九年级数学上册 第5章 投影与视图 练习北师大版
- 格式:doc
- 大小:308.89 KB
- 文档页数:17
2022学年九年级数学上册第五章《投影与视图》单元试题(满分:120分)一、单选题1.一个画家有14个边长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为()平方米.A.19B.21C.33D.362.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长3.如图是一根电线杆在一天中不同时刻的影长图,试按其 天中发生的先后顺序排列,正确的是()A.①①①①B.①①①①C.①①①①D.①①①①4.三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻三根木杆在太阳光下的影子合理的是()A.B.C.D.5.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子6.几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.97.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是()A.两根竹竿都垂直于地面B.以两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定8.下列立体图形中,主视图是圆的是()A.B.C.D.9.图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中①ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个10.如图所示是两根标杆在地面上的影子,根据这些投影,在灯光下形成的影子是()A.①和①B.①和①C.①和①D.①和①11.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.12.如图,是一个正六棱柱的主视图和左视图,则图中x的值为()A.2B.3CD二、填空题13.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_____________.(填“逐渐变大”“逐渐变小”)14.如图,小明在A时测得旗杆的影长是2米,B时测得旗杆的影长是8米,两次的日照光线恰好互相垂直,则旗杆的高度是______米.15.如图,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是______________.16.一个几何体的三视图如图所示,则该几何体的表面积为____________.17.在同车道行驶的机动车,后车应当与前车保持一定的安全距离.如图,在一个路口,一辆长为10m 的大巴车遇红灯后停在距交通信号灯20m 处,小林驾驶一辆小轿车,距大车尾xm ,若大巴车车顶高于小林的水平视线0.8m ,红灯下沿高于小林的水平视线3.2m ,若小林能看到整个红灯,则x 的最小值为_____.18.如图,在A 时测得一棵大树的影长为4米,B 时又测得该树的影长为6米,若两次日照的光线互相垂直,则树的高度是______.19.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要______个小立方块.20.一块直角三角形板ABC ,90ACB ∠=︒,12cm BC =,8cm AC ,测得BC 边的中心投影11B C 长为24cm ,则11A B 长为__cm .三、解答题21.(1)如图1,若将一个小立方块①移走,则变化后的几何体与变化前的几何体从______看到的形状图没有发生改变;(填“正面”、“上面”或“左面”)(2)如图2,请画出由6个小立方块搭成的几何体从上面看到的形状图;(3)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图3所示,小正方形中的数字表示该位置上的小立方块的个数,请画出从左面看到的形状图.22.一个几何体的三种视图如图所示.(1)这个几何体的名称是__________.(2)求这个几何体的体积.(结果保留 )23.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竿AB的长为3m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6m,请你计算旗杆DE的高度.24.如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长25.如图,身高为1.6m的小王晚上沿箭头的方向散步至一路灯下,她想通过自己的影子来估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己影子端点恰好在点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置;(2)估计路灯的高度,并求影长PQ.26.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.27.小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他向前再步行12m 到达Q 时,发现他的影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6m ,两个路灯的高度都是9.6m ,且m AP BQ x ==.(1)求:两个路灯之间的距离;(2)小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由。
一、选择题1.如图所示几何体的左视图正确的是()A.B.C.D.2.下面的三视图所对应的物体是().A. B. C.D.3.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时4.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.345.如图所示几何体的俯视图是( )A .B .C .D .6.如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A .4860π+B .4840π+C .4830π+D .4836π+ 7.如图所示,该几何体的俯视图是( )A .B .C .D .8.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是( )A .3个B .4个C .5个D .6个9.下列说法正确的是()A.三角形的正投影一定是三角形B.长方体的正投影一定是长方形C.球的正投影一定是圆D.圆锥的正投影一定是三角形10.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱11.如图是一个由多个相同的小正方体堆成的几何体从上面看得到的平面图形,小正方形中的数字表示在该位置的小正方体的个数,那么从正面看该几何体得到的平面图形是()A.B.C.D.12.如右图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位览的小立方体的个数,则从左面乔这个几何体所得到的图形是()A.B.C.D.二、填空题13.已知10个棱长为m的小正方体组成如图所示的几何体,则这个几何体的表面积是_________.14.一个几何体是由一些完全相同的小立方块搭成的,从三个不同的方向看到的情形如图所示,则搭成这个几何体共需这样的小方块______个.15.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是________.16.如图的几何体由若干个棱长为1的正方体堆放而成,则这个几何体的俯视图面积_____.17.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是m.18.根据几何体的主视图和俯视图,搭成该几何体的小正方体最多___________个.19.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是______个平方单位.20.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔的正方体的表面积(含孔内各面)是__________.三、解答题21.如图是一个正三棱柱及俯视图:(1)请分别画出它的主视图、左视图;(2)若4AC =,6AA '=,则左视图的面积为_____________.【答案】(1)见解析;(2)123【分析】(1)观察图形,根据主视图和左视图的定义即可画出图形,注意看不见的线用虚线; (2)过点B 作BD ⊥AC 于点D ,左视图的面积等于BD 乘棱柱的高,利用勾股定理求得BD 即可.【详解】(1)作图如下:(2)如图,∵是正三棱柱,∴△ABC 为等边三角形,AB =AC =4,过点B 作BD ⊥AC 于点D ,∵4AC =,∴2AD =,4AB AC ==, ∴2223BD AB AD =-=, 则左视图的面积为236123⨯=.【点睛】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在将侧视图的宽看成底边的边长.22.如图所示是一个几何体的主视图和左视图,其俯视图是一个等边三角形,求该几何体的体积和表面积.【答案】体积是33.【分析】根据主视图和左视图为一个长方形,而俯视图都为一个等边三角形,故这个几何体为一个正三棱柱.表面积=3长方形的面积+2个等边三角形的面积,体积=底面积×高.【详解】解:∵一个几何体的主视图和左视图是长方形,∴该几何体为柱体,∵俯视图为等边三角形,∴该柱体为正三棱柱,∵由主视图宽12,高20,∴正三菱柱的底面边长为12,棱柱的高为20,∵底面等边三角形面积为:2312=3634, ∴该几何体的体积为:36320=7203⨯⨯⨯.∴表面积为:2363+12320=723+720【点睛】本题主要考查了由三视图确定几何体和求正三棱柱的表面积与体积,掌握由平面的三视图到空间立体图图形的想象是解题关键.23.如图,是由7个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从左面、上面看到的形状图;(2)小颖从该几何体中移去一个小立方块,变成由6个大小相同的小立方块搭成的一个几何体.发现所得新几何体与原几何体相比,从左面、上面看到的形状图仍然保持不变,请画出新几何体从正面看到的形状图.【答案】(1)见解析;(2)见解析.【分析】(1)分别画出立体图形的三视图即可;(2)从几何体中移走一个小立方块,所得新几何体与原几何体相比,从左面、上面看到的形状图保持不变,可得移走的一个小立方块是从正面看第二层第二列的一个,最后再画出主视图即可.【详解】解:(1)如图所示:(2)如图所示:【点睛】本题主要考查了三视图的画法,掌握三视图的定义和较好的空间想象能力成为解答本题关键.24.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方体的个数.(1)请在方格纸中分别画出从正面、从左面看到的这个几何体的形状图;(2)若每个小立方体的边长为1cm,根据从三个方向看到的形状图,直接写出这个几何体的表面积为______2cm.【答案】(1)见解析;(2)24【分析】(1)由已知条件可知,从正面看有2列,每列小正方数形数目分别为2,3,从左面看有2列,每列小正方形数目分别为3,1.据此可画出图形.(2)首先确定该几何体的六个面上裸露的正方形的个数,然后确定面积即可.【详解】解:(1)如图所示.(2)该几何体的表面积为2×(3+4+5)=24;故答案为:24.【点睛】本题考查从不同方向看几何体,重点考查学生的空间想象能力,要弄清楚每个方向有几列,每列有多少个正方体.25.如图,三棱柱的上下底面均为周长为12cm的等边三角形,现要从中截取一个上下底面均为等边三角形且底面周长为3cm的小三棱柱.(1)请写出截面的形状______;(2)若小三棱柱的高为6cm ,则截去小三棱柱后,剩下的几何体的棱长总和是多少?【答案】(1)长方形;(2)46【分析】(1)依据大正三棱柱的底面周长为10,截取一个底面周长为3的小正三棱柱,即可得到截面的形状;(2)依据△ADE 是周长为3的等边三角形,△ABC 是周长为10的等边三角形,即可得到四边形DECB 的周长,再计算棱长总和.【详解】解:(1)由题意可知,截面是长方形,故填:长方形;(2)1cm DE =,3cm BD CE ==,4cm BC =()1334246222446+++⨯+⨯=+=(cm ).【点睛】本题主要考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.26.由几个小立方体搭成的几何体从上面看到的图形如图所示,小正方体中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和左面看到的图形.【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,4,3,左视图有3列,每列小正方形数目分别为3,4,3,据此可画出图形.【详解】从正面看从左面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看所得到的图形是:故选:A.【点睛】本题考查了简单几何体的三视图,关键是掌握左视图所看的位置.2.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.3.A解析:A【分析】利用光线与地面的夹角的变换进行判断.【详解】解:上午8时、9时30分、10时、12时,太阳光线与地面的夹角不同,其中12时太阳光线与地面的夹角最大,所以此时向日葵的影子最短.故选:A.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长,中午最短.4.D解析:D【分析】首先要数清这个组合体的表面是由几个正方形组成的,再乘以1个正方形的面积即可得到表面积.【详解】+6×2+2)×21=34解:这个组合几何体的表面积为:(5×2+52故选:D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D .【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.6.A解析:A【分析】 首先根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,之后根据每个面分别求出表面积,再将面积进行求和,即可求出答案.