物理化学热力学计算方法
- 格式:ppt
- 大小:198.00 KB
- 文档页数:9
化学反应的热力学和热力学计算一、热力学基本概念1.热力学系统:指在一定条件下,与外界有能量交换的物体或一组物体。
2.状态:描述系统某一时刻物理化学性质的参数集合,如温度、压力、体积、物质的量等。
3.状态变化:系统从一个状态变化到另一个状态的过程。
4.过程:系统状态变化的方式,分为恒温恒压过程、恒温恒容过程等。
5.热量:由于温度差,系统与外界交换的能量。
6.功:系统与外界交换能量的过程。
二、热力学第一定律1.内容:能量守恒定律,系统内能的变化等于外界对系统做的功加上系统吸收的热量。
2.公式:ΔU = Q + W–ΔU:系统内能的变化–Q:系统吸收的热量–W:外界对系统做的功三、热力学第二定律1.内容:熵增原理,孤立系统的熵总是增加,直到达到最大值。
2.公式:ΔS = ΔS_system + ΔS_surroundings–ΔS:系统熵的变化–ΔS_system:系统熵的变化–ΔS_surroundings: surroundings熵的变化四、热力学第三定律1.内容:绝对零度不可达到,系统的熵在接近绝对零度时趋于定值。
2.公式:S = k_B * ln(W)–S:系统熵–k_B:玻尔兹曼常数–W:系统微观状态数五、化学反应热力学1.反应热:化学反应过程中放出或吸收的热量。
2.反应焓变:化学反应的焓变化,表示为ΔH。
3.反应熵变:化学反应的熵变化,表示为ΔS。
4.吉布斯自由能变:化学反应的自由能变化,表示为ΔG。
5.公式:ΔG = ΔH - TΔS–ΔG:吉布斯自由能变–ΔH:反应焓变–T:温度(K)–ΔS:反应熵变六、热力学计算1.热量计算:根据反应物和生成物的摩尔焓差计算反应热。
2.熵变计算:根据反应物和生成物的摩尔熵差计算反应熵变。
3.自由能计算:根据反应物和生成物的摩尔自由能差计算反应吉布斯自由能变。
4.热力学平衡:在恒温恒压条件下,系统达到热力学平衡状态,此时反应物和生成物的浓度不再发生变化。
热力学方法和计算到此为止,我们已经学习了八个热力学状态函数:p、V、T、U、H、S、A、G。
这八个状态函数中p、V、T、U、S有着明确的物理意义,而H、A、G是定义出来的状态函数,并没有明确的物理意义。
这八个状态函数可以构成许许多多热力学函数关系式一、热力学基本方程在非体积功为0的条件下,单组分单相封闭系统经过一个始态到达末态,根据热力学第一定律有。
dU=δQ r+δW r=δQ+δW式子中,δQ r和δW r是可逆过程的热和功,δQ和δW是不可逆过程的热和功。
在非体积功为0的条件下,对于单组分单相封闭系统的可逆过程有δQ r=TdS δW r=−pdV带入后可得到一项重要的公式:dU=TdS−pdV这项式子称为热力学第一定律和第二定律的联合表达式,适用于单相单组分封闭系统可逆过程与不可逆过程。
由焓的定义H=U+pV,两端同时微分得到dH=dU+pdV+Vdp再将dU=TdS−pdV带入上式,得到dH=TdS+Vdp由亥姆霍兹函数的定义A=U−TS,两端同时取微分得到dA=dU−TdS−SdT再将dU=TdS−pdV带入上式,得到dA=−SdT−pdV由吉布斯函数的定义G=H−TS,两端同时微分得到dG=dH−TdS−SdT再将dH=TdS+Vdp带入上式,得到dG=−SdT+Vdp这四个关系式,叫做封闭系统的热力学基本关系式,地位相当重要,务必准确推导和记忆。
严格地讲,这四个关系式只适用于封闭系统中无非体积功的可逆过程,但是我们知道一切实际过程都是不可逆过程,所以我们也可以将这四个关系式用到不可逆过程中,尽管有一些误差,但是完全可以忽略。
为了避免理解过于麻烦,咱不解释误差的来源。
二、对应系数关系式由此我们可以将U、(S,p)、A=A(T,V)、G=G(T,p),根据全微分的性质,可以得到dU=(ðUðS)VdS+(ðUðV)SdV dH=(ðHðS)pdS+(ðHðp)SdpdA=(ðAðT)VdT+(ðAðV)TdV dG=(ðGðT)pdT+(ðGðp)Tdp将上面四个全微分式,对应到四个基本表达式中,我们可以得到T =(ðU ðS )V =(ðH ðS )p p =−(ðU ðV )S =−(ðA ðV )TV =(ðH ðp )S =(ðG ðp )T S =−(ðA ðT)V =−(ðG ðT )p三、麦克斯韦关系式在数学上dz =Mdx +Ndy 是一个全微分的充要条件为(ðM ðy )x =(ðNðx )y我们再一次调出四个热力学基本关系式dU =TdS −pdV dH =TdS +Vdp dA =−SdT −pdV dG =−SdT+Vdp来导出麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V (ðS ðp )T =−(ðVðT )p麦克斯韦关系式的意义在于:它能将不能直接测量出来的物理量(如:熵S ),换成可以直接测量出来的物理量(如T 、V 、p ),或者由状态方程求得的物理量。
