类型二】根据实物确定视图如图,从不同方向看一只茶壶,你认为是俯视效果图的是()解析:俯视图就是从物体的正上方向下看到的视图,因而能够看到茶壶的顶部、壶把、壶嘴,从而选择A;D选项是茶壶的主视图.故选A.方法总结:根据实物确定视图的方法:首先要弄清楚物体的主视图、左视图、俯视图的含义,而后根据实际物体思考三种视图的大体轮廓.探究点二:画简单几何体的三种视图画出如图甲所示的几何体的三种视图.解析:该几何体是由圆锥和圆柱组合而成的几何体,只要把圆锥和圆柱的三种视图分别画出再组合即可.解:三种视图如图乙所示.方法总结:画组合体的三种视图时,先将几何体分解成若干个简单几何体,再进行各种视图组合.画圆锥的俯视图时一定要注意它是一个带圆心的圆,不要漏画了圆心.探究点三:根据三视图还原几何体【类型一】根据三视图判断几何体的形状已知一个几何体的三种视图如图所示,则该几何体是()解析:A图的主视图、左视图均为等腰三角形,B图的左视图、俯视图均为矩形,C图的俯视图的外轮廓线为四边形,由此可排除A,B,C选项,抓住某个特征采用排除法是解决这类问题的常用方法.故选D.方法总结:主视图能体现物体的左右长度、上下高度;俯视图能体现物体的左右长度、前后宽度;左视图能体现物体的上下高度、前后宽度.通过观察三种视图可以想象出几何体的立体图形.【类型二】根据两种视图讨论构成几何体的小正方体的个数用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小正方体的个数,请解答下列问题:(1)a,b,c各表示多少?(2)这个几何体最少由几个小立方体组成,最多又是多少? (3)当d =e =1,f =2时,画出这个几何体的左视图.解:(1)由俯视图知道这个几何体共有三排三列,第三列只有一排,第二列有两排;而从主视图知道第三列的层数为3层,第二列的层数为1层,所以a 为3,b ,c 应为1;(2)d ,e ,f 既可以为1,也可以为2,但至少有一个为2,另外两个为1时,共有9个小立方体;另外两个都为2时,共有11个小正方体;故最少由9个小立方体搭成,最多由11个小立方体搭成; (3)左视图如右图所示. 方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图⎩⎪⎨⎪⎧概念:用正投影的方法绘制的物体在投影面上的图形三视图的组成⎩⎪⎨⎪⎧主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.第2课时复杂图形的三视图1.会辨别复杂的几何体的三视图;(重点)2.会画复杂的几何体的三视图,会根据复杂的三视图判断实物原型;(重点)3.明确三视图中实线和虚线的区别.(难点)一、情景导入张师傅是铸造厂的工人,小王有事情拜托他,想让他制作一个如图所示的小零件,小王应该如何准确地告诉张师傅小零件的形状和规格呢?二、合作探究探究点一:判断复杂的几何体的视图如图,空心圆柱体的主视图的画法正确的是()解析:本题中空心的小圆柱看不到应画成虚线,圆柱的底面圆看得见,应画出实线,只有C符合,故选C.方法总结:画几何体的三种视图时,一定要按照“看得见的轮廓线画成实线,看不见的轮廓线画成虚线”的原则进行.探究点二:画复杂的几何体的三视图画出下图中三个几何体对应的三种视图.解析:根据三种视图的画法画出即可,画第二个和第三个几何体的左视图时应该注意将凹进去的部分用虚线表示出来.解:三个几何体的三种视图分别如下图所示:方法总结:画三种视图时,一定要注意:主与俯“长对正”,主与左“高平齐”,左与俯“宽相等”.画较复杂的实物图(几何体)的三种视图时,可以根据几何体的特征将其分成几个部分,先画出最主要(最大)的部分的三种视图,再逐步画出其他部分的三种视图,最后再对照原图几何体的形状检查一下三种视图的轮廓是否正确.探究点三:根据视图确定几何体一个几何体的三种视图如图所示,则这个几何体是()解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3B.17πcm3C.66πcm3D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.方法点拨:解决此类问题的关键是想象几何体的形状,根据物体对应的相关数据找准其对应关系,再正确地进行计算.三、板书设计复杂图形的三视图⎩⎪⎨⎪⎧判断复杂的几何体的视图画复杂的几何体的三视图:看得见的轮廓线画成实线,看不见的轮廓线画成虚线根据视图确定几何体经历由直棱柱到其三种视图的转化过程,进一步发展空间观念,培养学生自主学习与合作学习相结合的学习方式.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情.。