【详解】 解:∵根据题目所给出的三视图,判断出该几何体为34个圆柱体,该圆柱体的底部圆的半径为4,高为6,∴该几何体的上、下表面积为:22133S =2πr =2π4=24π44⨯⨯⨯⨯⨯, 该几何体的侧面积为:233S =2462πr h=48+2π46=48+36π44⨯⨯+⨯⨯⨯⨯⨯, ∴总表面积为:12S=S +S =4860π+,故选:A .【点睛】本题考查了几何体的表面积,解题的关键在于根据三视图判断出几何体的形状,并把每个面的面积分别计算出来,掌握圆、长方体等面积的计算公式也是很重要的.7.C解析:C【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C ,故选:C .【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.8.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.C解析:C【解析】【分析】根据正投影是垂直照射物体时所看到的平面图形,特别要注意这与物体的摆放有直接的关系,由此分析各选项即可得解.【详解】A. 三角形的正投影不一定是三角形,错误B. 长方体的正投影不一定是长方形,错误C. 球的正投影一定是圆,正确D. 圆锥的正投影不一定是三角形,错误故选C.【点睛】此题主要考察了正投影的概念:光线垂直照射物体所看到的平面图形叫做正投影;一个物体的正投影与物体的摆放有直接的关系.10.A解析:A【解析】【分析】根据图形的三视图特点,进行选择.【详解】由题意图形的三视图可判断图形为圆锥.故答案选A.【点睛】本题主要考查的是三视图的性质特征,熟练掌握三视图的性质特征是本题的解题关键.11.C解析:C【解析】【分析】找到从正面看所得到的图形即可.【详解】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是1,2,2.故选:C.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.12.D解析:D【分析】从正面看,得到从左往右2列正方形的个数依次为3, 3;从左面看得到从左往右2列正方形的个数依次为5,1,依此画出图形即可.【详解】解:由题意知:该几何体为:故从左面看为:故选D.【点睛】本题考查三视图,解题关键是得到每列正方形的具体的数目为这列正方体的最多数目.二、填空题13.36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共解析:36m2【分析】前后两面小正方形的个数为:2×(1+2+3);上下两面小正方形的个数为:2×(1+2+3);左右两面正方形的个数为:2×(1+2+3)【详解】如图所示:一共有10个小正方体构成表面共有2×(1+2+3)+2×(1+2+3)+2×(1+2+3)=36个正方形,因为小正方体的棱长为m,所以每个小正方形的面积为:m2.所以这个几何体的表面积36m2故答案为:36 m2.【点睛】本题主要考查组合体的表面积,解决这类题的关键是明确该几何体是由哪些特殊的几何体构成的,它们的内在联系是什么:几何体的表面积是所有围成几何体的表面面积之和.14.5【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】解:综合主视图俯视图左视图底层有4个正方体第二层有1个正方体所以搭成这解析:5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故答案为:5.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.5【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】结合主视图和俯视图可知左边上层最多有2个左边下层最多有2个右边只有一层且只有解析:5【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 16.5【分析】先得出从上面看所得到的图形再求出俯视图的面积即可【详解】从上面看易得第一行有1个正方形第二行有3个正方形第三行有1个正方形共5个正方形s 所以面积为5故答案为5【点睛】本题考查了三视图的知识 解析:5【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【详解】从上面看易得第一行有1个正方形,第二行有3个正方形,第三行有1个正方形,共5个正方形,s 所以面积为5.故答案为5.【点睛】本题考查了三视图的知识,熟知俯视图是从物体的上面看得到的视图是解决问题的关键. 17.8【详解】由AB ∥CD 可得△PAB ∽△PCD 设CD 到AB 距离为x 根据相似三角形的性质可得即解得x=18m 所以AB 离地面的距离为18m 故答案为18 解析:8【详解】由AB ∥ CD ,可得△PAB ∽ △PCD ,设CD 到AB 距离为x ,根据相似三角形的性质可得2.72.7AB x CD -=,即2 2.76 2.7x -=,解得x=1.8m . 所以AB 离地面的距离为1.8m ,故答案为1.8.18.7【分析】根据几何体的三视图可进行求解【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个)故答案为7【点睛】本题主要考查几何体的三视图熟练掌握几何体的三视图是解题的关键解析:7【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为7.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.19.1260【分析】结合图形发现每一个图形的表面积得出规律计算即可;【详解】结合图形发现:(1)中个平方单位(2)中个平方单位以此推论可得第(20)个图形的表面积是个平方单位故答案为:1260【点睛】本解析:1260【分析】结合图形,发现每一个图形的表面积得出规律计算即可;【详解】结合图形,发现:(1)中166⨯=个平方单位,(2)中()12618+⨯=个平方单位,以此推论可得第(20)个图形的表面积是()122061260++⋅⋅⋅+⨯=个平方单位. 故答案为:1260.【点睛】本题主要考查了与图形有关的规律题型,结合图形表面积的计算是解题的关键. 20.222【分析】先明确题目的含义:正方体共有6个直通小孔有6个交汇处计算即可解:正方体无【详解】解:正方体无论从哪一个面看都有两个直通的边长为1的正方形孔正方体共有6个直通小孔有6个交汇处表面积等于正解析:222【分析】先明确题目的含义:正方体共有6个直通小孔,有6个交汇处,计算即可解:正方体无【详解】解:正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,正方体共有6个直通小孔,有6个交汇处,表面积等于正方体的表面积减去12个表面上的小正方形面积加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积则6251264566222S 全,故答案为:222.【点睛】主要考查空间想象能力及分析问题能力对空间想象力有较高要求,同时会利用容斥原理的思想分析、解决交并问题.三、解答题21.无22.无23.无24.无25.无26.无。
北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。
北师大版九年级上册数学第五章投影与视图习题练习一(附答案)一、选择题1.一幢4层楼房只有一个窗户亮着一盏灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的窗口是()A. 1号窗口B. 2号窗口 C. 3号窗口D. 4号窗口2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定3.如图所示,该几何体的俯视图是()A.B.C.D.4.如图所示的几何体,从左面看是()A.B.C.D.5.如图几何体的主视图是()A.B.C.D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长 C.先变长后变短D.逐渐变长7.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.二、填空题8.如图2是一个几何体的三视图,则这几何体的展开图可以是()9.甲乙两人在太阳光下并行,乙的身高1.8m,他的影长是2.1m,甲比乙矮12cm,此刻甲的影长是_____.10.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.11.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是__.(结果保留π)三、解答题12.在“测量物体的高度” 活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.3米,一级台阶高为0.3米,落在地面上的影长为4.5米.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度.(3)请选择丙树的高度为()A.6.5米B.5. 5米C.6.3米D.4.9米13.从正面、左面、上面观察如图7所示的几何体,分别在图8中画出你所看到的几何体的形状图.14.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)15.如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.答案解析1.【答案】B【解析】根据给出的两个物高与影长即可确定点光源的位置.如图所示,故选B.2.【答案】D【解析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.故选D.3.【答案】C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.4.【答案】B【解析】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.从左面看到的是左面位置上下两个正方形,右面的下方一个正方形的图形是。
一、选择题1.如图是由三个相同的小正方体组成的几何体,则该几何体从正面看得到的图形是( )A.B.C.D.2.下列几何体中,主视图与俯视图不相同的是( )A.B.C.D.3.如图所示的几何体,其俯视图是( )A.B.C.D.4.如图所示的几何体的主视图是( )A.B.C.D.5.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A.B.C.D.6.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是( )A.6B.5C.4D.37.一个几何体的三视图如下图所示,该几何体是( )A.B.C.D.8.下列图形的主视图与左视图不相同的是( )A.B.C.D.9.一个几何体由大小相同的小正方体组成,从上面看几何体的俯视图如图,其中小正方形中的数字表示在该位置的小正方体的个数,则该几何体的正视图是( )A.B.C.D.10.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.三棱柱D.长方体二、填空题11.如图所示,小华家的客厅里有一张直径为1.2m,高为0.8m的圆桌AB,有一盏灯E到地面的垂直距离EF为2m,圆桌的影子为CD,FC=2m,则点D到点F的距离为m.12.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是.(结果保留π)13.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是 1.2m2,则地面上的阴影面积是m2.14.一个几何体的三视图如图所示,则该几何体的表面积为.15.请写出一个三视图都相同的几何体:.16.如图是由若干个棱长为1cm的小正方体堆砌而成的几何体,那么其三视图中面积最小的是cm2.17.一个立体图形,从正面、上面、右面看到的形状都是右面图形的形状,搭这个立体图形至少需要个小正方体.三、解答题18.图(1)是一张长为18cm,宽为12cm的长方形硬纸板,在它的四个角都剪去一个边长为x cm的小正方形,然后把它折成一个无盖的长方体盒子,如图(2)所示,请回答下列问题:(1) 折成的无盖长方体盒子的容积V=cm3;(用含x的代数式表示即可,不需化简)(2) 请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm316021680(3) 从正面看折成的长方体盒子,它的形状可能是正方形吗?如果可能是正方形,求出x的值;如果不可能是正方形,请说明理由.19.如图是由若干个大小相同的小立方块搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.20.由7个棱长为1的正方体组成如图所示的几何体.(1) 画出该几何体的主视图和左视图;(2) 求该几何体的表面积.21.如图是由一些大小相同的小正方体组合成的简单几何体.(1) 请在下面方格中分别画出它的三个视图.(2) 如果在这个几何体上再添加一些正方体,并保持主视图和左视图不变,最多可以再添加块小正方体.22.由8个棱长为1的相同小立方块搭成的几何体如图所示.(1) 请画出它从正面、左面和上面看到的形状图;(2) 请计算它的表面积.23.如图是由6个棱长为1cm的小正方体组成的几何体.(1) 在网格中画出这个几何体从上面看到的形状.(2) 这个几何体的表面积是cm2.(3) 若保持从正面、左面看到的形状不变,这个几何体最多能再添加个相同的小正方体.24.如图是某工件的三视图,求此工件的全面积和体积.25.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1) 图中有块小正方体;(2) 从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到的该几何体的形状图.答案一、选择题1. 【答案】D【知识点】由立体图形到视图2. 【答案】C【知识点】由立体图形到视图3. 【答案】C【知识点】由立体图形到视图4. 【答案】D【解析】从正面看该几何体,视图的左边比右边高,故选项D符合题意.故选D.【知识点】由立体图形到视图5. 