同步练习-集合与常用逻辑用语
- 格式:doc
- 大小:133.25 KB
- 文档页数:2
高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。
集合与常用逻辑用语》综合测试卷1.选择题1.下列命题的否定是真命题的是()A。
有些实数的绝对值是正数B。
所有平行四边形都不是菱形C。
任意两个等边三角形都是相似的D。
3是方程的一个根答案:B2.已知R为实数集,集合A={x|x>1},B={x|x≥2},则(R-B)∩A=()A。
(1,2)B。
[1,2)C。
(-∞,1]D。
[2,+∞)答案:B3.已知集合A={-2,1,9,π},B={1,9},则A-B=()A。
{0,1,9}B。
{1,9}C。
{0,1,9,π}D。
{-2,0,1,9}答案:D4.以下四个命题既是特称命题又是真命题的是()A。
锐角三角形的内角是锐角或钝角B。
至少有一个实数x,使x2+x+1>0C。
两个无理数的和必是无理数D。
存在一个负数,使它的平方大于100答案:A5.“p是q的充要条件”是()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件答案:C6.已知全集U={x∈Z|0<x<6},集合A={3,4,5},则(U-C)∩A=()A。
{1,2}B。
{0,1,2}C。
{1,2,3}D。
{0,1,2,3}答案:B7.已知R是实数集,集合A={x|1<x<2},B={x|2<x<3},则阴影部分表示的集合是()A。
[0,1]B。
(0,1]C。
[0,1)D。
(0,1)答案:D8.设命题p:∀x∈R,x-4x+2m≥0(其中m为常数),则“m≥1”是“命题p为真命题”的()A。
充分不必要条件B。
必要不充分条件C。
充分且必要条件D。
既不充分也不必要条件答案:C9.若命题“存在x∈R,使得x/(4x+1)<1/4”是假命题,则实数m的取值范围是()A。
(-∞,-1)B。
(-∞,2)C。
[-1,1]D。
(-∞,0)答案:B10.已知集合A={x|x=x},B={1,m,2},若A⊆B,则实数m 的值为()A。
2B。
√2C。
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
高中数学集合与常用逻辑用语专题100题(含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U B A ⋃为( ) A .{}1,3B .{}2,3,4C .{}0,1,2,3D .{}0,2,3,42.已知集合{}{}2|3,|560A x x B x x x =<=-+<,则( )A .B A ⊆ B .A B =∅C .A B ⊆D .A B =R3.已知集合{}210A x x =->,{}3180B x x =-+>,则A B =( ) A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-4.已知集合{}13A x x =-<≤,{}1,0,2,3B =-,则A B =( ) A .{}1,0,2,3-B .{}0,3C .{}0,2D .{}0,2,35.已知集合{}3xA yy ==∣,{}0,1,2B =,则A B ⋂=( ) A .{}1,2 B .()0,+∞ C .{}0,1,2 D .[)0,+∞6.设集合{}11A x x =-≤≤,{}220B x x x =-<,则A B =( )A .{}10x x -≤<B .{}01x x <≤C .{}12x x ≤<D .{}12x x -≤<7.设R x ∈,则“12x -≤<”是“23x -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件8.已知集合{}10A x ax =-=,{}24,N B x x x =≤<∈,且A B B ⋃=,则实数a 的所有值构成的集合是( ) A .12⎧⎫⎨⎬⎩⎭B .13⎧⎫⎨⎬⎩⎭C .11,23⎧⎫⎨⎬⎩⎭D .110,,23⎧⎫⎨⎬⎩⎭9.已知A ,B 为实数集R 的两个非空子集,若A B ,则下列命题正确的是( )A .xB ∀∈,x A ∈ B .x B ∃∉,x A ∈C .x A ∀∈,x B ∈D .x A ∃∈,x B ∉10.设2x ππ<<,则“2cos 1x x <”是“cos 1x x >-”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设集合{}1,2,3A =,{}23B x Z x =∈-<<,则A B ⋃=( ) A .{}1B .{}1,2C .{}0,1,2,3D .{}1,0,1,2,3-12.已知全集{}1,0,1,2,3,4,6M =-,集合{}{}N|04,N|26P x x Q x x =∈<<=∈<<,则()MP Q =( )A .{}6B .{}1,0,3,4,6-C .{}4,5D .{}413.已知集合13log 1A x x ⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭,{}4B x x =<,则A B =( ) A .13x x ⎧⎫<⎨⎬⎩⎭B .103x x ⎧⎫<<⎨⎬⎩⎭C .143x x ⎧⎫<<⎨⎬⎩⎭D .{}4x x <14.设集合{}1,2,4A =,{}Z 13B x x =∈≤<,则A B ⋃=( ) A .{}1,2B .[)1,4C .{}1,2,4D .{}1,2,3,415.已知全集为U ,集合A ,B 为U 的非空真子集,()U UA B B ⋃=,则()U B A ⋂=( ) A .AB .BC .∅D .U16.下列选项中,p 是q 的必要不充分条件的是( )A .p :1a >,q ;()log a f x x =(0a >,且1a ≠)在()0,∞+上为增函数B .p :1a >,1b >,q :()x f x a b =-(0a >,且1a ≠)的图象不过第二象限C .p :2x ≥且2y ≥,q :224x y +≥D .p :a c b d +>+,q :a b >且c d >17.已知集合91log 2A x x ⎧⎫=>⎨⎬⎩⎭,{}4B x x =<,则A B =( )A .{}03x x <<B .{}13x x <<C .{}14x x <<D .{}34x x <<18.命题:0,sin(1)1x x ∃>-≥的否定为( ) A .0,sin(1)1x x ∃>-< B .0,sin(1)1x x ∃≤-≥ C .0,sin(1)1x x ∀>-<D .0,sin(1)1x x ∀≤-<19.集合{}sin y y x ==( ) A .RB .{}11x x -≤≤C .{}01x x ≤≤D .{}0x x ≥20.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( ) A .A BB .B AC .A B =D .A B =∅21.定义集合{|A B x x A -=∈ 且}x B ∉.己知集合{}Z 26U x x =∈-<<,{}0,2,4,5A =,{}1,0,3B =-,则()UA B -中元素的个数为( )A .3B .4C .5D .622.已知不等式组20,100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题():,q x y D ∃∈,使得22x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∧D .()p q ∧-23.设集合{}1,2,3,4,5,6U =,{}1,2,3,6A =,{}2,3,4B =,则()UA B =( )A .{}3B .{}1,6C .5,6D .{}1,324.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1xx -< B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<25.已知命题p :角θ为第二或第三象限角,命题q :sin tan 0θθ+<,命题p 是命题q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件26.已知集合{|212}x A x =≤,则N A 的子集个数为( )A .4B .8C .16D .3227.已知全集{0,U =1,2,3,4},集合{}1,4A =,集合{}3,4B =,则()UB A =( )A .{0,1,2,3}B .{}4C .{2,3,4}D .{}0,228.已知a ,b 为实数,则“a b >”是“()()sin10sin10log 21log 21a b ︒︒-<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件29.已知集合{}|2x A x x N *=∈,{}2|log (1)0B x x =-=,则A B =( )A .{}1,2B .{}2C .∅D .{}0,1,230.已知集合{}11A x x =∈-≤≤Z ,{}02B x x =≤≤,则A B 的子集个数为( ) A .2B .3C .4D .631.“02m <<”是“方程2212x y m m+=-表示焦点在x 轴上椭圆”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件32.定义集合{A B x x A -=∈且}x B ∉.已知集合{}0,2,4,5A =,{}1,0,3B =-,则A B -=( )A .{}0B .{}1,3-C .{}2,4,5D .{}1,0,2,3,4,5-33.设集合{|2}M x x =≤,{}540N x x =-≥,则M N =( )A .[2,2]-B .(,2]-∞C .5,24⎡⎤⎢⎥⎣⎦D .52,4⎡⎤-⎢⎥⎣⎦34.已知集合21A x x ⎧⎫=≤⎨⎬⎩⎭,{}3,2,1,1,2,3B =---,则A B =( )A .3,2,1,2,3B .{}2,1--C .{}1,1,2,3-D .{}3,2--35.设α,β为两个不同的平面,则α∥β的一个充要条件可以是( ) A .α内有无数条直线与β平行B .α,β垂直于同一个平面C .α,β平行于同一条直线D .α,β垂直于同一条直线36.已知,m n 是平面α内的两条直线,则“直线l m ⊥且l n ⊥”是“l α⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件的37.已知集合{}2|430A x x x =-+<,11142xB x ⎧⎫⎪⎪⎛⎫=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∣,则A B ⋃=( ). A .∅ B .(1,3) C .(1,2] D .[0,3)38.设集合{}1A x x =<,集合{B x y ==,则A B =( ) A .()1,1-B .()0,1C .[)0,1D .()1,+∞39.已知直线a 、b 、l 和平面α、β,a α⊂,b β⊂,l αβ=,且αβ⊥.对于以下命题,下列判断正确的是( ) ①若a 、b 异面,则a 、b 至少有一个与l 相交; ①若a 、b 垂直,则a 、b 至少有一个与l 垂直. A .①是真命题,①是假命题 B .①是假命题,①是真命题 C .①是假命题,①是假命题D .①是真命题,①是真命题40.命题“R x ∀∈,20x ≥”的否定是( ) A .R x ∀∈,20x < B .R x ∀∈,20x ≥C .0R x ∃∈,200x < D .0R x ∃∈,200x ≥41.已知{}1,0,1,3,5A =-,(){}40B x x x =-<,则A B =( ) A .{}0,1B .{}1,1,3-C .{}0,1,3D .{}1,342.下列有关命题的说法正确的是( ) A .若+=-a b a b ,则a b ⊥B .“sin x =的一个必要不充分条件是“3x π=”C .若命题p :0x ∃∈R ,0e 1<x ,则命题p ⌝:x ∀∈R ,e 1x ≥D .α、β是两个平面,m 、n 是两条直线,如果m n ⊥,m α⊥,n β,那么αβ⊥ 43.已知集合{}{14,|1A x x B x x =≤≤=≤-或}3x ≥,则RA B ⋂=( )A .[]3,4B .[]1,4C .[)3,+∞D .[)1,344.设x ∈R ,则“230x x -<”是“41x ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件45.命题“对x R ∀∈,都有sin 1x ≤-”的否定为( ) A .对x R ∀∈,都有sin 1x >- B .对x R ∀∈,都有sin 1x ≤- C .0x R ∃∉,使得0sin 1x >-D .0x R ∃∈,使得0sin 1x >-46.命题“0x ∀>,220x x ++≥”的否定是( ) A .0x ∃>,220x x ++< B .0x ∀>,220x x ++< C .0x ∃≤,220x x ++<D .0x ∀≤,220x x ++<47.设全集{}1,2,3,4,5,6U =,集合{}{}1,3,52,3,4,5S T ==,,则()U S T ⋃=( ) A .{3,5}B .{2,4}C .{1,2,3,4,5}D .{2,3,4,5,6}48.设集合{}{}29,1,1,2,3A x x B =<=-,则A B =( )A .{1,1,2}-B .{1,2}C .{1,2,3}D .{1,1,2,3}-49.已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件50.已知全集{}N 06U x x =∈<<,{}3,4,5A =,{}2,4B =,则()U A B =( ) A .