第2课时平行投影教师备课素材示例●情景导入请欣赏下列图片:我们欣赏的一幅幅美丽图片中的投影现象可以分为两类:一类是在灯光下形成的投影现象,一类是在太阳光线下形成的投影现象.你知道物体在太阳光线下形成的影子与在灯光下形成的影子有什么不同吗?导入课题:平行投影.【教学与建议】教学:学生在欣赏精美图片的同时,感受到生活中的影子可以分为两类,然后通过问题导入课题.建议:可以让学生自己举例发现两种影子不同点.●归纳导入教师课前整理、选择学生资源,多媒体展示,选3~4个小组代表简单介绍,分析成影的光线特点(讲解太阳光线可以看成是平行光线).通过对分类及标准的过程性加工,使学生明确成影光线是从同一个点发出的投影叫中心投影,成影光线是平行光线的投影叫平行投影.如太阳光线.【归纳】太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.平行光线与投影面垂直,这种投影称为正投影.【教学与建议】教学:通过分类,使学生明晰平行投影和中心投影的本质区别,由此引出本节课研究的问题:平行投影.建议:在上课前一天让学生感受生活中太阳光下的影子,并做好预习.先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的顶端的连线是一组平行线,过物体顶端作光线的平行线与投影面相交,从而确定其影子.【例1】如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.请你在图中画出此时DE在阳光下的投影.解:如图,连接AC,过点D作DF∥AC交直线BC于点F,线段EF即为DE在阳光下的投影.太阳光下,在同一时刻,相距不远的两个物体的高度和影长成正比.【例2】在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为__12__m.影子上墙或上台阶,解决方案有两种,一种是过墙或台阶的底部作阳光的平行线,另一种是过墙上或台阶上影子的顶端作地面的平行线.这两种做法都是把物体分成两部分进行计算.【例3】兴趣小组的同学要测量树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.4m,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影长为0.2m,一级台阶高为0.3m,如图.若此时落在地面上的影长为4.4m,求树的高度.解:如图,AB表示树高,BD表示树在地上的影长,CE表示树在台阶上的影长,CD为第一级台阶的高,延长EC交AB于F,CE=0.2m,CD=0.3m,BD=4.4m,易得四边形BDCF为矩形,∴BF=CD=0.3m,CF=BD=4.4m,∴EF=CE+CF=0.2+4.4=4.6(m).∵AFEF=10.4,∴AF=4.60.4=11.5,∴AB=AF+BF=11.5+0.3=11.8(m).答:树的高度为11.8m.高效课堂教学设计1.掌握平行投影、正投影的概念,理解平行投影与中心投影的联系与区别.2.了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的,理解同一时刻物体的影子与它们的高度成正比例.3.利用平行投影的性质进行计算.▲重点平行投影、正投影的概念.▲难点立体图形正投影的画法.◆活动1 创设情境导入新课(课件)物体在日光或灯光的照射下会在地面、墙壁等处形成影子,请观察下面三幅图片,感受日常生活中的投影现象.问题:物体在太阳光下形成的影子与在灯光下形成的影子有什么不同?◆活动2 实践探究交流新知【探究1】平行投影、正投影的概念观察下图,这三个图分别表示同一块三角尺在光照下形成的投影,其中图(1)与图(2)(3)的投影有什么区别?图(2)(3)的投影线与投影面的位置关系有什么区别?(1)(2)(3)图(1)的投影线集中于一点形成中心投影,图(2)(3)投影线互相平行,可以说明图__(1)__是灯光,图__(2)(3)__是太阳光线.归纳:(1)灯光是由__一点__发出的,灯光下的影子是__中心投影__,太阳光是__平行光线__;(2)物体在__平行光线__下形成的投影称为平行投影;(3)在平行投影中,平行线与投影面__垂直__的光线,称为正投影.图__(3)__是正投影.【探究2】正投影的作图1.把一根直的铁丝(记为线段AB)放在三个不同的位置,它们的正投影是什么形状?(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面.2.把一个正方形纸板(记作ABCD),放在三个不同的位置,它们的正投影是什么形状?