物理化学基本概念与计算方法物理化学是物理学和化学的交叉学科,旨在研究物质的性质和变化的基本原理。
它结合了物理学的实验方法和理论模型以及化学的实验技术和分子理论,为我们深入理解和解释化学现象提供了有力工具。
本文将介绍一些物理化学的基本概念和常用的计算方法。
一、热力学:描述物质的能量和热力学性质热力学是物理化学的核心分支之一,研究物质的能量转化和热力学性质。
它描述了物质的热力学状态,包括物态、热能转化、热力学平衡等。
在热力学中,我们常用一些基本概念和定律,如熵、焓、自由能和摩尔热容等。
这些概念帮助我们理解物质在不同条件下的热力学性质,并通过计算方法预测和解释实验现象。
二、量子力学:解释微观粒子的行为量子力学是描述微观粒子行为的物理学理论,它在物理化学中扮演着重要角色。
量子力学解释了微观粒子的波粒二象性,以及粒子在能量级跃迁和原子轨道运动等现象。
在物理化学中,我们经常使用量子力学的计算方法,如薛定谔方程和波函数等,来研究分子的结构和性质。
三、化学动力学:讨论化学反应的速率化学动力学研究化学反应的速率和反应机理。
它涉及到反应速率定律、反应速率常数、反应机理和活化能等概念。
通过实验数据和计算方法,我们可以确定反应速率的表达式,并预测不同条件下的反应速率。
化学动力学的研究对于理解和控制化学反应过程具有重要意义。
四、计算化学:利用计算方法研究和预测物质性质计算化学是利用计算机模拟和计算方法研究和预测物质性质的学科。
它结合了理论模型和实验数据,通过数值计算和模拟得到物质的结构、能量和反应等信息。
计算化学在物理化学和有机化学等领域得到了广泛应用,例如预测分子的谱学性质、计算催化剂的活性和选择性等。
五、分子结构与量子化学:探索物质内部的奥秘分子结构与量子化学研究物质的分子结构和化学键的形成。
它使用分子轨道理论和分子力场方法,揭示了分子内部的奥秘。
通过计算方法,我们可以预测分子的几何构型,计算分子的振动频率和电子结构等。
第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2.焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4.热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
第四章 多组分系统热力学 主要公式及其适用条件1. 偏摩尔量:定义: C n p,T,n X X ⎪⎪⎭⎫⎝⎛∂∂=B B (1)其中X 为广延量,如V ﹑U ﹑S ......全微分式:d ⎛⎫∂∂⎛⎫=++ ⎪ ⎪∂∂⎝⎭⎝⎭∑B B B B Bd d d p,n T,n X X X T p X n T p (2)总和: ∑=BB B X n X (3)2. 吉布斯-杜亥姆方程在T ﹑p 一定条件下,0d BB B =∑X n , 或0d BBB =∑Xx 。
此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。
3. 偏摩尔量间的关系广延热力学量间原有的关系,在它们取了偏摩尔量后,依然存在。
例:H = U + PV ⇒ H B = U B + PV B ; A = U - TS ⇒ A B = U B - TS B ; G = H – TS ⇒ G B = H B - TS B ;…...S T G ;S T G ;V p G V p Gn p,p n T,TB B B B BB -=⎪⎭⎫ ⎝⎛∂∂⇒-=⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂⇒=⎪⎪⎭⎫ ⎝⎛∂∂4. 化学势定义 Cn p,T,n G G μB B ⎪⎪⎭⎫⎝⎛∂∂==B5. 单相多组分系统的热力学公式∑+-=BBB d d d d n μV p S T U∑++=BBB d d d d n μp V S T H ∑+-=BBB d d d d n μV p T S -A∑++=BBB d d d d n μp V T S -GCCCCB B B B B n p,T,n V,T,n p,S,n V,S,n G n A n H n U μ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂====但按定义,只有 CB n p,T,n G ⎪⎪⎭⎫ ⎝⎛∂∂才是偏摩尔量,其余3个均不是偏摩尔量。