{}1,2,3B .{}2,3,4C .{}2,3D .{}251.若集合{}2,0xA y y x ==≥,(){}2log 2B x y x ==-,则A B =( )A .{}12x x <<B .{}1x x ≥C .{}12x x ≤<D .{}2x x <52.设命题:p 函数23y x =在()0,∞+上单调递减;命题:q 若2a =,则直线1:220l ax y +-=与直线2:2220l x ay a +-+=平行,则下列结论中是真命题的是( ) A .p q ∧B .p q ∨C .p q ∧⌝D .p q ⌝∨53.已知m ,n 不全为0,则“直线20mx ny --=与圆224x y +=相离”是“点(,)m n 在圆224x y +=内”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件54.命题“()00,x ∃∈+∞,002sin 0xx +<”的否定是( )A .(),0x ∀∈-∞,2sin 0x x +≥B .()0,x ∀∈+∞,2sin 0x x +≥C .()0,0x ∃∈-∞,002sin 0xx +≥D .()00,x ∃∈+∞,002sin 0xx +>55.已知全集R,{0},{2}U A x x B x x ==≤=≥∣∣,则集合()U A B ⋃=( ) A .{0}xx >∣ B .{2}xx <∣ C .{02}xx ≤≤∣ D .{02}xx <<∣ 56.已知全集{}{}R,0,2||U A x x B x x ==≥=≤,则集合()UA B =( )A .{|0x x ≤或2}x ≥B .{|0x x <或2}x >C .{}|02x x ≤≤D .{}|02x x <<57.设集合{}2230x x x --≤,102B xx ⎧⎫=>⎨⎬-⎩⎭,则A B ⋃=( ) A .{}2,3 B .[)3,∞-+ C .[]2,3D .[)1,-+∞58.设集合{}2,4,8,16A =,{}5B x x =≤,则()R A B ⋂=( ) A .{}2,4B .{}4,8C .{}8,16D .{}2,1659.已知非零向量11,a x y ,22,b x y ,则“1212x x y y =”是“//a b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件60.已知集合201x A x x ⎧⎫-=>⎨⎬+⎩⎭,{}3log 1B x x =≤∣,则A B =( ) A .(,1)(2,3]-∞-⋃ B .(2,3] C .()0,2D .(,2)-∞61.下题中,正确的命题个数为( ) ①函数1()lg(1)1f x x x=++-的定义域为()()1,11,-+∞;① 已知命题:N P x ∀∈,31x ≥则P 命题的否定为:3N,1x x ∃∈≤;①已知()f x 是定义在[0,1]的函数,那么“函数()f x 在[0,1]上单调递减”是“函数()f x 在[0,1]上的最小值为f (1)”的必要不充分条件;①被称为“天津之眼”的天津永乐桥摩天轮,是一座跨河建造、 桥轮合一的摩天轮假设“天津之眼”旋转一周需30分钟,且是匀速转动的,则经过5分钟,转过的角的弧度3π A .1B .2C .3D .462.“20m -<<”是“方程2212x y m m-=+”表示椭圆的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件63.已知集合{}12A x x =<≤,{}2320B x x x =-+≤,则A B =( )A .{}12x x ≤<B .{}12x x ≤≤C .{}12x x <<D .{}12x x <≤64.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,0,2,3B =-,则()⋃=U B A ( )A .{}3,3-B .{}0,2C .{}1,1-D .{}3,2,0,2,3--65.设集合{}{2324,2xM x x N x -=≤=≥,则M N =( )A .[2,2]-B .51,4⎡⎤-⎢⎥⎣⎦C .5,4⎛⎤-∞ ⎥⎝⎦D .52,4⎡⎤-⎢⎥⎣⎦66.设集合{}{}215,4A x N xB x x =∈≤≤=,则A B =( ) A .{1,2}B .{}1,2,3C .{}3,4,5D .{4,5}67.已知集合{}|12A x x =-<<,[)0,4B =,则A B ⋃=( ) A .()1,-+∞B .()1,4-C .()0,4D .()1,468.已知向量(),1a x =,(),9b x =-,则“3x =”是“a b ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件69.设R x ∈,则“2x <”是“11x -<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件70.已知集合{|03}A x x =<<,集合{|1}B x x =<,则A B ⋃=( )A .()3-∞,B .()1∞-,C .()01,D .()03,71.下列说法正确的是( ) A .若P Q ∨为真命题,则P Q ∧为真命题 B .“若22am bm <,则a b <”的逆命题为真命题 C .已知R a ∈,“1a >”是“11a<”的充分不必要条件 D .“x ∀、R y ∈,若0x y +≠,则1x ≠且1y ≠-”是真命题 72.设a >0,b >0,则“94a b +≤”是“49ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件73.设集合()(){}110A x x x =+-<,{}0B y y =>,则()RA B =( )A .∅B .[)0,1C .()1,0-D .(]1,0-74.已知集合M ,N 是全集U 的两个非空子集,且()U M N ⊆,则( ) A .M N ⋂=∅ B .M N ⊆ C .N M⊆D .()U N M U ⋃=75.若集合{}2Z |340A x x x =∈--<,{B x x =>,则A B =( )A .()1,4-B .)4C .{}2,3D .{}376.“tan α=是“43πα=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件77.“x y ≠”是“x y ≠”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件78.设集合{}N 2M x x =∈>-,集合{}237N x x =+<,则M N =( )A .()2,2-B .{}0,1C .{}1D .{}0,1,279.设集合{}22S x x =-≤,{}2,1,0,1T =--,则S T( )A .{}2,1--B .{}2,1-C .{}1,0,1-D .{}2,1,0,1--80.已知集合{}21A x x =-<<,集合{}B x m x m =-≤≤,若A B ⊆,则m 的取值范围是( ) A .()0,1B .(]0,2C .[)1,+∞D .[)2,+∞81.设集合{}2,1S =--,{}1,2T =-,则S T ( )A .{}1-B .{}2,2-C .{}2,1,1--D .{}2,1,0,1-- 82.设a ∈R ,则“2a =-”是“直线1l :20ax y +=与直线2l :()140x a y +++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件83.下列命题中,真命题的是( )A .7个身高各不相同的人排成一排照相,个子最高的站正中间,从正中间向左边一个比一个矮,从正中间向右边也一个比一个矮,则共有30种不同的排法B .“1a >,1b >”是“1ab >”的充分不必要条件C .函数sin y x =的周期是2πD .随机变量X 服从二项分布(),B n p ,()34E X =,()916D X =,则34p =84.已知a ,R b ∈,下列四个条件中,使“1ab>”成立的必要不充分条件是( ) A .a b >B .1a b >+C .1a b >=D .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭85.设集合{}0A x x =<,{}1B x x =≤,则()A B =R ( ) A .∅B .[]0,1C .()0,∞+D .[)1,+∞86.已知命题0:p x ∃∈R ,03sin 2x =;命题:q x ∀∈R ,cos 122x≥.则下列命题为真命题的是( ). A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∨ D .()p q ⌝∧二、多选题87.下列说法正确的是( )A .市教委为了解附中高中生对参加某项社会实践活动的意向,拟采用分层抽样的方法从我校三个年级的学生中抽取一个容量为60的样本,已知我校高一、高二,高三年级学生之比为6①5①4,则应从高三年级中抽取20名学生B .方差描述了一组数据围绕平均数波动的大小,方差越大,数据的离散程度越大,方差越小,数据的离散程度越小C .命题“0x ∀>,()2lg 10x +≥”的否定是“0x ∃>,()2g 0 l 1x +<”D .线性回归方程ˆˆˆybx a =+对应的直线至少经过其样本数据点中的一个点 88.下列选项中,与“2x x >”互为充要条件的是( )A .1x >B .222x x >C .11x <D .|(1)|(1)x x x x -=-89.下列说法中正确的有( )A .若0a b <<,则2ab b >B .若0a b >>,则b a a b> C .(0,)∀∈+∞x ,“1x m x+≥恒成立”是“2m ≤”的充分不必要条件 D .若0,0,1a b a b >>+=,则11a b+的最小值为4 三、填空题 90.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.91.命题“若0a >,则二元一次不等式10x ay +-≥表示直线10x ay +-=的右上方区域(包含边界)”的条件p :_________,结论q :_____________,它是_________命题(填“真”或“假”).92.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.93.已知命题“x ∀∈R ,220x x m -+>”为假命题,则实数m 的取值范围为______. 94.给出如下四个命题:①“抛物线24y x =的焦点坐标是()1,0”为真命题;①若p :02x x <-,则p ¬:02x x -≥; ①“1x ∀≥,212x +≥”的否定是“1x ∃<,212x +<”;①“任意[]1,2x ∈,20x a -≤”为真命题的一个充分不必要条件是4a ≥.其中不正确的命题的是 ___________.四、解答题95.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284x B x ⎧⎫=<<⎨⎬⎩⎭. (1)当1a =-时,求()U A B ⋃;(2)若A ∩B =A ,求实数a 的取值范围.96.已知函数()()4log 5f x x =-+()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .97.已知集合A 为函数9lg2x y x-=-的定义域,集合B 是不等式()2280x a x -++≥的解集(1)4a =时,求R A B ⋂;(2)若A B B ⋃=,求实数a 的取值范围.98.已知函数22()(21)2ln 4f x a x x x =+--,e 是自然对数的底数,0x ∀>,e 1x x >+.(1)求()f x 的单调区间;(2)记p :()f x 有两个零点;q :ln 2a >.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.99.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.五、双空题100.已知函数()221x b f x x +=+是定义在[]22-,的奇函数,则实数b 的值为_________;若函数()22g x x x a =-++,如果对于[]12,2x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =,则实数a 的取值范围是__________.参考答案:1.C【解析】【分析】利用集合的补集与并集运算求解.【详解】因为全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,所以{}0,1,3U B =,(){}0,1,2,3U B A ⋃=.故选:C .2.A【解析】【分析】解不等式化简集合B ,再逐一分析各个选项即可判断作答.【详解】解不等式2560x x -+<得:23x <<,则有{|23}B x x =<<,因此有{}{|23}|3x x x x <<⊆<,即B A ⊆,C 不正确,A 正确;A B B =≠∅,B 不正确;R A B A ⋃=≠,D 不正确.故选:A3.A【解析】【分析】先解不等式,再根据集合交集运算即可求解.【详解】 因为12A x x ⎧⎫=>⎨⎬⎩⎭,{}6B x x =<,所以1,62A B ⎛⎫⋂= ⎪⎝⎭. 故选:A.4.D【解析】【分析】根据集合的交集运算,即可求解.【详解】由题意得:{}0,2,3A B =,故选:D5.A【解析】【分析】先求出A ,再根据交集的定义可求A B .【详解】{}|0A y y =>,故{}1,2A B =,故选:A.6.B【解析】【分析】先解出集合B ,再直接计算交集.【详解】 因为{}11A x x =-≤≤,{}{}22002B x x x x x =-<=<<,所以{}01A B x x ⋂=<≤. 