(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.归纳:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【探究3】物体的影子与它们高度之间的关系阅读课本P129~130,回答问题.(1)在三个不同时刻,同一棵树的影子长度__不同__,在上午随时间的推移,影子的长度逐渐变__短__;在下午随时间的推移,影子的长度逐渐变__长__,顺序为__丙、乙、甲__.(2)在同一时刻,大树高度与其影长之比__等于__小树高度与其影长之比.归纳:在同一时刻,物体的影子与它们的高度成正比例.◆活动3 开放训练应用举例例1 (教材P130例2)某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示.你能画出此时乙木杆的影子吗?(2)如图,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情形下,如果测得甲、乙木杆的影子长分别为 1.24m和1m,那么你能求出甲木杆的高度吗?【方法指导】平行投影的画法及应用.解:(1)如图,连接DD′,过点E作DD′的平行线,交AD′所在的直线于点E′.BE′就是乙木杆的影子;(2)如图,平移由乙木杆、乙木杆的影子和太阳光线所构成的图形(即△BEF′),直到乙木杆影子的顶端E′抵达墙根即可;(3)因为△ADD′∽△BEE′,所以,ADBE=AD′BE′,即AD1.5=1.241,所以,甲木杆的高度为AD=1.5×1.241=1.86(m).例2 如图,分别是两棵树及其影子的情形.(1)哪个图是阳光下的情景?哪个图是路灯下的情景?(2)你是用什么方法判断的?①②【方法指导】平行投影与中心投影的区别.解:(1)第①幅图是阳光下的情景(平行投影),第②幅图是路灯下的情景(中心投影);(2)第①幅图物高与影长成比例,第②幅图不成比例.例3 下面四幅图是两个物体在不同时刻太阳光下的影子,按照时间的先后顺序正确的是(C)① ② ③ ④A.①②③④B .③①②④C .③④①②D .②④③①【方法指导】太阳从东边升起,影子指向西方,然后影长逐渐变小,过了正午,影子又逐渐变长.◆活动4 随堂练习1.以下四幅图中,表示两棵小树在同一时刻阳光下的影子的是(D)A B C D2.如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻AB 在阳光下的投影BC =3m ,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,则DE 的长为__10__m__.3.如图,木棒AB 在投影面P 上的正投影为A 1B 1,且AB =10cm ,∠BAA 1=120°,试求投影A 1B 1的长.解:如图,过点A 作AC⊥BB 1,垂足为点C.易得四边形AA 1B 1C 为矩形,∴∠A 1AC =90°,AC =A 1B 1.∵∠BAA 1=120°,∴∠BAC =120°-90°=30°,∴在Rt △ABC 中,BC =12AB =5(cm), 则AC =AB 2-BC 2=53(cm). ∴A 1B 1=AC =53cm.◆活动5 课堂小结与作业学生活动:这节课的收获是什么?还有哪些疑惑?教学说明:掌握平行投影、正投影的概念,并能正确运用于解决问题中.作业:课本P132随堂练习,习题5.2中的T1、T2.本节课研究平行投影,让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观.本课时密切联系实际,涉及地理、物理等知识,体现了数学与各学科内容间的联系.让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流.。
北师版九年级数学(上)第五章投影与视图回顾与思考导学案班级:_____________姓名:_____________ 家长签字:_____________一、学习目标1、通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体与其投影之间的相互转化。
2、通过实例能够判断简单物体的三种视图,能够准确画出三种视图,能根据三种视图描述基本几何体或实物原型,并画出草图,实现简单物体与其三种视图之间的相互转化。
二、温故知新,本章知识总结:1.投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。
2.手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影3.作一物体中心投影的方法:过投影中心与物体顶端作直线,直线与投影面的交点与物体的底端之间的线段即为物体的影子。