【答案】B【解析】从左面看这个几何体得到的平面图形是:【知识点】由立体图形到视图6. 【答案】D【知识点】由视图到立体图形7. 【答案】A【解析】由于俯视图为圆形可得为球、圆柱、圆锥,主视图和左视图为三角形可得此几何体为圆锥.【知识点】由视图到立体图形8. 【答案】D【知识点】由立体图形到视图9. 【答案】D【解析】由俯视图可知,该几何体的主视图分3列,第一列和第三列均有3个小正方形,第二列有2个小正方形.故该几何体的主视图如下:【知识点】由视图到立体图形、从不同方向看物体10. 【答案】D【解析】∵几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,∴该几何体是长方体,故选:D.【知识点】由视图到立体图形二、填空题11. 【答案】4【解析】如图,延长BA,交EF于G,由题意得AB=1.2,GF=0.8,EF=2,FC=2,∵AB∥CD,∴△EAB∽△ECD,∴ABCD =EGEF,即 1.2CD=2−0.82,解得CD=2,∴DF=CD+FC=2+2=4(m).【知识点】相似三角形的应用12. 【答案】10π【解析】由三视图可知,该几何体是圆锥,∴侧面展开图的面积=π×2×5=10π.【知识点】由视图到立体图形、由三视图计算表面积、体积13. 【答案】2.7【知识点】投影、相似三角形的应用14. 【答案】3π+4【解析】观察该几何体的三视图发现其为半圆柱,半圆柱的底面圆直径为2,高为2,故其表面积为π×12+(π+2)×2=3π+4.【知识点】由视图到立体图形15. 【答案】球(或正方体)【解析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).【知识点】由立体图形到视图16. 【答案】3【解析】主视图是,面积是5cm2;左视图是,面积是3cm2;俯视图是,面积是5cm2.【知识点】由立体图形到视图17. 【答案】4【解析】一个立体图形,从正面、上面、右面看到的形状都是右面图形的形状,搭这个立体图形至少需要4个小正方体.故答案为:4.【知识点】由视图到立体图形三、解答题18. 【答案】(1) (18−2x)⋅(12−2x)⋅x(2) 把x=2代入(18−2x)⋅(12−2x)⋅x,得(18−2x)⋅(12−2x)⋅x=14×8×2=224.把x=4代入(18−2x)⋅(12−2x)⋅x,得(18−2x)⋅(12−2x)⋅x=10×4×4=160.故答案为224,160.结合表格可知,当x=2时长方体盒子的容积最大.(3) 从正面看折成的长方体盒子,它的形状不可能是正方形.理由如下:当18−2x=x时,解得x=6.此时宽为12−2x=0.此时硬纸板无法折成一个长方体盒子,故从正面看它的形状不可能是正方形.【解析】(1) 由题意得长方体盒子的长为(18−2x)cm,宽为(12−2x)cm,高为x cm,因此容积V=[(18−2x)⋅(12−2x)⋅x]cm3.故答案为(18−2x)⋅(12−2x)⋅x.【知识点】直棱柱的展开图、由立体图形到视图、简单列代数式、简单的代数式求值19. 【答案】三视图如图所示:【知识点】由立体图形到视图20. 【答案】(1) 该几何体的左视图,主视图如图所示.(2) 每个小正方体的每个表面积为1,共计28个,故表面积为28.【知识点】由三视图计算表面积、体积、由立体图形到视图21. 【答案】(1) 如图所示:(2) 3【解析】(2) 若保持主视图和左视图不变,最多可以再添加3块小正方体,故答案为:3.【知识点】由立体图形到视图、由视图到立体图形22. 【答案】(1) 如图所示.(2) 从正面看,有6个面,从后面看有6个面,从上面看,有5个面,从下面看,有5个面,从左面看,有4个面,从右面看,有4个面,中间空处的两边两个正方形,有2个面,所以表面积为(6+4+5)×2+2=32.【知识点】几何体的表面积、由立体图形到视图23. 【答案】(1)(2) 26(3) 4【解析】(2) (俯+左+主)×2=(4+4+5)×2=13×2=26.(3) 若主视图、左视图保持不变,在俯视图中填数字,可变成如下图所示10个之前是6个增加了4个.【知识点】由视图到立体图形、由立体图形到视图、由三视图计算表面积、体积24. 【答案】由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥,这圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为S=πrl=10π×10√10=100√10π(cm2),圆锥的底面积为102π=100π(cm2),圆锥的全面积为100π+100√10π=100(1+√10)π(cm2);×π×(20÷2)2×30=1000π(cm3).圆锥的体积为13故此工件的全面积是100(1+√10)πcm2,体积是1000πcm3.【知识点】圆锥的计算、由视图到立体图形25. 【答案】(1) 11(2) 略.【知识点】由立体图形到视图。
一、选择题1.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( )A.主视图的面积为4B.左视图的面积为4C.俯视图的面积为3D.三种视图的面积都是32.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和俯视图3.如图所示的几何体的俯视图是( )A.B.C.D.4.下列几何体中,其俯视图与主视图完全相同的是( )A.B.C.D.5.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A.3个B.4个C.5个D.6个6.如图,是由9个相同的正方体组成的立体图形,从正面观察这个立体图形,得到的平面图形是( )A.B.C.D.7.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多为( )A.12B.8C.14D.138.已知一个组合体是由几个相同的正方体叠合在一起组成的,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A.10B.9C.8D.79.下列四个几何体的俯视图中与其他三个俯视图不同的是( )A.B.C.D.10.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是( )A.B.C.D.二、填空题11.如图所示,摄像机①,②,③,④在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.一个由许多规格相同的小正方体堆积而成的几何体,其主视图、左视图如图所示一模一样,若要摆成这样的图形,至少需用m块小正方体,至多需用n块小正方体,则mn=.14.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4m,桌面距离地面0.8m(桌面厚度不计算),若桌面的面积是 1.2m2,则地面上的阴影面积是m2.15.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为.16.由n个大小相同的小立方体组成的几何体的主视图和左视图如图所示,n的值为.17.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为.三、解答题18.有一个顶部是圆锥,底部是圆柱的粮囤模型,如图是它的主视图:(1) 画出该粮囤模型的俯视图;(2) 若每相邻两个格点之间的距离均表示1米,请计算:①在粮囤顶部铺上油毡,需要多少平方米油毡(油毡接缝重合部分不计)?②若粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?(结果保留π和根号).19.先观察如图的立体图形,再分别画出从它的正面、左面、上面三个方向所看到的平面图形.20.在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示:(1) 这个几何体是由个小正方体组成,请画出这个几何体的三视图;(2) 若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.21.请画出如图所示的几何体的三种视图:22.小明把若干个棱长为2cm的正方体搭成一个物体,它的三视图如图1所示.请回答下列问题:(1) 该物体的高是多少?长是多少?宽是多少?(2) 根据三视图描述物体的形状.23.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1) 画出几何体的左视图.(只需画其中一种)(2) 若组成这个几何体的小正方体块数为n,求n的所有可能值之和.24.在平整的地面上,由若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图(1)所示.(1) 现已给出这个几何体的俯视图,如图(2)所示.请你画出这个几何体的主视图与左视图;(2) 若现在你手里还有一些相同的小正方体,且要保持这个几何体的主视图和俯视图不变.①在图(1)所示的几何体上最多可以再添加几个小正方体?②在图(1)所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,图(3)是它的俯视图,若给这个几何体露出的表面喷上红漆,则需要喷漆的面积最少是多少?25.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.答案一、选择题1. 【答案】A【知识点】由立体图形到视图2. 【答案】B【解析】由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是其中左视图是轴对称图形.【知识点】轴对称图形、由立体图形到视图3. 【答案】C【知识点】由立体图形到视图4. 【答案】C【解析】选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【知识点】由立体图形到视图5. 【答案】B【知识点】由视图到立体图形6. 【答案】A【知识点】由立体图形到视图7. 【答案】D【解析】由主视图和左视图可知,这个几何体有两层,底层最多有9个小正方体,上层最多有4个小正方体,所以组成这个几何体的小正方体的个数最多为13.【知识点】由视图到立体图形8. 【答案】B【解析】由俯视图可得该几何体最底层有5个正方体,由主视图可得该几何体上面一层有2个,3个或4个正方体,则组成这个几何体的正方体的个数是7或8或9,故组成这个几何体的正方体的个数最多是9.【知识点】由视图到立体图形9. 【答案】D【知识点】由立体图形到视图10. 【答案】C【知识点】由立体图形到视图二、填空题11. 【答案】②;③;④;①【知识点】由立体图形到视图12. 【答案】4【解析】由图可知,AB∥DE,∴DEAB =CDBC,即 1.64.8=2BC,解得BC=6,∴BD=BC−CD=6−2=4(m).【知识点】相似三角形的应用13. 【答案】65【知识点】由视图到立体图形14. 【答案】2.7【知识点】投影、相似三角形的应用15. 【答案】(225+25√2)π【知识点】由视图到立体图形、几何体的表面积16. 【答案】10或11或12【知识点】由视图到立体图形17. 【答案】5【知识点】由视图到立体图形三、解答题18. 【答案】(1) 俯视图如图所示:(2) ①顶部圆锥的侧面积为:12×(2×π×3)×√22+32=3√13π,∴所需油毡的面积为3√13π平方米;②底部圆柱的体积为:π×22×3=12π,∴最多可以存放12π立方米粮食.【知识点】从不同方向看物体、由视图到立体图形19. 【答案】【知识点】由立体图形到视图20. 【答案】(1) 10(2) 4【知识点】由立体图形到视图21. 【答案】三视图如图所示:【知识点】由立体图形到视图22. 【答案】(1) 该物体的高是4cm,长是6cm,宽是4cm.(2) 根据三视图可以想象该物体由五个正方体组成,形状如图2.【知识点】由视图到立体图形23. 【答案】(1) 所画左视图如下图中的五种情形中的一种即可,(2) 由主视图和俯视图可知,在俯视图上,第1排有1个小正方体1则可设第2,3排的小正方体数分别为a,b(如图).这里3≤a≤4,4≤b≤6.则a=3,b=4时,n=8.a=3,b=5时,n=9.a=3,b=6时,n=10.a=4,b=4时,n=9.a=4,b=5时,n=10.a=4,b=6时,n=11.故n=8或9或10或11四种情况,n的所有可能值之和为8+9+10+11=38.【知识点】由立体图形到视图、由视图到立体图形24. 【答案】(1) 主视图和左视图如图所示:(2) ①最多可以再添加2个小正方体.②最多可以拿走2个小正方体.③小正方体每一个面的面积是10×10=100(cm2),且②中拿走几何体的第二行,最左侧上方的两个小正方体,此时几何体露出的表面最少,所以需要喷漆的面积最少是19×100= 1900(cm2).【知识点】由立体图形到视图、作图--三视图、由三视图计算表面积、体积25. 【答案】如图所示,答案不唯一.【知识点】由视图到立体图形、由立体图形到视图、轴对称图形。