故选:B .7.A【解析】【分析】 解不等式23x -≤,利用集合的包含关系判断可得出结论.【详解】 由23x -≤可得323x -≤-≤,解得15x -≤≤, 因为{}12x x -≤< {}15x x -≤≤,因此,“12x -≤<”是“23x -≤”的充分而不必要条件. 故选:A.8.D【解析】求出集合B ,由已知可得出A B ⊆,分0a =、0a ≠两种情况讨论,结合A B ⊆可求得实数a 的取值.【详解】 因为{}{}24,N 2,3B x x x =≤<∈=,由A B B ⋃=可得A B ⊆.当0a =时,A B =∅⊆,合乎题意;当0a ≠时,1A B a ⎧⎫=⊆⎨⎬⎩⎭,则12a =或3,解得12a =或13. 因此,实数a 的取值集合为110,,23⎧⎫⎨⎬⎩⎭. 故选:D.9.C【解析】【分析】根据真子集的含义,即可判断出答案.【详解】因为A B ,故由真子集的定义可得知x A ∀∈,x B ∈,故选:C10.B【解析】【分析】根据余弦函数的性质,以及充分条件、必要条件的判定方法,即可求解.【详解】由cos 1x x >-且(,)2x ππ∈,可得(cos )cos 1x x x x -=<, 所以cos cos cos 1x x x x x ⋅<<,即2cos 1x x <,所以必要性成立; 当23x π=时,可得222(cos )1336πππ⋅=<,满足2cos 1x x <, 但22cos cos 1333x x πππ=⨯=-<-,即充分性不成立, 所以“2cos 1x x <”是“cos 1x x >-”的必要而不充分条件.11.D【解析】【分析】先求出{}1,0,1,2B =-,从而求出并集.【详解】{}1,0,1,2B =-,A B ⋃={}1,0,1,2,3-故选:D12.D【解析】【分析】利用集合间的运算关系逐一判断即可【详解】由题可知{}{}{}1,2,3,1,0,4,6,3,4,5M P P Q ==-=,①{}4M P Q =,故选:D13.B【解析】【分析】 根据对数函数的单调性解不等式求集合A ,再由集合的交运算求A B .【详解】 由题设,11133311log 1log log (0,)33A x x x x ⎧⎫⎧⎫⎪⎪⎪⎪=>=>=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,而{}4B x x =<, 所以A B =103x x ⎧⎫<<⎨⎬⎩⎭. 故选:B14.C【解析】【分析】求出集合B ,利用并集的定义可求得结果.【详解】 因为{}{}Z 131,2B x x =∈≤<=,故{}1,2,4A B ⋃=.故选:C.15.B【解析】【分析】由题干信息画出韦恩图,求出答案.【详解】因为()U U A B B ⋃=,所以U A B ⊆,由韦恩图可知:()U B A B =.故选:B16.D【解析】【分析】利用对数函数的性质可判断A ;利用指数函数的性质可判断B ;利用不等式的性质及取特值法可判断CD.【详解】对于A ,利用对数函数的性质可知,p 是q 的充要条件,故A 错误;对于B ,利用指数函数的性质知()x f x a b =-过定点()0,1b -,若函数图像不过第二象限,则1a >,1b >,所以p 是q 的充要条件,故B 错误;对于C ,当2x ≥且2y ≥能推出224x y +≥,但224x y +≥不能推出2x ≥且2y ≥,例:取0x =且2y =满足224x y +≥,所以p 是q 的充分不必要条件,故C 错误; 对于D ,a b >且c d >可推出a c b d +>+,反过来取1,3,2,1a c b d ====-满足a c b d +>+,所以p 是q 的必要不充分条件,故D 正确;故选:D17.D【解析】【分析】根据对数函数的单调性解不等式求集合A ,再由集合的交运算求A B .【详解】由题设,{|3}A x x =>,而{}4B x x =<,所以A B ={}34x x <<.故选:D18.C【解析】【分析】根据特称命题的否定为全称命题可求解.【详解】根据特称命题的否定为全称命题,因此命题:0,sin(1)1x x ∃>-≥的否定为“0,sin(1)1x x ∀>-<”.故选:C.19.B【解析】【分析】利用正弦函数的值域可得正确的选项.【详解】{}{}[]sin 111,1y y x y y ==-≤≤=-,故选:B.20.B【解析】【分析】解不等式,得到()1,2A =-,进而判断两集合的关系.【详解】220x x --<,解得:12x -<<,所以()1,2A =-,故B A ,其他选项均不正确. 故选:B.21.B【解析】【分析】首先要理解A -B 的含义,然后按照集合交并补的运算规则即可.【详解】因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=, 又因为{}1,0,1,2,3,4,5U =-,所以(){}U 1,0,1,3A B -=-. 故选:B.22.B【解析】【分析】画出不等式组表示的平面区域D ,结合图形由线性规划的知识可判断命题p 、 q 的真假,然后根据复合命题真假判断结论即可求解.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,所以根据复合命题真假判断结论可得ACD 错误,B 选项正确.故选:B23.B【解析】【分析】由补集和交集的定义可求得结果.【详解】由题设可得{}1,5,6U B =,故(){}1,6U A B =,故选:B.24.D【解析】【分析】根据特称量词命题的否定为全称量词命题判断即可;【详解】命题“0R x ∃∈,00e 1x x -≥”为特称量词命题,其否定为R x ∀∈,e 1x x -<; 故选:D25.D【解析】【分析】利用切化弦判断充分性,根据第四象限的角判断必要性.当角θ为第二象限角时,sin 0,cos 0,cos 10θθθ><+>, 所以sin sin cos sin sin (cos 1)sin tan sin 0cos cos cos θθθθθθθθθθθθ+++=+==<, 当角θ为第三象限角时,sin 0,cos 0,cos 10θθθ<<+>, 所以sin sin cos sin sin (cos 1)sin tan sin 0cos cos cos θθθθθθθθθθθθ+++=+==>, 所以命题p 是命题p 的不充分条件.当sin tan 0θθ+<时,显然,当角θ可以为第四象限角,命题p 是命题p 的不必要条件. 所以命题p 是命题q 的既不充分也不必要条件.故选:D26.C【解析】【分析】求出N={0,1,2,3}A ,即得解.【详解】解:由题得2log 1222122,log 12x x ≤=∴≤.因为2222log 8log 12log 16,3log 124<<∴<<.所以N={0,1,2,3}A .所以N A 的子集个数为4216=个.故选:C27.D【解析】【分析】根据集合并集和补集的计算方法计算即可.【详解】A ①B ={1,3,4},()U B A ={0,2}.故选:D.28.B【解析】由充分条件、必要条件的定义及对数函数的单调性即可求解.【详解】解:因为0sin101<<,所以sin10log x y ︒=在()0,∞+上单调递减,当a b >时,()sin10log 21a ︒-和()sin10log 21b ︒-不一定有意义,所以“a b >”推不出“()()sin10sin10log 21log 21a b ︒︒-<-”;反之,()()sin10sin10log 21log 21a b ︒︒-<-,则21210a b ->->,即12a b >>, 所以“()()sin10sin10log 21log 21a b ︒︒-<-”可推出“a b >”.所以“a b >”是“()()sin10sin10log 21log 21a b ︒︒-<-”的必要不充分条件.故选:B.29.B【解析】【分析】分别求出集合,A B ,根据集合的交集运算得出答案.【详解】由题意知:{}{}|20,1,2x A x x N *=≤∈=,{}{}2|log (1)02B x x =-== {}2A B ⋂=.故选:B.30.C【解析】【分析】求出A B 的集合,然后找出子集个数即可.【详解】由题可知{}1,0,1A =-,所有{}0,1A B =,所有其子集分别是{}{}{},1,0,0,1∅,所有共有4个子集故选:C31.C【分析】 先根据方程2212x y m m+=-表示焦点在x 轴上的椭圆求出x 的取值范围,再根据充分必要条件的定义即可求解.【详解】解:①方程2212x y m m+=-表示焦点在x 轴上的椭圆, 0202m m m m >⎧⎪∴->⎨⎪>-⎩,解得:12m <<,∴“02m <<”是“方程2212x y m m+=-表示焦点在x 轴上椭圆”的必要不充分条件. 故选:C.32.C【解析】【分析】根据题中定义直接求解即可.【详解】因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=,故选:C33.D【解析】【分析】求解简单不等式,解得集合,M N ,再求集合的交集即可.【详解】 因为集合{}22M x x =-≤≤,54N x x ⎧⎫=≤⎨⎬⎩⎭, 所以52,4M N ⎡⎤=-⎢⎥⎣⎦. 故选:D .【解析】【分析】解分式不等式,求得集合A ,再根据集合的交集运算,求得答案。
第一章 集合与常用逻辑用语综合测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2022·新疆昌吉·高一期末)“0a b >>”是“1a b >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b>”的充分不必要条件. 故选:B2.(2022·全国·高一期末)已知{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}2230B x R x x =∈--=,{}13C x x =-≤<,则有( )A .U AB = B .U BC = C .U A C ⊇D .A C ⊇【答案】A【解析】【分析】化简集合B ,再由集合的运算即可得解.【详解】 因为{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}13C x x =-≤<,所以{}1,3U A =-, 又{}{}22301,3B x R x x =∈--==-,所以U A B =,故A 正确,所以U B A C =≠,故B 错误;所以集合C 与集合U A ,集合A 均没有互相包含关系,故CD 错误.故选:A.3.(2022·福建·莆田一中高一期末)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =. 故选:A.4.(2022·江苏·高一)已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.(2022·宁夏·银川唐徕回民中学高一期中)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】【详解】试题分析:因为A ∪B={x|x≤0或x≥1},所以(){|01}U C A B x x ⋃=<<,故选D.考点:集合的运算.6.(2022·江苏·高一期末)已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是A .13a a ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C【解析】【分析】求得命题p 为真命题时a 的取值范围,由此求得命题p 为假命题时a 的取值范围.【详解】先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围(1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立,(2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >, ∴命题p 为真命题的a 的取值范围为13a a ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13a a ⎧⎫≤⎨⎬⎩⎭∣. 故选:C【点睛】本小题主要考查根据全称量词命题真假性求参数的取值范围.7.(2022·广东广雅中学高一期末)设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .8【答案】C【解析】【分析】 先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU (A∩B )={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U (A∩B )={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C .【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.8.(2022·江苏·高一单元测试)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0k =,1,2,3.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”其中正确的结论有( )A .①②B .③④C .②③D .