练习1、路灯下站着小赵、小明、小刚三人,小明和小刚的影长如下图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.4.平行投影的定义太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影5.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。
练习2(1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。
(2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m和8m,求建筑物AB的高。
6注意:(1)中心投影与平行投影的区别:中心投影是由一个点发出的光线所形成的投影;平行投影是平行光线所形成的投影。
(2)同一时刻下的平行投影,物体高度之比等于其对应的影长之比。
(3)在我国北方地区,在一天当中,影子的长短及方向变化:长短变化:长→短→长方向变化:正西→正北→正东7.常见几何体的三视图8.画三视图:(1)俯视图放在主视图的下面,左视图放在主视图的右面(2)主视图反映物体的长和高、俯视图反映物体的长和宽、左视图反映物体的宽和高.可简记为“长对正;高平齐;宽相等”。
第五章投影与视图2.视图(第2课时)一、学生起点分析学生的知识技能基础:主要内容是学习如何画出直棱柱的三种视图。
学生在初一已经学习了从三个不同的方向看小立方块图形,又在本章第一节学习了正投影,本节的第一课时学习了圆柱、圆锥、球及其组合图形的三种视图,初步了解了视图的作用,为进一步学习较复杂图形三种视图的画法打好了基础。
二、学习任务分析:教学目标是:①使学生想象直三棱柱和直四棱柱的三种视图;②引导学生发现同一个几何体三种视图之间的关系;③在教学过程中培养学生的动手操作能力。
三、教学过程分析第一环节:知识回顾活动内容:复习上一节课所学过的常见几何体三种视图的画法。
第二环节:探索实践活动内容:绘制三棱柱的三视图如右图,出示一个三棱柱(最好有实物模型)1.提问:你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你能画出它们吗?2.你所画的主视图与俯视图中有哪些部分对应相等?主视图与左视图中有哪些部分对应相等?左视图与俯视图呢?活动目的:使学生掌握三棱柱三视图的画法。
引导学生体会三视图的关系及规范画法的好处。
最后展示出上述三棱柱的正确的三种视图。
第三环节:延伸提高活动内容:直四棱柱三种视图的画法。
活动目的,类比学习四棱柱三种视图的画法。
(1) 看不见的棱应用虚线,看得见的棱用实线,边框都是实线;(2) 主视图中两条虚线应与俯视图中四边形的两个顶点对齐;(3) 左视图中间的实线与左边实线的距离应等于俯视图中两条虚线间的距离;(4) 在画图时最好先画俯视图,再根据俯视图画主视图和左视图。
第四环节:巩固练习1. (2020.达州)图2是图1中长方体的三视图,用S 表示面积,s 主=x 2+3x ,s 左=x 2+x ,则s 俯=( )A. x 2+3x +2B. x 2+2x +1C. x 2+4x +3D. 2x 2+4x第五环节:课堂小结注意画三种视图时的几个问题:① 看不见的棱用虚线,看得见的棱用实线;② 在画几何体的三种视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等。
第五章投影与视图
回顾与思考
一、本节课的教学目标如下:
1、知识与技能:
①通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体与其投影之间的相互转化。
②通过实例能够判断简单物体的三种视图,能够准确画出三种视图,能根据三种视图描述基本几何体或实物原型,并画出草图,实现简单物体与其三种视图之间的相互转化。
2、过程与方法:
①通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思考能力,发展学生的空间观念。
②通过学习和实践活动,增强学生观察与抽象、演示与画图、直观与推理等能力。
3、情感与态度:
通过本章内容的回顾与思考,培养学生的归纳、整理等能力;通过对投影与视图的学习,体会数学与学习生活的联系。
二、本节课重难点如下:
解决在学生中存在的易错点与能力提升点
三、本节课教学过程如下:
①学生回忆本章重要知识点,以问题串的形式呈现
1.生活中有哪些中心投影和平行投影现象? 举例说明.