6. 化学势判据在d T = 0 , d p = 0 δW ’= 0 的条件下,⎪⎭⎫⎝⎛≤α=<∑∑平衡自发,,00α0 )()d (αBB B n μ 其中,∑α指有多相共存,)(αB μ指 α相内的B 物质。
物理化学热力学第一定律总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )典型例题:3.11思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等。
C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:3.18思考题第2,3,4题书2.18、2.19三、 凝聚态物质的ΔU 和ΔH 只和温度有关ΔU = n C V, m d TT 2T 1 ∫ ΔH = n C p, m d TT 2T 1∫ΔU = nC V, m (T 2-T 1) ΔH = nC p, m (T 2-T 1)ΔU ≈ ΔH = n C p, m d TT 2∫ΔU ≈ ΔH = nC p, m (T 2-T 1)或典型例题:书2.15四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)ΔU ≈ ΔH –ΔnRT(Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
101.325 kPa 及其对应温度下的相变可以查表。
其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。
物理化学公式集热力学第一定律 功:δW=δW e +δW f1膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负. 2非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移.如δW 机械功=fdL,δW 电功=EdQ,δW 表面功=rdA.热 Q :体系吸热为正,放热为负.热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数. 热容 C =δQ/dT1等压热容:C p =δQ p /dT = H/T p 2等容热容:C v =δQ v /dT = U/T v 常温下单原子分子:C v,m =C v,m t =3R/2 常温下双原子分子:C v,m =C v,m t +C v,m r =5R/2 等压热容与等容热容之差:1任意体系 C p —C v =p +U/V T V/T p 2理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v T 1—T 2=p 1V 1—p 2V 2 理想气体多方可逆过程:W =T 1—T 2 热机效率:η= 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ -T ==- 实际气体的ΔH 和ΔU: ΔU=+ ΔH=+化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius 不等式:熵函数的定义:dS=δQR/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式:1组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU=TdS-pdV dH=TdS+VdpdF=-SdT-pdV dG=-SdT+Vdp2Maxwell关系:==-3热容与T、S、p、V的关系:CV =T Cp=TGibbs自由能与温度的关系:Gibbs-Helmholtz公式=-单组分体系的两相平衡:1Clapeyron方程式:=式中x代表vap,fus,sub.2Clausius-Clapeyron方程式两相平衡中一相为气相:=3外压对蒸汽压的影响: pg 是在惰性气体存在总压为pe时的饱和蒸汽压.吉不斯-杜亥姆公式:SdT-Vdp+=0dU=TdS-pdV+ dH=TdS+Vdp+dF=-SdT-pdV+ dG=-SdT+Vdp+在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz自由能的减少.等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs自由能的减少.