②③④ 【答案】D【解析】【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误;而242-=+,故[]22-∈,故②正确;由“类”的定义可得[][][][]012Z 3⊆,任意Z c ∈,设c 除以4的余数为}{()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈⋃⋃⋃,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确若整数a ,b 属于同一“类”,设此类为[]}{()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故a ,b 除以4 的余数相同,故a ,b 属于同一“类”,故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确;故选:二、多选题9.(2022·江苏·高一单元测试)已知p :1x >或3x <-,q :x a >,则a 取下面那些范围,可以使q 是p 的充分不必要条件( )A .3a ≥B .5a ≥C .3a ≤-D .1a <【答案】AB【解析】【详解】p :1x >或3x <-,q :x a >,q 是p 的充分不必要条件,故1a ≥,范围对应集合是集合{}1a a ≥的子集即可,对比选项知AB 满足条件.故选:AB.10.(2022·江苏·南京师大附中高一期末)设r 是p 的必要条件,r 是q 的充分条件,s 是r 的充分必要条件,s 是p 的充分条件,则下列说法正确的有( ) A .r 是q 的必要条件B .s 是q 的充分条件C .s 是p 的充分必要条件D .p 是q 的既不充分也不必要条件【答案】BC【解析】【分析】 根据条件得到p r s q ⇔⇔⇒可判断每一个选项.【详解】由题意,,,,p r r q r s s p ⇒⇒⇔⇒,则p r s q ⇔⇔⇒.故选:BC.11.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】【分析】先求出集合A ,再由A B B =可知B A ⊆,由此讨论集合B 中元素的可能性,即可判断出答案.【详解】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD 12.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆,则下列关系一定正确的是( )A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈ 【答案】AB【解析】【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.【详解】全集为U ,A ,B 是U 的非空子集且U A B ⊆,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,x U ∃∈,x A ∉且x B ∈,A 正确;因A B =∅,必有x A ∀∈,x B ∉,B 正确;若A U B ,则()()U U A B ⋂≠∅,此时x U ∃∈,[()()]U U x A B ∈⋂,即x A ∉且x B ∉,C 不正确; 因A B =∅,则不存在x U ∈满足x A ∈且x B ∈,D 不正确.故选:AB三、填空题13.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 【答案】16【解析】【分析】先化简集合A ,再利用子集的定义求解.【详解】解:{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1614.(2022·浙江浙江·高一期中)0x ∃>,12x x +>的否定是___________. 【答案】0x ∀>,12x x+≤ 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x +>是存在量词命题, 所以其否定是全称量词命题,即0x ∀>,12x x+≤, 故答案为:0x ∀>,12x x +≤. 15.(2022·江苏·高一)某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.【答案】5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.16.(2022·江苏·高一)已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.【答案】4a或13a【解析】∵“x A ∈”是x B ∈”的必要条件,∴B A ⊆,当B =∅时,23a a >+,则3a >;当B ≠∅时,根据题意作出如图所示的数轴,由图可知3231a a a +>⎧⎨+<-⎩或3222a a a +>⎧⎨>⎩,解得4a 或13a ,综上可得,实数a 的取值范围为4a或13a .四、解答题 17.(2022·江苏·高一)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ;(2)若A ∩C ≠∅,求a 的取值范围.【答案】(1)A ∪B ={x |1<x ≤8},()U A B ={x |1<x <2} (2){a |a <8}【解析】【分析】(1)根据集合的交并补的定义,即可求解;(2)利用运算结果,结合数轴,即可求解.(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵U A ={x |x <2或x >8},∴()U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.∴a 的取值范围为{a |a <8}.18.(2022·江苏·高一)设全集为Z ,2{|2150}A x x x =+-=,{|10}B x ax =-=.(1)若15a =,求()Z A B ⋂; (2)若B A ⊆,求实数a 的取值组成的集合C .【答案】(1){}5,3- (2)11,,053⎧⎫-⎨⎬⎩⎭【解析】【分析】(1)若15a =,求出集合A ,B ,即可求()Z A B ⋂; (2)若B A ⊆,讨论集合B ,即可得到结论.(1)解: {}2{|2150}5,3A x x x =+-==-, 当15a =,则{}{|10}5B x ax =-==, 则{}()5,3Z A B ⋂=-;(2)解:当B =∅时,0a =,此时满足B A ⊆,当B ≠∅时,1{}B a=,此时若满足B A ⊆, 则15a =-或13a=,解得15a =-或13, 综上11,,053C ⎧⎫=-⎨⎬⎩⎭. 19.(2022·河南驻马店·高一期末)已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.【解析】(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤- 若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时,若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为43t >. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,1t >-即为所求. 20.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【解析】(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即}|{4m m B =>;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥, 所以423a ≤<, 21.(2022·江苏·高一)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ,()A ⋂R B ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ,()()(),25,R A B ⋂=-∞-⋃+∞(2)2m ≤-或1m ≥【解析】(1){}25B x x =-≤≤R ,{R 1A x x =<-或}4x >,(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.22.(2022·北京西城·高一期末)设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明. (1){}2,3,5A =,{}6,10,15B ∴=(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数大于等于7个, 所以生成集B 中元素个数的最小值为7.(3)不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
《第一章 集合与常用逻辑用语》同步练习§1.1集合的含义与表示一.选择题5.集合8|,,3M y y x y Z x ⎧⎫==∈⎨⎬+⎩⎭的元素个数是 ( )A . 2个B . 4个C . 6个D .8个6.方程组⎩⎨⎧=-=+9122y x y x 的解集是 ( ) A .()5,4 B .()4,5-C .(){}4,5-D .(){}4,5-7.集合{}20,A x x px q x R =++=∈{}2=,则p q += ( )A .1-B .0C .1D .28.由所有奇数组成的集合可用下列哪几个集合表示 ( )(1){}Z k k x x ∈+=,12 (2){}Z k k x x ∈-=,12(3){}Z k k x x ∈±=,14 (4){} 5,3,1,1,3-- A .1,2 B .1,2,4C .1,2,3D .1,2,3,4二.填空题9.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=___ _.10.设集合(){,|6,,}=A x y x y x N y N =+=∈∈ .三.解答题11.已知{},A x x a a Z b Z ==+∈∈(1)试写出集合A 的五个元素;(2)判断下列元素是否属于A ,0,12-(3)若x ∈A, y ∈A ,试判断x + y ,xy 与A 的关系.12.已知集合}023|{2=+-=x ax x A 至多有一个元素,求a 的取值范围.【参考答案】一.选择题5.集合8|,,3M y y x y Z x ⎧⎫==∈⎨⎬+⎩⎭的元素个数是( )A . 2个B .4个C . 6个D .8个解析:D6.方程组⎩⎨⎧=-=+9122y x y x 的解集是 ()A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-解析:D7.集合{}20,A x x px q x R =++=∈{}2=,则p q += ( )A .1-B .0C .1D .2解析:B8.由所有奇数组成的集合可用下列哪几个集合表示 ( )(1){}Z k k x x ∈+=,12 (2){}Z k k x x ∈-=,12(3){}Z k k x x ∈±=,14 (4){} 5,3,1,1,3-- A .1,2 B .1,2,4C .1,2,3D .1,2,3,4解析:D二.填空题9.设-5∈{x |x 2-ax -5=0},则集合{x |x 2+ax +3=0}=___ _____. 解析:{1,3}10.设集合(){,|6,,}=A x y x y x N y N =+=∈∈ . 解析:()()()()()()(){}0,6,1,5,2,4,3,3,4,2,5,1,6,0三.解答题11.已知{},A x x a a Z b Z ==+∈∈(1)试写出集合A 的三个元素;(2)判断下列元素是否属于A ,0,12-(3)若x ∈A, y ∈A ,试判断x + y ,xy 与A 的关系.解析:(1) 1,2++(2)10,,2A A A A A ∈ (3),x y A xy A +∈∈12.已知集合}023|{2=+-=x ax x A 至多有一个元素,求a 的取值范围. 解析:98a ≥或0a =§1.2集合间的基本关系一.选择题 1.能正确表示集合M ={x |x ∈R 且0≤x ≤1}和集合N ={x ∈R |x 2=x }关系的Venn 图是( )2.已知集合A ={-1,0,1},则含有元素0的A 的子集的个数为( )A .2B .4C .6D .83.设A ={x |2<x <3},B ={x |x <m },若A ⊆B ,则m 的取值范围是( )A .m >3B .m ≥3C .m <3D .m ≤34. 若2{1,2}{|0}x x bx c =++=,则( )A .3,2b c =-=B .3,2b c ==-C .2,3b c =-=D .2,3b c ==-5.集合{}2,P x x k k Z ==∈,{}21,Q x x k k Z ==+∈,{}41,R x x k k Z ==+∈, a P ∈,b Q ∈,设c a b =+,则有 ( )A .c P ∈B . c Q ∈C .c R ∈D . 以上都不对二.填空题6.已知集合:(1){0};(2){∅};(3){x |3m <x <m };(4){x |a +2<x <a };(5){x |x 2+2x +5=0}.其中,一定表示空集的是________(填序号).7.{}20,A x x px q x R =++=∈{}2=,则p q += .8.满足{}{},,,,a b A a b c d ⊆⊆的集合A 的个数有 个.9.已知集合{}2560A x x x =-+=, {}10B x mx =+=,且A B A =,实数m 的值组成的集合为 .10.已知集合A ={1,3,5},则集合A 的所有子集的元素之和为________.三.解答题 11.集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.12.若{}2|10,A x x ax x R =++=∈, {}1,2B =,且A B A =,求a 的范围.【参考答案】一.选择题 1.