一、选择题1.如图所示几何体的左视图是( )A.B.C.D.2.如图所示的几何体,其俯视图是( )A.B.C.D.3.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.4.用5个完全相同的小正方体组合成如图所示的立体图形.它的俯视图为( )A.B.C.D.5.图是商家用KT板制作的“串”字模型,其俯视图是( )A.B.C.D.6.如图是一个有底无盖的笔筒,它的三视图为A.B.C.D.7.如图所示几何体的主视图为( )A.B.C.D.8.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.9.一个几何体的三视图如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体10.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木的个数.若保证主视图和左视图成立,则a+b+c+d的最大值为( )A.12B.13C.14D.15二、填空题11.如图为一个长方体,则该几何体主视图的面积为cm2.12.图(1)是一个正三棱柱,若正三棱柱看不见的一个侧面与投影面平行,则这个正三棱柱的正投影是图(2)中的(填序号).13.如图所示,一棵树(AB)的高度为7.5米,下午某一时刻它在水平地面上形成的树影(BE)长为10米,现在小明想要站在这棵树下乘凉,他的身高为 1.5米,那么他最多离开树干米才可以不被阳光晒到.14.如图,是由小立方体组合而成的几何体从正面、左面、上面看到的图形,则至少再加个小立方体该几何体可成为一个正方体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.16.如图是由若干个棱长为1的小正方体堆砌而成的几何体,那么其主视图的面积是.17.由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为.三、解答题18.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2米,它的影子BC=1.6米,木竿PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木竿PQ的长度.19.李明和同学们一起研究“从三个不同方向看问题的形状”.(1) 图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2) 图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.20.立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1) 画出该图形的三视图;(2) 它的表面积是多少?21.某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他( CD)在某一灯光下的影子为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的 1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影子为BH(点C,E,G在一条直线上).(1) 请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影子FM(不写画法);(2) 求小明原来的速度.22.画出如图所示几何体的主视图.23.如图,是由若干个完全相同的小正方体组成的一个几何体.(1) 请在方格纸中画出这个几何体的三视图;(2) 如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.24.如图是由7个完全相同的小立方块搭成的几何体,请画出这个几何体的从正面看、从左面从上面看的形状图.25.请回答:(1) 小明准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图①所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接的图形经过折叠后能成为一个封闭的正方体盒子;(添加的正方形用阴影表示)(2) 如图②所示的几何体是由若干个相同的小正方体搭成的,请画出它的主视图;(3) 如图③是若干个小正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,请画出这个几何体的左视图.答案一、选择题1. 【答案】B【解析】如图所示几何体的左视图是【知识点】由立体图形到视图2. 【答案】C【知识点】由立体图形到视图3. 【答案】A【知识点】由立体图形到视图4. 【答案】C【知识点】由立体图形到视图5. 【答案】C【解析】俯视图是从上往下看得到的图形,画视图时,看不见的轮廓线画虚线,看得见的轮廓线画实线【知识点】由立体图形到视图6. 【答案】B【知识点】由立体图形到视图7. 【答案】B【解析】从正面看.【知识点】由立体图形到视图8. 【答案】A【解析】由三视图可知:该几何体由上下两部分组成,上面是一个圆柱,下面是一个长方体,且圆柱的高度和长方体的高度相等.【知识点】由视图到立体图形9. 【答案】B【解析】根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.【知识点】由视图到立体图形10. 【答案】B【解析】由主视图第1列和左视图第1列可知a最大为3,由主视图第2列和左视图第2列可知b最大为3,由主视图第3列和左视图第1列与第2列可知c最大为4,d最大为3,则a+b+c+d的最大值为3+3+4+3=13.【知识点】由视图到立体图形二、填空题11. 【答案】20【知识点】由立体图形到视图12. 【答案】②【解析】根据题意知,正三棱柱后侧面与投影面平行,则该正三棱柱的正投影即主视图.故答案为②.【知识点】平行投影的性质13. 【答案】8【解析】设小明这个时刻在水平地面上形成的影长为x米,根据题意得x1.5=107.5,解得x=2,即小明这个时刻在水平地面上形成的影长为2米,因为10−2=8(米),所以他最多离开树干8米才可以不被阳光晒到.【知识点】相似三角形的应用14. 【答案】22【解析】观察三视图,可知这个几何体的小正方体的个数,如俯视图上的数字所示,共有5个小正方体.最小可以拼成3×3×3的几何体,共有27个小正方体,27−5=22.【知识点】从不同方向看物体、由视图到立体图形15. 【答案】4【解析】由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,则搭成这个几何体的小正方体的个数是2+1+1=4个.【知识点】由视图到立体图形16. 【答案】5【知识点】从不同方向看物体、由立体图形到视图17. 【答案】11【解析】由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+ 3=11,故答案是:11.【知识点】从不同方向看物体、由视图到立体图形三、解答题18. 【答案】如图过点N作PQ的垂线段,垂足为D,则有DN=PM=1.2米,DP=MN=0.8米.由题意有:QDDN =ABBC.即QD1.2=21.6.解得:QD=1.5(米).所以PQ=0.8+1.5=2.3(米).答:木杆PQ的长度为2.3米.【知识点】投影19. 【答案】(1) 如图所示:(2) 如图所示:【知识点】由立体图形到视图20. 【答案】(1) 三视图如图所示:(2) 它的表面积为:(7+5+2+1)×2×(2×2)=120cm2.【知识点】由立体图形到视图、由三视图计算表面积、体积21. 【答案】(1) 如图.(2) 设小明原来的速度为x m/s,则CE=2x m,AM=AF−MF=(4x−1.2)m,EG=2×1.5x=3x(m),BM=AB−AM= 12−(4x−1.2)=(13.2−4x)m.易知△OCE∽△OAM,△OEG∽△OMB,∴CEAM =OEOM,EGBM=OEOM,∴CEAM =EGBM,即2x4x−1.2=3x13.2−4x.解得x1=1.5,x2=0,经检验,x1=1.5,x2=0都为方程的解,但x2=0不符合题意,舍去,∴x=1.5,即小明原来的速度为1.5m/s.【知识点】相似三角形的应用、中心投影中影子的变化22. 【答案】如图.【知识点】由立体图形到视图23. 【答案】(1) 图略(2) 2【知识点】由立体图形到视图24. 【答案】由7个完全相同的小立方块搭成的几何体,从正面看、从左面看、从上面看的形状图如下:【知识点】由立体图形到视图25. 【答案】(1) 如答图①.(答案不唯一)(2) 如答图②.(3) 如答图③.【知识点】由立体图形到视图、正方体的展开图。
九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。
一、选择题1.如图,小明用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是( )A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图2.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( )A.B.C.D.3.用一个平面去截一个几何体,如果截面的形状是圆,则截的几何体可能是( )A.正方体B.三棱柱C.四棱锥D.球4.薇薇的爸爸送给她一个礼物,薇薇打开包装后画出它的主视图和俯视图,根据她画的视图,你猜一下她爸爸送给她的礼物是( )A.生日蛋糕B.碟片C.衣服D.钢笔5.图是商家用KT板制作的“串”字模型,其俯视图是( )A.B.C.D.6.已知一种户外帐篷的几何体及其主视图如图所示,则它的左视图为( )A.B.C.D.7.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A.B.C.D.8.已知一个组合体是由几个相同的正方体叠合在一起组成的,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A.10B.9C.8D.79.如图放置的几何体的左视图是( )A.B.C.D.10.图是由一个长方体和一个球组成的几何体,它的主视图是( )A.B.C.D.二、填空题11.在①长方体,②球,③圆锥,④圆柱,⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填上序号即可)12.北京天安门雄伟壮丽,用数学的眼光看,天安门主视图是图形.13.图是由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是.14.如图所示几何体(a)的一个视图(b)的名称是.15.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是cm2.16.下图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中数据计算这个几何体的侧面积是.17.如图是一个几何体的三视图,则这个几何体的侧面积是cm2.三、解答题18.用一些相同的小立方体搭一个几何体.从正面和上面看到的形状如图所示,从上面看的形状图中小正方形中字母表示在该位置的小立方块的个数,请解答下列问题.(1) a=;b=.(2) 这个几何体最少由个小立方体搭成;最多由个小立方体搭成.(3) 当d=e=1,f=2时,画出这个几何体的从左边看到的形状图(边长为1cm).19.画出如图所示的几何体的三视图.20.画出如图所示立体图形的三视图.21.一个几何体是由若干个大小相同的小立方块搭成的,如图分别是从它正面、左面看到的这个几何体的形状图.(1) 所需要的小立方块是多少?你有几种结论?(2) 画出从上面看到的所需要的小立方块的个数最少和最多的几何体的形状图,并在小正方形中注明在该位置上小立方块的个数.22.找妈妈:如图①②分别是某立体图形妈妈的三个宝宝,它们依次是从左面、上面和正面三个不同方向看立体图形得到的平面图形,请在如图③所示的框内画出相应的立体图形妈妈.23.画出下图①②中几何体的三视图.24.请回答下列问题.(1) 小明准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形,制成如图1所示的拼接图形(实线部分),经折叠后发现还少一个面,请在图中的拼接图形上再接一个正方形,使新拼接的图形经过折叠后能成为一个封闭的正方体盒子(添加的正方形用阴影表示只要画出一种即可)(2) 如图2所示的几何体是由几个相同的正方体搭成的,请画出它从正面看的形状图.(3) 如图3是几个正方体所组成的几何体从上面看的形状图,小正方形中的数字表示该位置小正方体的个数,请画出这个几何体从左面看的形状图.25.如图是由10个同样大小的小正方体搭成的物体.(1) 请分别画出它的主视图和俯视图.(2) 在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.答案一、选择题1. 【答案】D【解析】从正面看第一层都是三个小正方形,图①中第二层右边一个小正方形,图②中第二层中间一个小正方形,中①②的主视图不相同;从左面看第一层都是三个小正方形,第二层左边一个小正方形,①②的左视图相同;从上面看第一列都是一个小正方形,第二列都是一个小正方形,第三列都是三个小正方形,故①②的俯视图相同.故选:D.【知识点】由立体图形到视图2. 【答案】A【解析】“阳马”的俯视图是一个矩形,且它的一条对角线是实线.【知识点】由立体图形到视图3. 【答案】D【解析】由题可得,正方体、三棱柱、四棱柱的截面不可能为圆,而球的截面为圆.故选D.【知识点】由视图到立体图形4. 【答案】A【知识点】由视图到立体图形5. 【答案】C【解析】俯视图是从上往下看得到的图形,画视图时,看不见的轮廓线画虚线,看得见的轮廓线画实线【知识点】由立体图形到视图6. 【答案】A【知识点】由立体图形到视图7. 【答案】A【解析】由俯视图可知主视图有3列,从左到右的每一列分别有4,3,2个正方形,故选A.【知识点】由视图到立体图形、由立体图形到视图8. 【答案】B【解析】由俯视图可得该几何体最底层有5个正方体,由主视图可得该几何体上面一层有2个,3个或4个正方体,则组成这个几何体的正方体的个数是7或8或9,故组成这个几何体的正方体的个数最多是9.【知识点】由视图到立体图形9. 【答案】C【解析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示. 【知识点】由立体图形到视图10. 【答案】C【解析】从正面看几何体,上面是一个圆,下面是一个长比圆的直径大的长方形. 【知识点】由立体图形到视图二、填空题 11. 【答案】②【知识点】由立体图形到视图12. 【答案】轴对称【知识点】由立体图形到视图、从不同方向看物体、轴对称图形13. 【答案】 9【解析】由俯视图易得该几何体的最底层有 6 个小正方体,由主视图知第二层最少有 2 个小正方体,第三层最少有 1 个小正方体,故该几何体最少由 9 个小正方体组成. 【知识点】由视图到立体图形14. 【答案】左视图【解析】从物体左面看,可得到一个矩形,中间横着两条虚线. 【知识点】由立体图形到视图15. 【答案】 200π【解析】因为有两个视图为长方形, 所以该几何体为柱体, 因为第三个视图为圆形, 所以几何体为圆柱体, 所以表面积为:10π×15+(102)2π×2=150π+50π=200π.故这个零件的表面积是 200π cm 2.【知识点】从不同方向看物体、圆锥的计算、由视图到立体图形16. 【答案】 185π cm 2【解析】由题图可知,这个几何体的侧面积是12×2π×102×√(102)2+122+2π×102×12=185πcm2.【知识点】由视图到立体图形17. 【答案】36【解析】观察三视图知该几何体为三棱柱,高为3cm,底面为等边三角形,其边长为4cm,则这个几何体的侧面积是3×4×3=36(cm2).【知识点】由三视图计算表面积、体积三、解答题18. 【答案】(1) 3;1(2) 9;11(3) 左视图有3列,每列小正方形数目分别为3,1,2.如图所示:【解析】(1) 由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3.(2) 第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可.∴这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成.【知识点】由立体图形到视图、由视图到立体图形19. 【答案】如图【知识点】由立体图形到视图20. 【答案】如图所示:【知识点】由立体图形到视图21. 【答案】(1) 有五种情况,所需要的小立方块的个数分别为9,8,7,6,5.(2) 从上面看到的所需要的小立方块的个数最少和最多的几何体的形状图,如图所示.【知识点】由视图到立体图形22. 【答案】如图所示.【知识点】由视图到立体图形23. 【答案】题图①中几何体的三视图如图所示.题图②中几何体的三视图如图所示.【知识点】作图--三视图24. 【答案】(1) 如图所示.(2) 如图所示.(3) 如图所示.【知识点】由立体图形到视图、正方体的展开图25. 【答案】(1) 如图所示:(2) 3【解析】(2) 如图所示,可知最多还可以添加3个小正方体,故答案为3.【知识点】由立体图形到视图。