统计热力学波兹曼公式:S=klnΩ一种分布的微观状态数:定位体系:ti =N 非定位体系:ti=波兹曼分布:=在A、B两个能级上粒子数之比:=波色-爱因斯坦统计:Ni =费米-狄拉克统计:Ni=分子配分函数定义:q=-i为能级能量q=-i为量子态能量分子配分函数的分离:q=q n q e q t q r q v能级能量公式:平动:εt=转动:εr =振动:εv=分子配分函数表达式:平动:当所有的平动能级几乎都可被分子到达时一维:q t=二维:q t=A 三维:q t=转动:线性q r===为转动特征温度非线性q r=振动:双原子分子q V===为振动特征温度多原子线性:q V=多原子非线性:q V=+1电子运动:q e=2j+1 原子核运动:q n=2Sn热力学函数表达式:F=-kTlnq N定位 F=-kTln非定位S=klnq N+NkT定位 S=kln+NkT非定位G=-kTlnq N+NkTV定位G=-kTln+NkTV非定位U=NkT2 H=NkT2+NkTV=P=NkT CV一些基本过程的ΔS、ΔG、ΔF的运算公式W=0f一些基本过程的W、Q、ΔU、ΔH的运算公式Wf =0溶液-多组分体系体系热力学在溶液中的应用溶液组成的表示法:1物质的量分数:2质量摩尔浓度:3物质的量浓度:4质量浓度拉乌尔定律亨利定律:化学势的各种表示式和某些符号的物理意义:气体:1纯理想气体的化学势标准态:任意温度,p=pφ=101325Pa.μφT为标准态时的化学势2纯实际气体的化学势标准态:任意温度,f=pφ且复合理想气体行为的假想态即p =pφ,γ=1,μφT为标准态时的化学势.3混合理想气体中组分B的化学势因为所以不是标准态时的化学势,是纯B气体在指定T、p时的化学势.溶液:1 理想溶液组分的化学势所以不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯液体B的化学势.2 稀溶液中各组分的化学势溶剂:不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯溶剂A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当xB =1,mB=1molkg-1,cB=1moldm-3时且服从亨利定律的那个假想态的化学势.4非理想溶液中各组分的化学势溶剂:不是标准态的化学势,而是aA,x =1即xA=1,γA=1的纯组分A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当aB,x =1,aB,m=1,aB,c=1时且服从亨利定律的那个假想态的化学势. 4活度a的求算公式:ü 蒸汽压法:溶剂aA =γAxA=pA/pA溶质:aB=γBxB=pA/kcü 凝固点下降法:溶剂ü Gibbs-Duhem公式从溶质剂的活度求溶剂质的活度. 5理想溶液与非理想溶液性质:理想溶液:非理想溶液:超额函数:溶液热力学中的重要公式:1 Gibbs-Duhem公式2 Duhem-Margule公式:对二组分体系:稀溶液依数性:1凝固点降低:2沸点升高:3渗透压:化平衡学化学反应亲和势:A=-化学反应等温式:平衡常数的表达式:温度,压力及惰性气体对化学平衡的影响:电解质溶液法拉第定律:Q=nzF m=t+=====r+为离子移动速率,U+U-为正负离子的电迁移率亦称淌度.近似:浓度不太大的强电解质溶液离子迁移数:tB===+=1电导:G=1/R=I/U=kA/l电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1科尔劳乌施经验式:Λm = 离子独立移动定律:= 奥斯特瓦儿德稀释定律:= 平均质量摩尔浓度:=平均活度系数:= 平均活度:== 电解质B 的活度:a B == m +=v +m B m -=v -m B 离子强度:I =德拜-休克尔公式:lg =-A|z +z --| 可逆电池的电动势及其应用 Δr G T,p =-W f,max Δr G mT,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hH E =E φ-标准电动势E φ与平衡常数K φ的关系:E φ= 还原电极电势的计算公式:=计算电池反应的有关热力学函数变化值:= =-zEF + Q R =T = zF zF =电极书面表示所采用的规则:负极写在左方,进行氧化反应是阳极,正极写在右方,进行还原反应是阴极 电动势测定的应用:1求热力学函数变量Δr G m 、Δr G m Φ、、及电池的可逆热效应Q R 等. 2求氧化还原反应的热力学平衡常数K Φ值:K Φ= E Φ=E =3求难溶盐的溶度积K sp 、水的离子积K w 及弱酸弱碱的电离常数等. 