能正确表示集合M ={x |x ∈R 且0≤x ≤1}和集合N ={x ∈R |x 2=x }关系的Venn 图是( )解析:B2.已知集合A ={-1,0,1},则含有元素0的A 的子集的个数为( )A .2B .4C .6D .8解析:B3.设A ={x |2<x <3},B ={x |x <m },若A ⊆B ,则m 的取值范围是( )A .m >3B .m ≥3C .m <3D .m ≤3解析:D4.若2{1,2}{|0}x x bx c =++=,则( )A .3,2b c =-=B .3,2b c ==-C .2,3b c =-=D .2,3b c ==-解析:A5.集合{}2,P x x k k Z ==∈,{}21,Q x x k k Z ==+∈,{}41,R x x k k Z ==+∈, a P ∈,b Q ∈,设c a b =+,则有 ( )A .c P ∈B . c Q ∈C .c R ∈D . 以上都不对解析:B二.填空题 6.已知集合:(1){0};(2){∅};(3){x |3m <x <m };(4){x |a +2<x <a };(5){x |x 2+2x +5=0}.其中,一定表示空集的是________(填序号).解析:(4)(5)7.{}20,A x x px q x R =++=∈{}2=,则p q += . 解析:08.满足{}{},,,,a b A a b c d ⊆⊆的集合A 的个数有 个. 解析:49.已知集合{}2560A x x x =-+=, {}10B x mx =+=,且A B A =,实数m 的值组成的集合为 .解析:110,,23⎧⎫--⎨⎬⎩⎭ 10.已知集合A ={1,3,5},则集合A 的所有子集的元素之和为________. 解析:36三.解答题 11.集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎨⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1. 即实数m 的取值范围为[-1,+∞).12.若{}2|10,A x x ax x R =++=∈, {}1,2B =,且A B A =,求a 的范围. 解析:[)2,2-§1.3.1 集合的基本运算—交集、并集一.选择题 1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}2.已知集合A ={x |x ≥-3},B ={x |-5≤x ≤2},则A ∪B =( )A .{x |x ≥-5}B .{x |x ≤2}C .{x |-3<x ≤2}D .{x |-5≤x ≤2}3.设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}4.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .a <2B .a >-2C .a >-1D .-1<a ≤25.已知集合{}220M x x px =++=,{}20N x x x q =--=,且{}2M N =,则q p ,的值为 ( ) A .3,2p q =-=- B .3,2p q =-=C .3,2p q ==-D .3,2p q ==3,2p q == 6.设集合(){},46A x y x y =+=,(){},327B x y x y =+=,则满足()C A B ⊆的集合C 的个数是( ) A .0B .1C .2D .3二.填空题 7.定义A -B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,3,6},则N -M =________.8.已知集合{}2560A x x x =-+=,{}10B x mx =+=,且A B A =,实数m 的值组成的集合为 .三.解答题9.已知集合{}3+≤≤=a x a x A ,{}51>-<=x x x B 或(1)若A B =∅,求实数a 的取值范围. (2)若A B R =,求实数a 的取值范围.10.已知集合{}240A x x x =+=,(){}222110B x x a x a =+++-=,且A B A =,试求a 的取值范围.【参考答案】一.选择题 1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}解析:C2.已知集合A ={x |x ≥-3},B ={x |-5≤x ≤2},则A ∪B =( )A .{x |x ≥-5}B .{x |x ≤2}C .{x |-3<x ≤2}D .{x |-5≤x ≤2}解析:A3.设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析:C4.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .a <2B .a >-2C .a >-1D .-1<a ≤2解析:C5.已知集合,,且,则的值为 ( )A .B .C .D .解析:B6.设集合,,则满足的集合的个数是( ) A .0B .1C .2D .3 解析:C二.填空题7.定义A -B ={x |x ∈A ,且x ∉B },若M ={1,2,3,4,5},N ={2,3,6},则N -M =________.解析:{}68.已知集合,,且,实数的{}220M x x px =++={}20N x x x q =--={}2M N =q p ,3,2p q =-=-3,2p q =-=3,2p q ==-3,2p q ==(){},46A x y x y =+=(){},327B x y x y =+=()C A B ⊆C {}2560A x x x =-+={}10B x mx =+=A B A =m值组成的集合为 .三.解答题9.已知集合, (1)若,求实数的取值范围.解析:12x -≤≤(2)若,求实数的取值范围.解析:4x <-或5x >10.已知集合,,且,试求的取值范围.解析:{}0,4A =-,A B ⊇(1)当{}0,4B =-,即120,4x x ==-是()222110x a x a +++-=的两个根,由韦达定理可得1a =;(2)当{}0B =时,20110a a ∆=⎧⇒=-⎨-=⎩; (3)当{}4B =-时,()20168110a a ∆=⎧⎪⇒∅⎨-++-=⎪⎩; (4)当B =∅时,01a ∆<⇒<-;综上:a 的取值范围为1a =或1a ≤-.§1.3.2 集合的基本运算—补集一.选择题1.设全集U =R ,集合P ={x |-2≤x <3},则∁U P 等于( )A .{x |x <-2或x ≥3}B .{x |x <-2或x >3}C .{x |x ≤-2或x >3}D .{x |x ≤-2且x ≥3}2.设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )=( ){}3+≤≤=a x a x A {}51>-<=x x x B 或A B =∅a A B R =a {}240A x x x =+=(){}222110B x x a x a =+++-=A B A =aA .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}3.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )等于( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}4.设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A.{x |0<x ≤1} B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}5.已知集合A ={x |x 2-x -2>0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}6.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若(∁R M )⊇(∁R N ),则k 的取值范围是( )A .k ≤2B .k ≥-1C .k >-1D .k ≥27.已知全集U ≠∅以及集合N P M ,,,且P C N N C M U U ==,,则( )A .P C M U =B .P M =C .M P ⊆D .P M ⊆8.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是A .()MP S B . ()M P S C . ()()I MP C S D . ()()I M P C S二.填空题9.已知全集U =R ,集合{}20M x x x m =-+=,{}230,N x x nx =-+= 若(){}2U M C N =,则m n += .10.已知全集U ={不大于20的素数},M ,N 为U 的两个子集,且满足M ∩(∁U N )三.解答题11.已知全集U=R,集合A={x|-1<x<2},B={x|0<x≤3}.求:(1)A∩B;(2)∁U(A∪B);(3)A∩(∁U B).12.已知A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)若B⊆(∁R A),求实数m的取值范围.【参考答案】一.选择题1.设全集U=R,集合P={x|-2≤x<3},则∁U P等于()A.{x|x<-2或x≥3} B.{x|x<-2或x>3}C.{x|x≤-2或x>3} D.{x|x≤-2且x≥3}解析:A2.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=() A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析:B3.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)等于() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:D4.设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1} B.{x|0<x<1}C .{x |1≤x <2}D .{x |0<x <2}解析:B5.已知集合A ={x |x 2-x -2>0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:B6.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若(∁R M )⊇(∁R N ),则k 的取值范围是( )A .k ≤2B .k ≥-1C .k >-1D .k ≥2解析:D7.已知全集U ≠∅以及集合N P M ,,,且P C N N C M U U ==,,则( )A .P C M U =B .P M =C .M P ⊆D .P M ⊆解析:B8.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是A .()MP S B . ()M P S C . ()()I MP C S D . ()()I M P C S 解析:C二.填空题9.已知全集U =R ,集合{}20M x x x m =-+=,{}230,N x x nx =-+= 若(){}2U M C N =,则m n += .解析:6-10.已知全集U ={不大于20的素数},M ,N 为U 的两个子集,且满足M ∩(∁U N )={3,5},(∁U M )∩N ={7,19},(∁U M )∩(∁U N )={2,17},则 M = ;N= .解析: 如图,∴M ={3,5,11,13},N ={7,11,13,19}.三.解答题11.已知全集U =R ,集合A ={x |-1<x <2},B ={x |0<x ≤3}.求:(1)A ∩B ;(2)∁U (A ∪B );(3)A ∩(∁U B ).解析:(1)因为A ={x |-1<x <2},B ={x |0<x ≤3},所以A ∩B ={x |-1<x <2}∩{x |0<x ≤3}={x |0<x <2}.(2)A ∪B ={x |-1<x <2}∪{x |0<x ≤3}={x |-1<x ≤3},∁U (A ∪B )={x |x ≤-1或x >3}.(3)A ∩(∁U B )={x |-1<x <2}∩{x |x >3或x ≤0}={x |-1<x ≤0}.12.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆(∁R A ),求实数m 的取值范围.解析:(1)m =1时,B ={x |1≤x <4},A ∪B ={x |-1<x <4}.(2)∁R A ={x |x ≤-1或x >3}.当B =∅,即m ≥1+3m 时,得m ≤-12,满足B ⊆(∁R A ),当B ≠∅时,要使B ⊆(∁R A )成立,则⎩⎨⎧ m <1+3m ,1+3m ≤-1或⎩⎨⎧m <1+3m ,m >3,解之得m >3.综上可知,实数m 的取值范围是m >3或m ≤-12.§1.4充分条件和必要条件一.选择题 1.设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =14.王昌龄的《从军行》中有两句诗:“黄沙百战穿金甲,不破楼兰终不还”.其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件5.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]6.已知:12p x +>,2:5+60q x x -<, 则非p 是非q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件二.填空题7.