第5章投影与视图一.选择题1.下列所述几何体中,主视图、左视图和俯视图都是正方形的几何体是()A.圆柱B.圆锥C.正方体D.长方体2.如图是某几何体放置在水平面上,则其主视图正确的是()A.B.C.D.3.如图所示的几何体是由一个正方体切去一个小正方形成的,从左面看到的平面图形为()A.B.C.D.4.图2是图1中长方体的三视图,用S表示面积,S主=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x5.如图是一个三视图,则此三视图所对应的直观图是()A.B.C.D.6.如图,下列关于物体的主视图画法正确的是()A.B.C.D.7.当某一几何体在投影面P前的摆放位置确定以后,改变它与投影面P的距离,其正投影的形状()A.不发生变化B.变大C.变小D.无法确定8.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.9.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(4)(3)(1)10.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③二.填空题11.一个几何体由若干大小相同的小立方块搭成的,如图分别是从它的左面,上面看到的平面图形,则组成这个几何体的小立方块最多有个.12.如图,是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出其主视图:.13.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.三.解答题14.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.15.小明和小红并排站立在阳光下,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此时小红的影长是多少米?16.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.17.如图,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.18.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.19.在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在一个路口,一辆长为10m的大巴车遇红灯后停在距交通信号灯20m的停止线处,小张驾驶一辆小轿车跟随大巴车行驶.设小张距大巴车尾xm,若大巴车车顶高于小张的水平视线0.8m,红灯下沿高于小张的水平视线3.2m,若小张能看到整个红灯,求出x的最小值.20.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)参考答案一.选择题1.C.2.A.3.D.4.C.5.B.6.C.7.A.8.C.9.C.10.C.二.填空题11.5.12.13.12.三.解答题14.解:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即=,∴AB=8(m).答:旗杆AB的高为8m.15.解:设小红的影长是x米,根据题意得=,解得x=1.92.答:小红的影长是1.92米.16.(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.17.解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴,∴,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC,∴,∴,解得:AC=12米.答:路灯A的高度为12米.18.解:(1)如图所示:此光源下形成的投影是:中心投影,故答案为:中心;(2)如图所示,线段FI为立柱EF在此光源下所形成的影子.19.解:如图,由题可得CD∥AB,∴△OCD∽△OAB,∴=,即=,解得x=10,∴x的最小值为10.20.解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∴AM=25,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.。
北师大版数学九年级上册第五章投影与视图第一节《投影》一、选择题1.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A. B. C. D.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B. 15 C. 10 D.3.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是()A. 正方形B. 长方形C. 线段D. 梯形4.如图,晚上小亮在路灯下经过,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 逐渐变长D. 先变长后变短5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A. ①②③④B. ④①③②C. ④②③①D. ④③②①7.在阳光的照射下,一个矩形框的影子的形状不可能是()A. 线段B. 平行四边形C. 等腰梯形D. 矩形8.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A. 先变长,后变短B. 先变短,后变长C. 方向改变,长短不变D. 以上都不正确9.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是()A. 相等B. 长的较长C. 短的较长D. 不能确定10.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A. 3.2米B. 4.8米C. 5.2米D. 5.6米11.圆形物体在阳光下的投影不可能是()A. 圆形B. 线段C. 矩形D. 椭圆形12.如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A. 矩形B. 线段C. 平行四边形D. 一个点13.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A. ③①④②B. ③②①④C. ③④①②D. ②④①③14.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.15.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. B. C. D.二、填空题16.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为________米.17.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子________.(填“长”或者“短”)19.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是________,影子的长短随人的位置的变化而变化的是________.20.太阳光线下形成的投影是________投影.(平行或中心)三、解答题21.如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.22.如图,分别是两根木杆及其影子的图形.(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.23.某一广告墙PQ旁有两根直立的木杆AB和CD ,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.答案解析部分一、选择题1.【答案】A【考点】平行投影【解析】【解答】A、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B、影子的方向不相同,故本选项错误;C、影子的方向不相同,故本选项错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.2.【答案】B【考点】平行投影【解析】解答:由题意得:DC=2R ,DE= ,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.分析:根据题意建立直角三角形DCE ,然后根据∠CED=60°,DE=可求出答案.3.【答案】D【考点】平行投影【解析】【解答】在同一时刻,平行物体的投影仍旧平行.所以正方形纸板在投影面上形成的投影不可能是梯形.故选:D.【分析】利用平行投影的特点:在同一时刻,平行物体的投影仍旧平行判定即可.4.【答案】B【考点】中心投影【解析】【解答】在小亮由A处径直走到路灯下时,他在地上的影子逐渐变短,当他从路灯下走到B处时,他在地上的影子逐渐变长.故选B.【分析】根据中心投影的特征可得小亮在地上的影子先变短后变长.5.【答案】A【考点】中心投影【解析】【解答】因为人往路灯下行走的这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选A.【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.6.【答案】B【考点】平行投影【解析】【解答】根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北﹣北﹣东北﹣东,故分析可得:先后顺序为④①③②.故选B.【分析】北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.【答案】C【考点】平行投影【解析】【解答】矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是等腰梯形.故选:C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.8.【答案】B【考点】平行投影【解析】【解答】旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B.【分析】根据太阳的运动规律和平行投影的特点和规律可知.9.【答案】D【考点】平行投影【解析】【解答】由于不知道两个物体的摆放情况,无法比较两物体.故选D.【分析】因不知道物体与地面的角度关系如何,即不知道与光线的角度大小,故无法比较其投影的长短.10.【答案】B【考点】平行投影【解析】解答:设旗杆的高为x,有,可得x=4.8米.故选:B.分析:由成比例关系,列出关系式,代入数据即可求出结果.11.【答案】C【考点】平行投影【解析】【解答】∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,但不可能是矩形,故选C.【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.12.【答案】D【考点】平行投影【解析】【解答】阳光斜射在地面上,当矩形纸片与太阳光垂直时,矩形纸片在地面上的影子为矩形;当矩形纸片与太阳光斜交时,矩形纸片在地面上的影子为平行四边形;当矩形纸片与太阳光平行时,矩形纸片在地面上的影子为线段.故选D.【分析】在太阳光下的投影为平行投影,平行投影不可能把矩形投影为一个点.13.【答案】C【考点】平行投影【解析】【解答】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.故选:C.【分析】根据从早晨到傍晚物体影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.14.【答案】D【考点】平行投影【解析】【解答】依题意,光线是垂直照下的,故只有D符合.故选D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.15.【答案】B【考点】平行投影【解析】解答:第一次观察到的影子长为6×cot60°= (米);第二次观察到的影子长为6×cot30°= (米).两次观察到的影子长的差= = (米).故选B.分析:利用所给角的正切值分别求出两次影子的长,然后作差即可.二、填空题16.【答案】40【考点】平行投影【解析】【解答】∵,∴(m).故答案为:40米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.17.【答案】上午8时【考点】平行投影【解析】【解答】根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为:上午8时.【分析】根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长.故在上午影子最长的时刻为即最早的时刻:上午8时.18.【答案】短【考点】平行投影【解析】【解答】∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.【分析】根据太阳照射的角度从春天开始会逐渐开始直射,则影子会不断变短.19.【答案】太阳光下形成的影子;灯光下形成的影子【考点】平行投影,中心投影【解析】【解答】根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.故答案为:太阳光下形成的影子;灯光下形成的影子.【分析】根据平行投影和中兴投影的性质分别分析得出答案即可.20.【答案】平行【考点】平行投影【解析】【解答】太阳光线下形成的投影是平行投影.故答案为:平行.【分析】太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.三、解答题21.【答案】(1)解答:影子EG如图所示;;(2)解答:∵DG∥AC ,∴∠G=∠C ,∴Rt△ABC∽Rt△DGE ,∴,即,解得,∴旗杆的高度为.【考点】相似三角形的应用,平行投影【解析】【分析】连结AC ,过D点作DG∥AC交BC于G点,则GE为所求;先证明Rt△ABC∽△RtDGE ,然后利用相似比计算DE的长.22.【答案】(1)解答:上图为路灯下的情形,下图为太阳光下的情形;;(2)如图所示:【考点】平行投影,中心投影【解析】【分析】利用物体和影子关系得出光线方向,进而判断得出;利用上图两根木杆及其影子位置得出路灯的位置,进而得出小树的影子,利用下图两根木杆及其影子位置得出太阳光线方向,进而得出小树的影子.23.【答案】(1)解答:如图所示:;(2)设木杆AB的影长BF为x米,由题意,得,解得.答:木杆AB的影长是米.【考点】相似三角形的应用,平行投影【解析】【分析】根据木杆CD的影子刚好不落在广告墙上可以画出此时的太阳光线CE,根据太阳光线是平行的,可以画出木杆AB的影子BF;根据在同一时刻,物高与影子成比例进行求解.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。