4求电解质溶液的平均活度系数和电极的值.5从液接电势求离子的迁移数.Pt,H 2p|HClm|HClm’| H 2p,Pt 1-1价型:E j =E =E c +E j = 高价型:M z+A z -m 1|M z +A z -m 2 E j =6利用醌氢醌电极或玻璃电极测定溶液的pH 电解与极化作用E 分解=E 可逆+ΔE 不可逆+IRΔE不可逆=η阴+η阳η阴=φ可逆-φ不可逆阴η阳=φ不可逆-φ可逆阳φ阳,析出=φ阳,可逆+η阳φ阴,析出=φ阴,可逆-η阴η=a+blnjE实际分解=E理论分解+η阴+η阳+IR对电解池,由于超电势的存在,总是使外加电压增加而多消耗电能;对原电池,由于超电势的存在,使电池电动势变小而降低了对外作功的能力.在阴极上,还原电势愈正者,其氧化态愈先还原而析出;同理,在阳机上,则还原电势愈负者其还原态愈先氧化而析出.需外加电压小化学反应动力学半衰期法计算反应级数:kp =kcRT1-n Ea-Ea’=Q化学反应动力学基础二:ZAB==μ=若体系只有一种分子:ZAA==碰撞参数:b=dABsinθ碰撞截面:反应截面:kSCTT=kSCTT==几个能量之间的关系:Ea =Ec+RT/2=E+mRT=式中是反应物形成活化络合物时气态物质的代数和,对凝聚相反应,=0.对气相反应也可表示为:Ea=式中n为气相反应的系数之和原盐效应:弛豫法:%界面现象与T的关系:两边均乘以T,,即的值将随温度升高而下降,所以若以绝热方式扩大表面积,体系的温度必将下降.杨-拉普拉斯公式:ps为曲率半径,若为球面ps =,平面 ps.液滴愈小,所受附加压力愈大;液滴呈凹形,R‘为负值,ps为负值,即凹形面下液体所受压力比平面下要小.毛细管:ps==Δρgh Δρgh=R为毛细管半径开尔文公式:p0和p分别为平面与小液滴时所受的压力对于液滴凸面R‘>0,半径愈小,蒸汽压愈大.对于蒸汽泡凹面R‘<0,半径愈小,蒸汽压愈小.两个不同液滴的蒸汽压:溶液越稀,颗粒越大.液体的铺展:非表面活性物质使表面张力升高,表面活性物质使表面张力降低.吉不斯吸附公式:为表面超额若,>0,正吸附;,<0,负吸附.表面活性物质的横截面积:Am=粘附功:Wa值愈大,液体愈容易润湿固体,液固界面愈牢.内聚功:浸湿功:铺展系数: ,液体可在固体表面自动铺展.接触角:Langmuir等温式:θ:表面被覆盖的百分数.离解为两个分子:混合吸附:即:BET公式:弗伦德利希等温式:乔姆金吸附等温式:吸附剂的总表面积:S=Am Ln n=Vm/22400cm3mol-1气固相表面催化反应速率:单分子反应:产物吸附很弱产物也能吸附双分子反应:AB都吸附AB均吸附,但吸附的B不与吸附的A反应B不吸附胶体分散体系和大分子溶液布朗运动公式:D为扩散系数球形粒子的扩散系数:渗透压:渗透力:F=扩散力=-F沉降平衡时粒子随高度分布公式:瑞利公式:电势表面电势 Stern电势电解质浓度增加电势减小.电泳速度: k=6时为电泳,k=4时为电渗.大分子稀溶液渗透压公式不是吧。
物理化学公式大全物理化学是研究物质的物理性质和化学性质之间的关系的学科。
以下是一些在物理化学中常用的公式:1.热力学方程:-理想气体状态方程:PV=nRT其中P为气体压强,V为气体体积,n为气体摩尔数,R为气体常数,T为气体温度。
-内能变化公式:ΔU=q+w其中ΔU为系统内能变化,q为系统吸取或放出的热量,w为系统对外界做的功。
-能量守恒定律:ΔE=q+w其中ΔE为系统总能量变化,q为系统吸取或放出的热量,w为系统对外界做的功。
2.动力学方程:-反应速率公式:r=k[A]^m[B]^n其中r为反应速率,k为反应速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。
- Arrhenius 公式:k = A * e^(-Ea/RT)其中 k 为反应速率常数,A 为 Arrhenius 常数,Ea 为活化能,R为气体常数,T 为反应温度。
3.量子力学方程:- 波函数公式:Ψ = Σcnφn其中Ψ 为波函数,cn 为系数,φn 为基态波函数。
- Schroedinger 方程:HΨ = EΨ其中H为哈密顿算符,Ψ为波函数,E为能量。
4.热力学方程:- 熵变公式:ΔS = q_rev / T其中ΔS 为系统熵变,q_rev 为可逆过程吸放热量,T 为温度。
- Gibbs 自由能公式:ΔG = ΔH - TΔS其中ΔG 为 Gibbs 自由能变化,ΔH 为焓变化,ΔS 为熵变化,T 为温度。
5.电化学方程:- Nerst 方程:E = E° - (RT / nF) * ln(Q)其中E为电池电势,E°为标准电势,R为气体常数,T为温度,n为电子数,F为法拉第常数,Q为电化学反应的反应物浓度比。