从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选一个合适的填空.(1)“x 2-1=0”是“|x |-1=0”的____ _;(2)“x <3”是“x <5”的_____ ___;8.方程)(01032R k k x x ∈=+-有相异的两个同号实根的充要条件是 .三.解答题9.已知命题⎩⎨⎧≤-≥+01002:x x p ,命题)0(11:>+≤≤-m m x m q ,若p 是q 的必要不充分条件,求实数m 的取值范围.10.求证:关于的方程有一个根为1的充要条件是.【参考答案】一.选择题1.设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:A2.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:A3.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =1解析:A4.王昌龄的《从军行》中有两句诗:“黄沙百战穿金甲,不破楼兰终不还”.其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件x 20ax bx c ++=0a b c ++=解析:B5.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:A6.已知:12p x +>,2:5+60q x x -<, 则非p 是非q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件解析:B二.填空题8.方程)(01032R k k x x ∈=+-有相异的两个同号实根的充要条件是 . 解析:2503k <<三.解答题9.已知命题⎩⎨⎧≤-≥+01002:x x p ,命题)0(11:>+≤≤-m m x m q ,若p 是q 的必要不充分条件,求实数m 的取值范围.解析::210p x -≤≤,:11,0q m m m m -≤≤+>,p 是q 的必要不充分条件,则p q ⊃,即012110m m m >⎧⎪-≥-⎨⎪+≤⎩03m ⇒<≤10.求证:关于的方程有一个根为1的充要条件是.x 20ax bx c ++=0a b c ++=解析:假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a·12+b·1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.§1.5 全称量词与存在量词一.选择题1.判断下列命题是存在量词命题的个数()①每一个一次函数都是增函数;②至少有一个自然数小于1;③存在一个实数x,使得x2+2x+2=0;④圆内接四边形,其对角互补.A.1个B.2个C.3个D.4个2.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2 3.命题“∀x∈[1,2],x2-3x+2≤0”的否定为()A.∀x∈[1,2],x2-3x+2>0 B.∀x∉[1,2],x2-3x+2>0C.∃x∈[1,2],x2-3x+2>0 D.∃x∉[1,2],x2-3x+2>04.命题“∃x>0,都有x2-x≤0”的否定是()A.∃x>0,使得x2-x≤0 B.∃x>0,使得x2-x>0C.∀x>0,都有x2-x>0 D.∀x≤0,都有x2-x>05.已知命题p:∃x0>0,x0+a-1=0,若p为假命题,则实数a的取值范围是() A.(-∞,1) B.(-∞,1]C.(1,+∞) D.[1,+∞)6.给出下列四个命题:①有理数是实数;②有些平行四边形不是菱形;③对任意x ∈R ,x 2-2x >0; ④有一个素数含有三个正因数.以上命题的否定为真命题的个数是( )A .1个B .2个C .3个D .4个二.填空题三.解答题9.设函数f (x )=x 2-2x +m .(1)若∀x ∈[0,3],f (x )≥0恒成立,求m 的取值范围;(2)若∃x ∈[0,3],f (x )≥0成立,求m 的取值范围.10.已知m ∈R ,设命题:53P m -≤;命题Q :函数()24323f x x mx m =+++与x 轴有两个相异的交点.求使命题“P 或Q ”为真命题的实数的取值范围.【参考答案】一.选择题 1.判断下列命题是存在量词命题的个数( )①每一个一次函数都是增函数;②至少有一个自然数小于1;③存在一个实数x ,使得x 2+2x +2=0;④圆内接四边形,其对角互补.A .1个B .2个C .3个D .4个解析:B2.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2解析:D3.命题“∀x∈[1,2],x2-3x+2≤0”的否定为()A.∀x∈[1,2],x2-3x+2>0 B.∀x∉[1,2],x2-3x+2>0C.∃x∈[1,2],x2-3x+2>0 D.∃x∉[1,2],x2-3x+2>0解析:C4.命题“∃x>0,都有x2-x≤0”的否定是()A.∃x>0,使得x2-x≤0 B.∃x>0,使得x2-x>0C.∀x>0,都有x2-x>0 D.∀x≤0,都有x2-x>0解析:C5.已知命题p:∃x0>0,x0+a-1=0,若p为假命题,则实数a的取值范围是() A.(-∞,1) B.(-∞,1]C.(1,+∞) D.[1,+∞)解析:D6.给出下列四个命题:①有理数是实数;②有些平行四边形不是菱形;③对任意x∈R,x2-2x>0;④有一个素数含有三个正因数.以上命题的否定为真命题的个数是()A.1个B.2个C.3个D.4个解析:B二.填空题三.解答题9.设函数f(x)=x2-2x+m.(1)若∀x ∈[0,3],f (x )≥0恒成立,求m 的取值范围;(2)若∃x ∈[0,3],f (x )≥0成立,求m 的取值范围.解析:(1)1m ≥;(2)3m ≥-10.已知m ∈R ,设命题:53P m -≤;命题Q :函数()24323f x x mx m =+++与x 轴有两个相异的交点.求使命题“P 或Q ”为真命题的实数的取值范围. 解析:当P 为真时:28m ≤≤;函数()24323f x x mx m =+++与x 轴有两个相异的交点, 可得:04m ∆>⇒>或1m <-,当命题Q 为真时:4m >或1m <-;由“P 或Q ”为真,可得,P Q 至少一个为真,当,P Q 同时为假命题时,满足8214m m m ><⎧⎨-≤≤⎩或,解得12m -≤<, 即由“P 或Q ”为真,m 的取值范围是2m ≥或1m <-.。
集合与常用逻辑用语专题练习一、单选题.1.下列关系中,正确的是( )A .0⊆RB .π-∉ZC .=N ZD .1+Q2.“1x >”是“21x >”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 3.集合63A x x **⎧⎫=∈∈⎨⎬-⎩⎭N N 用列举法可以表示为( ) A .{}3,6 B .{}1,2 C .{}0,1,2 D .{}2,1,0,1,2--4.设命题*2:,23p n n n ∃∈+>N ,则命题p 的否定是( )A .*2,23n n n ∃∈+<NB .*2,23n n n ∃∈+≤NC .*2,23n n n ∀∈+≤ND .*2,23n n n ∀∈+>N5.已知全集U =R ,集合{}02A x x =≤≤,{}20B x x x =->,则图中的阴影部分表示的集合为( )A .(](),12,-∞+∞B .()(),01,2-∞C .[)1,2D .(]1,26.设集合{0,1,2,3,4}M =,{1,3,5}N =,若P M N =,则集合P 的真子集的个数为( )A .2B .3C .4D .87.向某50名学生调查对A ,B 两事件的态度,其中有30人赞成A ,其余20人不赞成A ;有33人赞成B ,其余17人不赞成B ;且对A ,B 都不赞成的学生人数比对A ,B 都赞成的学生人数的三分之一多1人,则对A ,B 都赞成的学生人数为( )A .18B .19C .20D .21 二、多选题.8.若“x ∃∈R ,使得2210x x λ-+<成立”是假命题,则实数λ可能的值是( )A .0B .1C .D .三、填空题.9.集合{}1,0A =,{}3,4B =,{}2,Q a b a A b B =+∈∈,则Q 的所有元素之和等于_________. 10.含有3个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20212022a b +=_____.11.若“x ∃∈R ,2210x x m +-+≤”是真命题,则实数m 的最大值是______.四、解答题.12.已知集合{}240,A x x x x =+=∈R ,(){}222110,B x x a x a x =+++-=∈R ,若B A ⊆, 求实数a 的取值范围.13.已知集合{}222160A x x ax a =-+-=,{}2,3B =,{}5,2,5C =-.(1)当a=1时,求()A B C ;(2)若A B ≠∅,且A C =∅,求实数a 的值.14.设全集为R ,{()(4)0}A x x a x a =+-->,B x y ⎧⎪==⎨⎪⎩. (1)若1a =,求A B 和()()A B R R ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.参考答案一、单选题.1.【答案】B【解析】对于A :0是实数,是集合R 的一个元素,所以0∈R ,故选项A 不正确; 对于B :Z 是整数集,π-是无理数,所以π-∉Z ,故选项B 正确;对于C :N 是自然数集,Z 是整数集,所以≠N Z ,故选项C 不正确;对于D :Q 是有理数集,11+Q ,故选项D 不正确, 故选B .2.【答案】A【解析】1x >时,有21x >,充分性成立;但21x >时可能有1x <-,不必要性成立,故选A .3.【答案】B 【解析】因为63x*∈-N ,所以31,2,3,6x -=,可得2,1,0,3x =-, 因为x *∈N ,所以1,2x =,集合{}1,2A =,故选B .4.【答案】C【解析】根据题意,易知命题p 的否定为*n ∀∈N ,223n n +≤,故选C .5.【答案】D【解析】由不等式2(1)0x x x x -=->,解得0x <或1x >,即{|0B x x =<或1}x >, 又由{}02A x x =≤≤,可得(]1,2{|12}A B x x =<≤=,即图中的阴影部分表示的集合为(]1,2,故选D .6.【答案】B【解析】由已知{1,3}P M N ==,其中真子集有∅,{1},{3}共3个,故选B .7.【答案】D【解析】记赞成A 的学生组成集合A ,赞成B 的学生组成集合B ,50名学生组成全集U ,则集合A 有30个元素,集合B 有33个元素.设对A ,B 都赞成的学生人数为x ,则集合()U A B 的元素个数为13x+,如图,由Venn 图可知,(30)(33)1503x x x x ⎛⎫-+-+++= ⎪⎝⎭,即21403x-=,解得21x =, 所以对A ,B 都赞成的学生有21人,故选D .二、多选题.8.【答案】ABC【解析】由题意x ∀∈R ,不等式2210x x λ-+≥恒成立,所以280Δλ=-≤,λ-≤≤ABC .三、填空题.9.【答案】18【解析】由题可知,{}1,0A =,{}3,4B =,{}2,Q a b a A b B =+∈∈,当1,3a b ==时,则25a b +=;当1,4a b ==时,则26a b +=;当0,3a b ==时,则23a b +=;当0,4a b ==时,则24a b +=,所以{}3,4,5,6Q =,所以Q 的所有元素之和为345618+++=,故答案为18.10.【答案】1-【解析】由题意0a ≠,所以0b a =,即0b =,所以21a =,1a =±. 1a =时,与元素互异性矛盾,舍去; 1a =-时,两个集合为{1,0,1}-,满足题意, 所以202120221a b +=-,故答案为1-.11.【答案】2【解析】若“x ∃∈R ,2210x x m +-+≤”是真命题, 则()4410Δm =--+≥,解得2m ≤, 所以实数m 的最大值是2,故答案为2.四、解答题.12.【答案】{1a a ≤-或}1a =. 【解析】因为{}{}240,4,0A x x x x =+=∈=-R , 对于方程()222110x a x a +++-=,()()()22414181Δa a a =+--=+. 当0Δ=时,1a =-,则{}{}200B x x A ===⊆,合乎题意; 当Δ<0时,1a <-,此时B A =∅⊆,合乎题意; 当0Δ>时,即当1a >-时,则B A =,所以,()221410a a ⎧+=⎨-=⎩,解得1a =, 综上所述,实数a 的取值范围是{1a a ≤-或}1a =.13.【答案】(1){2,5};(2)7a =.【解析】(1)当1a =时,{}22150A x x x =--=. 由22150x x --=,得(5)(3)0x x -+=,则5x =或3-,所以{3,5}A =-. 因为{2,3}B =,则{3,2,3,5}A B =-.因为{5,2,5}C =-,则(){2,5}A B C =.(2)由222160x ax a -+-=,得2()16x a -=,即4x a =±,所以{4,4}A a a =-+. 因为A B ≠∅,且A C =∅,则3A ∈. 若43a -=,即7a =,则{3,11}A =,符合要求; 若43a +=,即1a =-,则{5,3}A =-,此时{5}A C =-,不合题意, 综上分析,7a =.14.【答案】(1){}21x x -≤<-,{1x x ≥-或}2x <-;(2)31a -≤≤-.【解析】(1)若1a =,则集合{{(1)(5)0}5A x x x x x =+->=>或}1x <-,{}20211x B x y x x x x ⎧+⎪⎧⎫===≥=-≤<⎨⎨⎬-⎩⎭⎪⎩, 所以{}21A B x x =-≤<-, 又{}15A x x =-≤≤R ,{1B x x =≥R 或}2x <-, 所以()(){1A B x x =≥-R R 或}2x <-.(2)若“x B ∈”是“x A ∈”的充分不必要条件,则BA , 当2a <-,即4a a ->+时,{{()(4)0}A x x a x a x x a =+-->=>-或}4x a <+, 因为B A ,{}21B x x =-≤<,所以41a +≥或2a -<-, 所以32a -≤<-;当2a >-,即4a a -<+时,{{()(4)0}4A x x a x a x x a =+-->=>+或}x a <-, 因为B A ,{}21B x x =-≤<,所以1a -≥或42a +<-, 所以21a -<≤-;当2a =-时,{}2{(2)0}2A x x x x =->=≠,显然满足B A ,综上,31a -≤≤-.。