《第5章投影与视图》常考题1.如图是某兴趣社制作的模型,则它的俯视图是( )A.B.C.D.2.在小明住的小区有一条笔直的路,路中间有一盏路灯,一天晚上,他行走在这条路上,如图,当他从A点走到B点的过程,他在灯光照射下的影长l与所走路程s的变化关系图象大致是( )A. B. C. D.3.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )A. B. C. D.4.如图所示的几何体,其俯视图是( )A.B.C.D.5.下列光线所形成是平行投影的是( )A. 太阳光线B. 台灯的光线C. 手电筒的光线D. 路灯的光线6.下列几何体中,从正面观察所看到的形状为三角形的是( )A. B. C. D.7.下列结论中正确的是( )①在阳光照射下,同一时刻的物体,影子的方向是相同的.②物体在任何光线照射下影子的方向都是相同的.③固定的物体在路灯照射下,影子的方向与路灯的位置有关.④固定的物体在光线照射下,影子的长短仅与物体的长短有关.A. ①③B. ①③④C. ①④D. ②④8.已知某物体的三视图如图所示,那么与它对应的物体是( )A. B. C. D.9.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.10.下列立体图形中,它的三视图都相同的是( )A. B. C. D.11.从正面和上面看一个几何体的平面图形,如图所示.若这个几何体最多由n个小正方体组成,最少由m个小正方体组成,则m+n=______.12.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为______.13.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是.14.将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为______ .15.如图所示,水平放置的长方体的底面是长为4cm、宽为2cm的长方形,它的主视图的面积为16cm2,则长方体的体积等于______cm3.16.请写出一个三视图都相同的几何体:______.17.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干______米才可以不被阳光晒到?18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为______ .19.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为______m.20.如图1所示的是由8个相同的小方块组成的几何体,它的三个视图都是2×2的正方形.若拿掉若干个小方块后,从正面和左面看到的图形如图2所示,则最多可以拿掉小方块的个数为______ .21.如图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.22.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示.(1)它最多需要多少个小立方体?它最少需要多少个小立方体?(2)请你画出这两种情况下的从左面看到的形状图.23.(1)如图是一个组合几何体的两种视图,请写出这个组合几何体是由哪两种几何体组成的;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的体积.(结果保留π)24.如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.25.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位:cm)26.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.27.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子的主视图.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.28.如图,从上往下看A、B、C、D、E、F六个物体,能得到a、b、c、d、e、f六个图形,请把上下两行中对应的图形与物体连接起来.29.如图是由7个完全相同的小立方块搭成的几何体,已知每个小立方块的棱长为2cm.(1)画出该几何体的三视图;(2)求出该几何体的表面积.30.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?答案和解析1.【答案】B【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.根据俯视图即从物体的上面观察得得到的视图,进而得出答案.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.2.【答案】C【解析】解:当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长.故选:C.根据中心投影的特点,当他从A点走到路灯下时,影长l逐渐变小,当从路灯下走到B点时,他在灯光照射下的影长l逐渐变长,即随S的逐渐增大,l先由大变小,再由小变大,从而可对四个选项进行判断.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了函数图象.3.【答案】A【解析】解:从左面看可得到从左到右分别是3,2个正方形.故选:A.由已知条件可知,左视图有2列,每列小正方形数目分别为3,2.据此可作出判断.本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.【答案】A【解析】解:从上面看是一个矩形,矩形的中间处有两条纵向的实线,实线的两旁有两条纵向的虚线.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.【答案】A【解析】解:四个选项中只有太阳光可认为是平行光线;故太阳光线下形成的投影是平行投影.故选:A.判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.本题考查平行投影的概念,属于基础题,注意基本概念的掌握是关键.6.【答案】A【解析】解:A.从正面看是一个等腰三角形,故本选项符合题意;B.从正面看是一个矩形,矩形的中间有一条纵向的实线,故本选项不符合题意;C.从正面看是一个圆,故本选项不符合题意;D.从正面看是一个矩形,故本选项不符合题意;故选:A.利用从正面看到的图叫做主视图判断即可.此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.7.【答案】A【解析】解:①由于太阳光线是平行光线,所以物体在阳光照射下,影子的方向是相同的,故正确;②物体在太阳光线照射下影子的方向都是相同的,在灯光的照射下影子的方向与物体的位置有关,故错误;③物体在路灯照射下,影子的方向与路灯的位置有关,故正确;④物体在点光源的照射下,影子的长短与物体的长短和光源的位置有关,故错误.所以正确的有①③.故选:A.利用平行投影和中心投影的特点和规律分别分析可判断正误.本题考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.8.【答案】C【解析】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,符合这一条件的是C选项几何体,故选:C.该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影的特点,利用两小树的影子的方向相反可对选项A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对选项C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.10.【答案】A【解析】解:球的三视图都是大小相同的圆,因此选项A符合题意;圆锥的主视图、左视图都是等腰三角形,俯视图是圆,因此选项B不符合题意;三棱柱主视图、左视图是长方形,俯视图为三角形,因此选项C不符合题意;圆柱的主视图、左视图是长方形,俯视图为圆,因此选项D不符合题意;故选:A.根据球体、圆锥体、圆柱体、三棱柱的三视图进行判断即可.本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.11.【答案】16【解析】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故答案为:16.主视图、俯视图是分别从物体正面、上面看所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12.【答案】7【解析】解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,那么最少有4+2+1=7个立方体.故答案为:7.易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.13.【答案】从不同的方向观察同一物体时,看到的图形不一样【解析】解:根据从不同的方向观察物体,得到图形可能不同,所以“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.根据从不同的方向看物体得到图形可能不同,可得答案.本题考查了从不同的方向看物体.14.【答案】4【解析】解:从上面看,底层是两个小正方形,上层是两个小正方形,所以该几何体的俯视图的面积为4.故答案为:4.据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.15.【答案】32【解析】解:依题意,得长方体的体积=16×2=32cm3.故答案为:32.由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.16.【答案】球(或正方体)【解析】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.17.【答案】8【解析】解:设小明这个时刻在水平地面上形成的影长为x米,根据题意得x1.5=107.5,解得x=2,小明这个时刻在水平地面上形成的影长为2米,因为10−2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为8.=设小明这个时刻在水平地面上形成的影长为x米,利用同一时刻物体的高度与影长成正比得到x1.510,解得x=2,然后计算两影长的差即可.7.5本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.18.【答案】66【解析】解:如图所示:AB=3√2,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.故答案为:66.根据三视图图形得出AC=BC=3,EC=4,即可求出这个长方体的表面积.此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.19.【答案】12【解析】【分析】本题只要是把平行投影的问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.此题的文字叙述比较多,解题时要认真分析题意.利用平行投影的性质,相似三角形的对应边成比例解答.【解答】解:设旗杆的高度为xm,根据题意,得:x9=0.80.6,解得:x=12,即旗杆的高度为12m,故答案为:12.20.【答案】5【解析】解:根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,所以最多能拿掉小立方块的个数为8−(2+1)=5(个).故答案为:5.拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层必须有2个小立方块,上面一层必须保留1个立方块,即可知最多可以拿掉小立方块的个数.本题考查了由三视图判断几何体,几何体的三种视图,掌握定义是关键.解决此类图的关键是由立体图形得到三视图,学生由于空间想象能力不够,易造成错误.21.【答案】解:从正面看从左往右2列正方形的个数依次为3,1;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右2列正方形的个数依次为2,1;【解析】画出从正面,左面,上面看,得到的图形即可.考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.【答案】解:这样的几何体不只有一种,它最多需要2×5=10个小立方体,它最少需要2×3+ 2=8个小立方体.小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:【解析】利用左视图以及主视图可以得出这个几何体最多的块数、以及最少的块数.