2.中心投影和平行投影的特点分别是什么? 举例说明灯光及其形成的影子、太阳光及其形成的影子的应用.
3.什么是几何体的三种视图?圆柱、圆锥、球、正方体的三种视图分别是什么?如何画直棱柱的三种视图?
4.一个几何体的三种视图有什么特征?它与实物有什么联系?
5. 学了本章后,你有哪些收获和体会?与同伴进行交流.
6.用你自己喜欢的方式梳理本章的知识.
②学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系。
(上课前一天布置,让每一位学生都提前做好准备。
)举例:
四、基础知识重现---典型例题及练习
专题一:中心投影作图
例1:如图是灯光下形成的投影,请你在图中画出小朋友的影长.
点评:点光源位置的确定
由两个物体的投影,即可得到点光源位置,确定方法为:
1.分别连接两个物体顶端与它的投影顶端,并延长交于一点.该交点即为点光源位置.
2.若要作第三个物体的投影,需要连接点光源与该物体顶端,并延长使与地面相交,那么该点和该物体底端的连线即该物体的投影.
专题二:利用光沿直线传播的性质构造相似三角形测高
例2. 小明想测量路灯杆上灯泡的高度,就拿起一根2m长的竹竿伸向路灯,但无论如何也触不到.于是他走到路灯旁的一个地方,竖起竹竿,量得竹竿的影长正好是1m;然后他沿着影子的方向走出两根竹竿的长度(即4 m),又竖起竹竿,测得竹竿的影长正好是一根竹竿的长度(即2m),你知道小明将怎样计算灯泡的高度吗?
点评:在投影问题的实际应用中,利用投影知识建立相似三角形的数学模型,是解决该类问题的基本思路. 在学习中要善于思考、归纳题目的应用规律.
例3:如下图所示,墙边有甲、乙两根木杆,乙木杆的影子刚好不落在墙上.
(1)画出太阳光线及甲木杆的影子;
(2)当甲木杆高为2 m,乙木杆高为1.5 m,乙木杆到墙的距离为1.5 m时,求甲木杆的影长.
专题三:几何体与三视图的相互转化
例4:(1)如图所示,在一个透明的玻璃正方体内镶嵌了一条铁丝,请指出图①中的两个图是正方体的哪种视图.
解:(1)由三视图的定义可以看出,图①分别是正方体的俯视图、主视图. (2)如图②所示,粗线表示嵌在玻璃正方体内的一根铁丝,画出该正方体的主视图、左视图、俯视图.
解:(2)几何体的三视图如图所示.
点评:三种视图的作法
由几何体确定三种视图时,一定要理清以下概念:
主视图是从几何体的正面观察到的平面图形;
左视图是从几何体的左面观察到的平面图形;
俯视图是从几何体的上面观察到的平面图形;
长对正、高平齐、宽相等
由三视图计算几何体的体积或表面积的一般步骤:
(1)首先要根据三视图描述几何的形状(或画出表面展开图);(2)再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个方向的尺寸;(3)最后用面积公式求出表面积或用体积公式求体积.
五、针对训练
1:如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆:
(1)请画出路灯O的位置;(2)画出标杆EF在路灯下的影子FH.
2:我国《道路交通安全法》第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行”.如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
3:下图是一几何体的两种视图,请你指出其中的错误,并把它们改正过来.
4:一个立体图形的三视图如图所示,根据图中的数据得这个立体图形的表面积为( )
A.2π
B.6π
C.7π
D.8π
六、课堂小结---谈收获
内容主要涉及以下几个方面:
(1)整节课的感悟:如在画三视图时,要使用刻度尺,画图尽可能精确;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;
(2)对于某个知识点的困惑;
(3)通过本节课的学习,自己的最大收获。
目的:关注学生对数学知识的理解、数学方法的掌握和数学情感的感悟,力争使每个层次的学生在本节课学有所获。
注意事项:让学生畅所欲言自己的切身感受与实际收获,无论是对知识的理解,还是情感的交流,教师都应给与鼓励与表扬。
七、布置作业。