集合与常用逻辑用语测试题和答案work Information Technology Company.2020YEAR集合与常用逻辑用语测试题和答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选中,只有一项是符合题目要求的)1.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.(2014·昆明模拟)已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R, x20-3x0+3≤0,则下列说法正确的是( )A.p:∃x0∈R, x20-3x0+3>0,且p为真命题 ;B.p:∃x0∈R, x20-3x0+3>0,且p为假命题;C.p:∀ x∈R, x2-3x+3>0,且p为真命题;D.p:∀ x∈R, x2-3x+3>0,且p为假命题4.(2013·辽宁高考)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则1/a<1/b的否命题是( )A.已知ab≤0,若a≤b,则1/a≥1/bB.已知ab≤0,若a>b,则1/a≥1/bC.已知ab>0,若a≤b,则1/a≥1/bD.已知ab>0,若a>b,则1/a≥1/b6.(2014·西城模拟)已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<1/a”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(2014·哈尔滨模拟)给定下列两个命题: ①“p∨q”为真是“p”为假的必要不充分条件; ②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( ) A.①真②假 B.①假②真 C.①和②都为假 D.①和②都为真9.(2013·山东高考)给定两个命题p,q,若p是q的必要而不充分条件,则p是q 的( )A.充分而不必要条件;B.必要而不充分条件;C.充要条件;D.既不充分也不必要条件10.(2014·金华模拟)给出下列命题: (1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件. 其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件12.已知下列四个命题: ①命题“若α=,则tanα=1”的逆否命题为假命题; ②命题p:∀x∈R,sinx≤1,则p:∃x0∈R,使sinx0>1; ③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件; ④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q为真命题. 其中正确的个数是( ) A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横上)13.(2014·银川模拟)若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是14.(2014·青岛模拟)已知A={x|1/8<2-x<1/2<1},B={x|log2(x-2)<1},则A∪B=15.(2014·玉溪模拟)已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是16.已知下列四个结论: ①命题“若p,则q”与命题“若q,则p”互为逆否命题; ②命题p:∃x0∈[0,1],≥1, 命题q:∃x0∈R,+x0+1<0,则p∨q为真; ③若p∨q为假命题,则p,q均为假命题; ④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是 .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}. (1)若a=1,求A∩B. (2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)(2014·黄山模拟)已知全集U=R,集合A={x|(x-2)(x-3)<0}, B={x|(x-a)(x-a2-2)<0}. (1)当a=1/2时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)(2014·枣庄模拟)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足x2-x-6≤,x2+2x-8>0(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)(能力挑战题)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.答案解析1.【解析】选B.由A={x|x2-2x>0}得,A={x|x<0或x>2},又B={x|-5<x<5},所以A∪B=R.2.【解析】选D.因为S={1,2},T={a},S∪T=S,所以T⊆S,a∈S,所以a=1或a=2,故选D.3.【解析】选C.依题意,命题p:∃x0∈R,-3x0+3≤0的否命题为不存在x∈R,使得x2-3x+3≤0,即对任意的x∈R,x2-3x+3>0.又x2-3x+3=+>0,所以命题p为假命题,所以p 为真命题.4.【解析】选B. B={x||x|<2}={x|-2<x<2},则A∩B={0,1,2,3,4}∩{x|-2<x<2}={0,1}.5.【解析】选C.条件ab>0是大前提,所以其否命题是:已知ab>0,若a≤b,则≥.6.【解析】选B.由题意,知3∈A可以,若1∈A,则5∈A,若2∈A,则4∈A,所以具有性质P的集合A有{3},{1,5},{1,3,5},{2,4},{2,3,4},{1,2,4,5}, {1,2,3,4,5},共7个.7.【解析】选D.若0<ab<1,则当a>0时,有b<,当a<0时,有b>.当b<时,不妨设b=-1,a=1,满足b<,但ab=-1,不满足0<ab<1.所以0<ab<1是b<成立的既不充分也不必要条件,选D.8.【解析】选D.①中,“p∨q”为真,说明,p,q至少有一为真,但不一定p为真,即“p”不一定为假;反之,“p”为假,么p 一定为真,即“p∨q”为真,命题①为真;特称命题的否定是全称命题,所以,②为真,综上知,①和②都为真.9.【解析】选A.因为p是q的必要而不充分条件,所以q是p的必要而不充分条件,即p是q的充分而不必要条件..10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,an+1<an(n∈N*),当an+1>an(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x 的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=〒1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.11.【解析】选A.若c<0,则Δ=b2-4c>0,所以∃x0∈R,使f(x0)<0,成立.若∃x0∈R,使f(x0)<0,则有Δ=b2-4c>0,即b2-4c>0即可,所以当c=1,b=3时,满足Δ=b2-4c>0,所以“c<0”是“∃x0∈R,使f(x0)<0”的充分不必要条件,故选A.12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数偶函数时,有φ=+k π(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B。
高中数学必修一第一章集合与常用逻辑用语必练题总结单选题1、已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}答案:D分析:根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D2、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.20答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.3、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.4、命题“∀x<0,x2+ax−1≥0”的否定是()A.∃x≥0,x2+ax−1<0B.∃x≥0,x2+ax−1≥0C.∃x<0,x2+ax−1<0D.∃x<0,x2+ax−1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x<0,x2+ax−1≥0”的否定是“∃x<0,x2+ax−1<0”.故选:C5、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.6、集合M={2,4,6,8,10},N={x|−1<x<6},则M∩N=()A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案:A分析:根据集合的交集运算即可解出.因为M={2,4,6,8,10},N={x|−1<x<6},所以M∩N={2,4}.故选:A.7、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C8、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.多选题9、(多选题)下列各组中M,P表示不同集合的是()A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=x2+1,x∈R},P={x|x=t2+1,t∈R}D.M={y|y=x2-1,x∈R},P={(x,y)|y=x2-1,x∈R}答案:ABD分析:选项A中,M和P的代表元素不同,是不同的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,解出集合M和P.选项D中,M和P的代表元素不同,是不同的集合.选项A中,M是由3,-1两个元素构成的集合,而集合P是由点(3,-1)构成的集合;选项B中,(3,1)与(1,3)表示不同的点,故M≠P;选项C中,M={y|y=x2+1,x∈R}=[1,+∞),P={x|x=t2+1,t∈R}=[1,+∞),故M=P;选项D中,M是二次函数y=x2-1,x∈R的所有因变量组成的集合,而集合P是二次函数y=x2-1,x∈R图象上所有点组成的集合.故选ABD.10、已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={−1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={−1}D.A∩B的真子集个数是7答案:ACD分析:求出集合A,再由集合的基本运算以及真子集的概念即可求解.A={x|2x+1≥0,x∈Z}={x|x≥−1,x∈Z},B={−1,0,1,2},2A∩B={0,1,2},故A正确;A∪B={x|x≥−1,x∈Z},故B错误;,x∈Z},所以(∁U A)∩B={−1},故C正确;∁U A={x|x<−12由A∩B={0,1,2},则A∩B的真子集个数是23−1=7,故D正确.故选:ACD11、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.填空题12、请写出不等式a>b的一个充分不必要条件___________.答案:a>b+1 (答案不唯一)分析:根据充分不必要条件,找到一个能推出a>b,但是a>b推不出来的条件即可.因为a>b+1能推出a>b,但是a>b不能推出a>b+1,所以a>b+1是不等式a>b的一个充分不必要条件,所以答案是:a>b+1(答案不唯一)13、已知集合A={x|−2≤x≤7},B={x|m+1≤x≤2m−1},若B⊆A,则实数m的取值范围是____________.答案:(−∞,4]分析:分情况讨论:当B=∅或B≠∅,根据集合的包含关系即可求解.当B=∅时,有m+1≥2m−1,则m≤2;当B≠∅时,若B⊆A,如图,则{m+1≥−2, 2m−1≤7,m+1<2m−1,解得2<m≤4.综上,m的取值范围为(−∞,4].所以答案是:(−∞,4]14、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).解答题15、已知集合A={x|−1≤x≤2},B={y|y=ax+3,x∈A},C={y|y=2x+3a,x∈A},(1)若∀y 1∈B ,∀y 2∈C ,总有y 1≤y 2成立,求实数a 的取值范围;(2)若∀y 1∈B ,∃y 2∈C ,使得y 1≤y 2成立,求实数a 的取值范围; 答案:(1)a ≥5;(2)a ≥−14. 分析:(1)设y 1=ax +3,y 2=2x +3a ,由题设可得y 1max ≤y 2min ,建立不等式组,解之可得答案. (2)由题设可得y 1max ≤y 2max ,建立不等式组,解之可得答案.(1)设y 1=ax +3,y 2=2x +3a ,其中−1≤x ≤2, 由题设可得y 1max ≤y 2min ,即y 1max ≤3a −2,故{−a +3≤−2+3a 2a +3≤−2+3a , 解得a ≥5.(2)由题设可得y 1max ≤y 2max ,故{−a +3≤4+3a 2a +3≤4+3a ,解得a ≥−14.。