再画出这两种情况下的从左面看到的形状图.本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)这个组合几何体是由圆柱和长方体组成的;)2×6=80+24π(cm3).(2)体积=8×5×2+π(42【解析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出几何体的体积即可.此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.24.【答案】解:(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).【解析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.此题主要考查了由三视图判断几何体以及求几何体的体积,根据图形看出长方体的长,宽,高是解题的关键.25.【答案】解:3.14×(20÷2)2×32+30×25×40=3.14×100×32+30000=10048+30000=40048(cm3).故该几何体的体积是40048cm3.【解析】该几何体一个圆柱叠放在一个长方体上面,因此体积是一个圆柱体和一个长方体体积的和.本题考查了由三视图判断几何体的知识,解题的关键是判断该几何体的形状.26.【答案】解:由题意得:(1)2+1.5(x−1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【解析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+ 1.5(x−1).考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.27.【答案】解:(1)如图,连接MA、NB并延长,它们的交点即为路灯O的位置,再连接OC、OD,并延长交地面于点P、Q,连接PQ,则PQ为CD的影子,所以点O和PQ为所作;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,∵AB//MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF−1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.【解析】(1)连接MA、NB并延长,它们的交点即为路灯O的位置,然后再连接OC、OD,并延长交地面于点P、Q点,连接PQ,则PQ为CD的影子;(2)如图,过点O作OF⊥MN交AB于点E,交MN于点F,由题可得AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比等于对应高的比,计算出OF即可得到路灯O与地面的距离.本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影,中心投影的光线特点是从一点出发的投射线.也考查了相似三角形的判定与性质.28.【答案】解:连线如下:【解析】俯视图是从物体上面所看到的图形,可根据各立体图形的特点进行判断.本题考查了三视图的知识,俯视图是从物体的上面看所得到的视图.29.【答案】解:(1)如图所示:;(2)该几何体的表面积为(5+3+5)×2×2×2=112(cm2).答:该几何体的表面积是112cm2.【解析】(1)主视图有3列,每列小正方形数目分别为2,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为2,2,1;(2)几何体的表面积就是利用主视图、左视图、俯视图所看到的面的个数乘以2再乘以每个小正方形的面积即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.30.【答案】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴MAMO =ACOP,即MA20+MA =1.59,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.【解析】根据AC//BD//OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.此题考查了中心投影,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解答问题.。
一、选择题1.一个三棱柱的三视图如图所示,其中俯视图为等边三角形,则其表面积为( )A .1223+B .183+C .1823+D .1243+ 2.如图是某几何体的三视图,这个几何体是( )A .三棱柱B .三棱锥C .长方体D .正方体 3.如图所示几何体的俯视图是( )A .B .C .D .4.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是( )A.B.C.D.5.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π6.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A.B.C.D.8.如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形从左面观察得到的平面图形是()A.B.C.D.9.如图是由五个棱长为2的小立方块搭建而成的几何体,则它的左视图的面积是()A.3 B.4 C.12 D.1610.如图所示,该立体图形的俯视图是()A.B.C.D.11.下列四个几何体中,从正面看得到的平面图形是三角形的是()A.B.C.D.12.如图所示的几何体,它的左视图为( ).A.B.C.D.二、填空题13.身高1.5米的小强站在旗杆旁,测得小强和旗杆在地面上的影长分别为2米和16米,则旗杆的高度为___米.14.一个几何体的三视图如图所示,则这个几何体是_____.15.如果一个几何体从某个方向看到的平面图形是圆,则该几何体可能是________ (至少填两种几何体)16.一个几何体的三视图如图所示,则该几何体的体积为________.17.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是______个平方单位.18.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.19.如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔的正方体的表面积(含孔内各面)是__________.20.在如图所示的几何体中,其三视图中有三角形的是________.(填序号)三、解答题21.从正面、左面、上面三个方向看该立体图形,请在下面网格中分别画出看到的平面图形.【答案】见解析【分析】从正面看:共有4列,从左往右分别有1,3,1,1个小正方形;从左面看:共有3列,从左往右分别有3,1,1个小正方形;从上面看:共分4列,从左往右分别有1,3,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】考查了作图-三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.画出下列几何体的三视图【答案】见解析【分析】根据主视图是从正面看所得到的图形,俯视图是从上面看所得到的图形,左视图时从左边看所得到的图形画出图形即可.【详解】如图所示:【点睛】本题主要考查了几何体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.一个小朋友用五块正方体积木摆成了一件作品[如图].请你只移动一块积木,使这件作品从正面看是图一,左面是图二,你有几种移动方法,从上面看移动后的作品,请你把看到的平面图形画出来(画出所有情况).【答案】见解析【分析】从上面看移动后的作品,有3列,从左往右正方形的个数依次为2,1,1;一种情况上面1个小正方形;另一种情况下面1个小正方形;然后即可画出图形.【详解】解:从上面看如图所示:【点睛】本题考查了立体图形的三视图,掌握主视图,左视图,俯视图的概念是解答本题的关键.24.如图,是由五个相同的小正方体搭成的几何体,分别画出从正面、左面、上面看到的形状图.【答案】见解析【分析】根据三视图的定义及其分布情况作图可得.【详解】从正面看:从左面看:从上面看:【点睛】本题主要考查作图-三视图,解题的关键是熟练掌握三视图的定义.25.如图 1,一长方体容器,长、宽均为2,高为6,里面盛有水,水的高度为4,若沿底面一横进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,倾斜容器使水恰好流出,求CD的值.【答案】25【分析】设DE=x,则AD=6-x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD即可.【详解】解:如图所示:设DE=x,则AD=6﹣x,根据题意得12( 6﹣x+6)×2×2=2×2×4,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=222242DE CE+=+=25.【点睛】本题考查了勾股定理的应用、长方体的体积、梯形的面积的计算方法;熟练掌握勾股定理,由长方体容器内水的体积得出方程是解决问题的关键.26.如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【答案】见解析【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【详解】解:如图所示:【点睛】本题考查了作三视图,正确想象出立体图形的形状是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可知,图形为三棱柱,求三棱柱的表面积,即为5个面的面积之和.【详解】解:如图:作EF⊥MN,垂足F.因为底面是正三角形, EF⊥MN所以,S△EMN123=3 2=⨯因为侧面是矩形所以,S矩形ABCD236=⨯=S三棱柱的表面积=5个面的面积之和,=3S矩形ABCD+2S△EMN1323+2232=⨯⨯⨯⨯3.故选C.【点睛】本题考查了通过三视图求表面积,解题的关键是学生的空间想象能力,能通过三视图将原图复原.2.A解析:A【分析】由俯视图和左视图确定是柱体,锥体还是球体,再由主视图确定具体形状.【详解】解:根据俯视图和左视图为矩形判断出是柱体,根据主视图是三角形可判断出这个几何体应该是三棱柱,故选:A.【点睛】此题主要考查了由三视图判断几何体,俯视图和左视图的大致轮廓为长方形的几何体为柱体,主视图为几边形就是几棱柱.3.D解析:D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D .【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.4.B解析:B【分析】利用组合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B .【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键. 5.B解析:B【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】 由几何体的三视图可得出原几何体为圆锥和圆柱组合体,且底面半径为422r ==, ∴这个几何体的表面积=底面圆的面积+圆柱的侧面积+圆锥的侧面积 22r rh rl πππ=++=22π+2⨯2⨯2π+3⨯2π=18π,故选:B .【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.6.D解析:D【分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【详解】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【点睛】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.7.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8.B解析:B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左侧面看得到的视图.9.C解析:C【分析】先确定几何体的左视图的形状,再根据图形求面积.【详解】由图知该几何体的左视图由两列构成,第一列是两个小正方块,第二列是一个小正方块,共三个小正方块,∴它的左视图的面积是23212,故选:C.【点睛】此题考查几何体的三视图,根据几何体得到三视图的图形形状是解题的关键.10.C解析:C【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【详解】从上面看是一个正方形,正方形的左下角是一个小正方形,故C正确;故选:C【点睛】考核知识点:三视图.理解视图的定义是关键.11.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.12.D解析:D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点睛】本题考查简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.二、填空题13.12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可【详解】设旗杆高度为x米根据题意得:解得:x=12故答案为:12【点睛】考核知识点:相似三角形的应用理解相似三角形性质是关键解析:12【分析】根据同一时刻同一地点物高与影长成正比求得答案即可.【详解】设旗杆高度为x米,根据题意得:1.5 162 x=解得:x=12,故答案为:12.【点睛】考核知识点: 相似三角形的应用.理解相似三角形性质是关键.14.三棱柱【解析】试题分析:如图所示根据三视图的知识可使用排除法来解答解:根据俯视图为三角形主视图以及左视图都是矩形可得这个几何体为三棱柱故答案为三棱柱考点:由三视图判断几何体解析:三棱柱【解析】试题分析:如图所示,根据三视图的知识可使用排除法来解答.解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.考点:由三视图判断几何体.15.圆锥圆柱球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥圆柱球等故答案为圆锥圆柱球解析:圆锥、圆柱、球【解析】只要几何体的三视图中得一个视图是圆即可找到视图中有圆的几何体即可解:视图中有圆的几何体有圆锥,圆柱,球等.故答案为圆锥、圆柱、球.16.【分析】观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)根据体积等于底面积高计算即可【详解】解:观察三视图可知这个立体图形是底面为半圆的半个圆柱(如图所示)故答案为:【点睛】本题考查三视解析:π【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.17.1260【分析】结合图形发现每一个图形的表面积得出规律计算即可;【详解】结合图形发现:(1)中个平方单位(2)中个平方单位以此推论可得第(20)个图形的表面积是个平方单位故答案为:1260【点睛】本解析:1260【分析】结合图形,发现每一个图形的表面积得出规律计算即可;【详解】结合图形,发现:(1)中166⨯=个平方单位,(2)中()12618+⨯=个平方单位,以此推论可得第(20)个图形的表面积是()122061260++⋅⋅⋅+⨯=个平方单位. 故答案为:1260.【点睛】本题主要考查了与图形有关的规律题型,结合图形表面积的计算是解题的关键. 18.26【分析】从俯视图中可以看出最底层小正方体的个数及形状由主视图可以看出每一列的最大层数和个数从而算出总的个数【详解】解:根据主视图和俯视图可知该几何体中小正方体最少分别情况如下:故n 的最小值为1+ 解析:26【分析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数【详解】解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n 的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26【点睛】本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.19.222【分析】先明确题目的含义:正方体共有6个直通小孔有6个交汇处计算即可解:正方体无【详解】解:正方体无论从哪一个面看都有两个直通的边长为1的正方形孔正方体共有6个直通小孔有6个交汇处表面积等于正解析:222【分析】先明确题目的含义:正方体共有6个直通小孔,有6个交汇处,计算即可解:正方体无【详解】解:正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,正方体共有6个直通小孔,有6个交汇处,表面积等于正方体的表面积减去12个表面上的小正方形面积加上6个棱柱的侧面积,减去6个通道的6个小正方体的表面积则6251264566222S 全,故答案为:222.【点睛】主要考查空间想象能力及分析问题能力对空间想象力有较高要求,同时会利用容斥原理的思想分析、解决交并问题.20.②③【分析】主视图左视图俯视图是分别从物体正面左面和上面看所得到的图形据此作答【详解】①圆柱体的主视图是矩形左视图是矩形俯视图是圆②圆锥的主视图左视图是等腰三角形俯视图是带有圆心的圆③三棱锥的主视图解析:②③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【详解】①圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,②圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,③三棱锥的主视图、左视图是矩形,俯视图是三角形,④球的三视图完全相同,都是圆.∴其三视图中有三角形的是②③.故答案为:②③.【点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
投影【基础练习】1.如图4-3是王 芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列,并说明理由.2.如图4-4是一座塔楼,请在图中画出它在太阳光下的影长.3.如图4-5所示,地面上直立着两根木杆,AB 是木杆甲的影长,请在图中画出产生杆影的太阳光线,并画出此时木杆乙的影长.[来源:Z#xx#]4. 某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为米.图4-5乙甲【综合练习】5. 已知,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.1. 投影【基础练习】1.(B),(A),(C),(D); 2. 略;3. 略. 4. 4.2 【综合练习】5.(1)略(2)10 m视图一、选择题1. 下列立体图形中,俯视图是正方形的是()A.B.C.D.答案:B解析:解答:A、圆柱的俯视图是圆,故此选项错误;B、正方体的俯视图是正方形,故此选项正确;AEDCBC、三棱锥的俯视图是三角形,故此选项错误;D、圆锥的俯视图是圆,故此选项错误;故选:B.分析:俯视图是从物体上面看,所得到的图形.2. 如图是一个圆台,它的主视图是()A.B.C.D.答案:B解析:解答:从几何体的正面看可得等腰梯形,故选:B.分析:主视图是从物体正面看,所得到的图形.3. 下列几何体中,正视图是矩形的是()A.B.C.D.答案:B解析:解答:A、球的正视图是圆,故此选项错误;B、圆柱的正视图是矩形,故此选项正确;C、圆锥的正视图是等腰三角形,故此选项错误;D、圆台的正视图是等腰梯形,故此选项错误;故选:B.分析:主视图是从物体正面看,所得到的图形.4. 某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱答案:B解析:解答:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.分析:根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.5. 如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变答案:D解析:解答:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.分析:分别得到将正方体①移走前后的三视图,依此即可作出判断.6. 如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.答案:A解析:解答:从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.7. 如图所示,该几何体的左视图是()A.B.C.D.答案:B解析:解答:从左边看分成两列,左边一列有3个小正方形,右边有1个小正方形,故选:B.分析:找到从左边看所得到的图形即可.8. 如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.答案:C解析:解答:从上面看外边是一个矩形,里面是一个圆,故选:C.分析:根据俯视图是从上面看得到的图形,可得答案.9. 如图所示的三视图所对应的几何体是()A.B.C.D.答案:B解析:解答:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.分析:对所给四个几何体,分别从主视图和俯视图进行判断.10. 一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14答案:B解析:解答:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.分析:从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.11. 小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A.3个B.4个C.5个D.6个答案:B解析:解答:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.12. 一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体答案:B解析:解答:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.13. 如图所示,该几何体的主视图是()A.B.C.D.答案:D解析:解答:从正面看可得到一个长方形,中间有一条竖线,故选:D.分析:主视图是从物体正面看,所得到的图形.14. 由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.答案:A解析:解答:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A.分析:主视图有2列,每列小正方形数目分别为2,1.15. 下列四个几何体:其中左视图与俯视图相同的几何体共有()A.1个B.2个C.3个D.4个答案:B解析:解答:正方体左视图、俯视图都是正方形,左视图与俯视图相同;球左视图、俯视图都是圆,左视图与俯视图相同;圆锥左视图、俯视图分别是三角形、有圆心的圆,左视图与俯视图不相同;圆柱左视图、俯视图分别是长方形、圆,左视图与俯视图不相同;即同一个几何体的左视图与俯视图相同的几何体共有2个.故选B.分析:左视图、俯视图是分别从物体左面和上面看,所得到的图形.二、填空题16. 写出一个在三视图中俯视图与主视图完全相同的几何体______.答案:球或正方体解析:解答:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.17. 如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要______个小立方体,王亮所搭几何体的表面积为______.答案:19|48解析:解答:∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36-17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19;48.分析:首先确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.18. 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是______个.答案:11解析:解答:综合主视图和俯视图,该几何体的底面最多应该因此组成这个几何体的小正方体最多块数是5+3+3=11个.故答案为11.分析:根据主视图以及俯视图,可得出最左边共有3行,根据俯视图可得出该几何体最左边由3列组成,故可得出小正方体最多块数.19. 如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm.______3答案:24解析:解答:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为332424cm ⨯⨯=.故答案为:24.分析:根据三视图我们可以得出这个几何体应该是个长方体,它的体积应该是332424cm ⨯⨯=.20. 已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为______.答案:48π解析:解答:设圆柱的高为h ,底面直径为d ,则dh =48, 解得48d h=, 所以侧面积为:4848d h h h πππ⨯⨯=⨯⨯=. 故答案为:48π.分析:先由左视图的面积=底面直径×高,得出底面直径,再根据侧面积=底面周长×高即可求解.三、解答题21. 有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;答案:如图:;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.答案:120平方厘米解析:解答:(1)如图:(2)由勾股定理得:斜边长为10厘米,186242S =⨯⨯=底(平方厘米),8610372S =++⨯=侧()(平方厘米),72242120S=+⨯=(平方厘米).全答:这个几何体的全面积是120平方厘米.分析:(1)观察图形可知,俯视图是一个长8宽3的长方形,据此画出图形即可;(2)先根据勾股定理得到斜边长为10厘米,再根据表面积=3个长方形的面积+2个三角形的面积,列出算式计算即可求解.22. 如图是七个棱长为1的立方块组成的一个几何体,画出其三视图并计算其表面积.答案:如图:;28解析:解答:作图如下:表面积S=(4×2+5×2+5×2)×(1×1)=28×1=28.分析:(1)主视图有3列,每列小正方形数目分别为1,2,1;左视图有3列,每列小正方形数目分别为2,2,1;俯视图有3列,每列小正方形数目分别为1,3,1,依此画出图形即可求解;(2)分别求得各个方向看的表面积,再相加即可求得几何体的表面积.23. 如图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出这个几何体的主视图和左视图.答案:如图:解析:解答:如图所示:分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为2,2,3,左视图有3列,每列小正方形数目分别为1,3,2.据此可画出图形.24. 一个几何体的三视图如图,求这个几何体的侧面积?答案:6π解析:解答:根据三视图可得:这个几何体是圆柱,∵圆柱的直径为2,高为3,∴侧面积为2×1 2 ×2×3π=6π.答:这个几何体的侧面积是6π.分析:先根据三视图判断出几何体的形状,求出直径和高,再根据圆柱的侧面积公式进行计算即可.25. 某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)答案:220000π毫米解析:解答:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R 为100毫米, 高H 为150毫米,∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴2S 2R22RH 25025015020000πππππ=+=⨯+⨯⨯=表面积()2毫米.答:制作每个密封罐所需钢板的面积为220000π毫米.分析:首先利用几何体的三视图确定该几何体的形状,然后计算其表面积.。