第一练集合与常用逻辑用语一.强化题型考点对对练1.(集合的基本运算)已知集合{|1A x x =≤-或1}x ≥,集合{|01}B x x =<<,则()A.{}1A B ⋂=B.A B R ⋃=C.()(]0,1R C A B ⋂=D.()R A C B A ⋂=【答案】D2.(集合的基本运算)若集合{}02A x x =<<,且AB B =,则集合B 可能是() A.{}0 2, B.{}0 1, C.{}0 1 2,, D.{}1 【答案】D 【解析】由题意得,因为,所以选B.3.(集合的基本运算)设集合{}|2M x x =<,{}1,1N =-,则集合M C N 中整数的个数为()A.3B.2C.1D.0【答案】C 【解析】{}(){}|22,2,1,1M x x N =<=-=-,()()()2,11,11,2,M N ∴=--⋃-⋃∴ð集合M N ð中整数只有0,故个数为1,故选C.4.(集合间的关系)已知集合,若,则()A.0或1B.0或2C.1或2D.0或1或2【答案】C 【解析】或.故选C. 5.(充分条件和必要条件)设x R ∈,i 是虚数单位,则“3x =-”是“复数()()2231z x x x i =+-+-为纯虚数”的 A.充分不必要条B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】由3x =-,得()()222332330x x +-=-+⨯--=,1314x -=--=-.而由2230{ 10x x x +-=-≠,得3x =-.所以“3x =-”是“复数()()2231z x x x i =+-+-为纯数”的充要条件.故选C.6.(逻辑联结词)已知命题方程在上有解,命题,有恒成立,则下列命题为真命题的是() A. B. C. D. 【答案】B 【解析】由题意知假真,所以为真,故选B .7.(全称量词和存在量词)命题:“00x ∃>,使002()1x x a ->”,这个命题的否定是()A .0x ∀>,使2()1x x a ->B .0x ∀>,使2()1x x a -≤C .0x ∀≤,使2()1x x a -≤D .0x ∀≤,使2()1x x a ->【答案】B8.(全称量词和存在量词)命题“恒成立”是假命题,则实数的取值范围是(). A. B.或 C.或 D.或 【答案】B【解析】命题“ax 2﹣2ax+3>0恒成立”是假命题,即存在x ∈R ,使“ax 2﹣2ax+3≤0,当a=0时,不符合题意;当a <0时,符合题意;当a >0时,△=4a 2﹣12a ≥0?a ≥3,综上:实数a 的取值范围是:a <0或a ≥3.9.(逻辑联结词与充分条件和必要条件的结合)已知命题p ,q 是简单命题,则“p q ∨是真命题”是“p ⌝是假命题”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分有不必要条件【答案】B【解析】由p q ∨是真命题,可得p 真q 假或p 假q 真或p 真q 真;由p ⌝是假命题,知p 为真命题,则p q ∨是真命题,所以已知命题p ,q 是简单命题,则“p q ∨是真命题”是“p ⌝是假命题”的必要不充分条件,故选B .10.(集合运算与不等式、函数的结合)已知集合,,() A. B. C. D. 【答案】D 【解析】,所以,选D.11.(充要条件和解析几何的结合)已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C12.(充分条件和必要条件与数列的结合)在等差数列{}n a 中,12a =,公差为d ,则“4d =”是“125a a a ,,成等比数列”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由125a a a ,,成等比数列,得2111()(4)a d a a d +=+,即2(2)2(24)d d +=+,解得0d =或4d =,所以“4d =”是“125a a a ,,成等比数列”的充分不必要条件.13.(逻辑联结词与平面向量的结合)已知命题:p 存在向量,,a b 使得a b a b ⋅=⋅,命题:q 对任意的向量a 、b 、c ,若a b a c ⋅=⋅则b c =.则下列判断正确的是()A.命题p q ∨是假命题B.命题p q ∧是真命题C.命题()p q ∨⌝是假命题D.命题()p q ∧⌝是真命题【答案】D【解析】对于命题p ,当向量,a b 同向共线时成立,真命题;对于命题q ,若a 为零向量则命题不成立,为假命题;所以命题()p q ∧⌝是真命题,故选D.14.(命题综合判断)下列命题错误的是()A.对于命题2:,1p x R x x ∃∈++使得<0,则:P ⌝∀,x R ∈均有210.x x ++≥B.命题“若2320x x -+=,则1x =”的逆否命题为“若1,x ≠,则2320.x x -+≠”C.若p q Λ为假命题,则,p q 均为假命题D.“x>2”是“232x x -+>0”的充分不必要条件.【答案】C二.易错问题纠错练15.(忽视集合端点的取值而致错)设R U =,已知集合}1|{≥=x x A ,}|{a x x B >=,且R B A C U = )(,则实数a 的取值范围是()A .)1,(-∞B .]1,(-∞C .),1(+∞D .),1[+∞【答案】A【解析】由}1|{≥=x x A 有{}1U C A x x =<,而R B A C U = )(,所以1a <,故选A.【注意问题】充分借助数轴,端点取值要检验16.(“新定义”不理解致错)设,P Q 是两个集合,定义集合{|,}P Q x x P x Q -=∈∉为,P Q 的“差集”,已知2{|10}P x x =-<,{|21}Q x x =-<,那么Q P -等于()A.{|01}x x <<B.{|01}x x <≤C.{|12}x x ≤<D.{|23}x x ≤<【答案】D【解析】从而有,∵2{|10}P x x =-<,化简得:{|02}P x x =<<,而{|21}Q x x =-<,化简得:{|13}Q x x =<<.∵定义集合{|,}P Q x x P x Q -=∈∉,∴{|23}Q P x x -=≤<,故选D .【注意问题】要充分理解新定义和例子的内涵.三.新题好题好好练17.集合(){},|2350A x y x y =-+=,(){},|1A x y y x ==+,则A B ⋂等于()A.{}2,3B.{}2,3-C.(){}2,3 D.(){}2,3-【答案】C 18.设全集U =R ,2{|0}M x x x =-≤,{|N m =关于x 的方程22(1)(4)3m m m x --=无解},则图中阴影部分所表示的集合是( )A .{1,0,1,2}-B .{1,0,2}-C .{2,1,2}--D .{2,1,2}-【答案】C【解析】{|01}M x x =≤≤,{|01}U C M x x x =<>或,且{2,1,0,1,2}N =--.又图中阴影部分表示的集合为()U C M N ,则(){2,1,2}U C M N =--.19.已知集合{}()1,2,{,|,,}A B x y x A y A x y A ==∈∈-∈,则B 的子集共有()A.2个B.4个C.5个D.8个【答案】A【解析】(){}2,1B =,则子集为(){},2,1∅,共2个.故选A.20.已知角A 是ABC ∆的内角,则“1cos 2A =-”是“sin 2A =”的__________条件(填“充分不必要”、“必要不充分”、“充要条件”、“既不充分又不必要”之一).【答案】充分不必要21.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________ 【答案】21,32⎡⎤-⎢⎥⎣⎦【解析】因为p 是q 的充分非必要条件,所以()(),13,-∞-⋃+∞是()(),312,m m -∞+⋃++∞的真子集,故311{ 23m m +≥-+≤解得:2-13m ≤≤,又因为312m m +≤+,所以12m ≤,综上可知21-32m ≤≤,故填21,32⎡⎤-⎢⎥⎣⎦.22.下列结论:①“1?a >是“a >的充要条件②存在1,0,a x >>使得log x a a x <; ③函数22tan 1tan x y x =-的最小正周期为2π;④任意的锐角三角形ABC 中,有sin cos B A >成立.其中所有正确结论的序号为______.【答案】①②④【解析】①当1a >时,2a a >成立,所以a >a >2a a >成立,即()10a a ->,所以1a >,故正确;②根据指数函数与对数函数关于y x =对称,可以知道,两个函数在直线上可以有两个交点,故存在1,0,a x >>使得log x a a x <,正确;③当0x =时,0y =,2x π=时,y 不存在,故周期不是2π,错误;④因为锐角三角形,所以2A B π+>,故2B A π>-且为锐角,所以sin sin cos 2B A A π⎛⎫>-= ⎪⎝⎭,故正确,所以填①②④。
同步练习 集合与常用逻辑用语
学校:___________姓名:___________班级:___________
一、选择题
1.下列各组对象中不能构成集合的是( )
A.所有的直角三角形
B.圆上的所有点
C.高一学生中家离学校很远的学生
D.高一年级的班主任
2.已知命题p :某班所有的男生都爱踢足球,则命题p 的否定是( )
A.某班至多有一个男生爱踢足球
B.某班至少有一个男生不爱踢足球
C.某班所有的男生都不爱踢足球
D.某班所有的女生都爱踢足球
3.命题“∀x ∈R ,∃n ∈N +,使n ≥2x+1”的否定形式是( )
A.∀x ∈R ,∃n ∈N +,有n<2x+1
B.∀x ∈R ,∀n ∈N +,有n<2x+1
C.∃x ∈R ,∃n ∈N +,使n<2x+1
D.∃x ∈R ,∀n ∈N +,使n<2x+1
4.下列命题中,全称量词命题的个数为( )
①平行四边形的对角线互相平分; ②梯形有两边平行; ③存在一个菱形,它的四条边不相等.
A.0
B.1
C.2
D.3
5.下列说法:①2017年考入清华大学的性格外向的学生能组成一个集合; ②空φ⊆{}0;③数集{}
x x x -2,2中,实数x 的取值范围是{}0≠x x 。
其中正确的个数是( ) A.3 B.2 C.1 D.0
6. 已知集合{}21M x Z x =∈-<≤,则M 的元素个数为( )
A .4
B .3
C .7
D .8
7.已知集合{10}A x x =≤,23a =+,则a 与集合A 的关系是( )
A .a A ∈
B .a A ∉
C .a A =
D .{}a A ∈
8.已知数集{}{}-10123-101A B ==,,,,,,,,设函数f (x )是从A 到B 的函数,则函数f (x )的值域的可能情况的个数为( )
A .1
B .3
C .8
D . 7
9.设集合M={(1,2)},则下列关系成立的是( )
A .1∈M
B .2∈M
C .(1,2)∈M
D .(2,1)∈M
10.若集合{1,a , }={0,a 2,a+b},则a 2015+b 2016的值为( )
A.0
B.1
C.﹣1
D.±1 二、填空题
11.集合6{|,}52M a Z a N a
=∈∈-用列举法表示为_________. 12.方程组322327x y x y +=⎧⎨-=⎩
的解集用列举法表示为______________. 三、解答题
13.用适当的方法表示下图中的阴影部分的点(含边界上的点)
组成的集合M 。
14.(本题10分)已知集合},013|{2R a x ax R x A ∈=+-∈=,若A 中的元素最多只有一个,求a
的取值范围。
同步练习 集合与常用逻辑用语答案
1. C
2. B
【解析】命题p 是一个全称量词命题,它的否定是一个存在量词命题.
【标题】高中数学北师大版(2019)必修第一册同步练习:第一章 2.2 全称量词与存在量词
3. D
4. C
5. C
6. B
由题意得:
故选:B 7. A 因为
,所以,故选A. 8. D
9. C
10. C
【解答】解:由题意得,{a ,,1}={a2,a+b ,0},所以=0且a ≠0,a ≠1,即b=0,
则有{a ,0,1}={a 2,a ,0},所以a 2=1,解得a=﹣1,∴a 2015+b 2016=﹣1.故选:C .
11. {1,2,3,4}
12. (){}3,7-
【分析】首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对(),a b 的形式表示元素).
【详解】因为322327x y x y +=⎧⎨-=⎩,所以37
x y =⎧⎨=-⎩,所以列举法表示解集为:(){}3,7-.故答案为:(){}3,7-. 【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式:(),x y .
13. 解析:⎭
⎬⎫⎩⎨⎧≥≤≤-≤≤-0,231,252|),(xy y x y x 14. 当a =0时,方程0132=+-x ax 的根为31=x ,⎭
⎬⎫⎩⎨⎧=31A ,符合;
当0≠a 时,因为A 中的元素最多只有一个,所以()0432≤--=∆a ,得4
9≥a ; 综上所述,若A 中的元素最多只有一个,则4
9≥a 或a =0。