- Faraday 定律:nF = Q其中n为电子数,F为法拉第常数,Q为电荷数。
以上公式只是物理化学中的一小部分,这里列举的是一些常见的、基本的公式,实际上物理化学领域有非常多的公式和方程可供使用。
第二章 主要公式及适用条件热力学第一定律dU = δQ + δW 或 ∆U = Q + W一.体积功WdV p W amb -=⎰或 dV p W amb -=δ 适用于任何系统、任何过程的体积功的计算。
1.自由膨胀过程(向真空膨胀): W = 02.恒外压过程: )(12V V p W amb --=3.恒容过程:4. 恒压过程: )(12V V p W --= 一定量理想气体恒压过程 T nR W ∆-=5.一定量理想气体恒温可逆过程:1221ln ln p p nRT V V nRT W ==6.一定量理想气体绝热可逆过程W = ΔU = n C v.m (T 2-T 1) 或)11(1111211----=γγγγV V V p W(其中 γ = C p.m / C v.m 称为绝热指数 也称热容商。
)7.恒温恒压相变过程: W = - p (V β-V α )若β相为理想气体: W = - p V g = -nRT8.恒温恒压化学反应;且气体视为理想气体W = - R T(g ) (式中为反应计量系数,反应物为“-”,产物为“+”。
)二.热容热容定义 C = Q / ΔT = δQ / d TC v. m = δQ v / d T = (әU m / әT )vC p. m =δQ p / d T = (әH m /әT )p对理想气体 C p.m – C v.m = R单原子分子 C v.m = 3R /2 , C p.m = 5R / 2双原子分子 C v.m = 5R/2, C p.m =7R /2多原子分子 C v.m = 3 R , C p.m = 4 R三. 热1.封闭体系无非体积功恒容变温过程:dT nC Q T T m V V ⎰=21, 若常数=m V C ,,则)(12,T T nC Q m V V -=2.封闭体系无非体积功恒压变温过程: dT nC Q T T m p V ⎰=21,若常数=m p C ,,则)(12,T T nC Q m p p -=3.绝热过程及理想气体自由膨胀过程:Q = 04.恒温恒压无非体积功的相变过程:Q p = n ΔH m5.恒温恒压与恒温恒容化学反应 Q p 与Q v 关系:Q p –Q v = Δr H – Δr U = R T Δn或Q p.m –Q v.m = Δr H m – Δr U m = R T四.热力学能(内能):ΔU = Q + W1.一定量理想气体恒温过程或隔离体系任何过程 ΔU = 02.封闭体系无非体积功恒容变化或一定量理想气体任何过程dT nC U T T m V ⎰=∆21, 3.绝热过程:ΔU = W (Q =0)五.焓:定义: H = U + p V1. 封闭体系任何过程ΔH = ΔU + Δ(p V ) = ΔU + (p 2V 2 – p 2V 2 )2.封闭体系无非体积功的恒压变化或一定量理想气体任何状态变化过程dT nC H T T m p ⎰=∆21, 3.一定量理想气体恒温、实际气体节流膨胀及恒压无非体积功的绝热化学反应过程 ΔH = 0 。
热力学第一定律△U=Q+W 或dU=ΔQ+δW=δQ-p amb dV+δW` 体积功δW=-p amb dV (1)气体向真空膨胀时体积功所的计算W=0 (2)恒外压过程体积功W=p amb (V 1-V 2)=-p amb △V (3)对于理想气体恒压变温过程W=-p △V=-nR △T (4)可逆过程体积功W r =⎰21p V V dV (5)理想气体恒温可逆过程体积功W r =⎰21p V V dV =-nRTln(V 1/V 2)=-nRTln(p 1/p 2)(6)可逆相变体积功W=-pdV焓Hdef U + p V △H=△U+△(pV) △H=⎰21,T T m p dT nC此式适用于理想气体单纯p VT 变化的一切过程 内能(1)△U=Qv△ U=⎰21,v T T m dT nC =)(12,v T -T m nC 摩尔定容热容C V ,m△ C V ,m =C V /n=(TU mаа)V (封闭系统,恒容,W 非=0)(3)摩尔定压热容C p,m C p,m ==n p C P⎪⎭⎫ ⎝⎛T H m аа (封闭系统,恒压,W 非=0)(4) C p, m 与 C V ,m 的关系系统为理想气体,则有C p, m —C V ,m =R 系统为凝聚物质,则有C p, m —C V ,m ≈0(5)热容与温度的关系,通常可以表示成如下的经验式 C p, m =a+bT+cT2或C p, m =a+b`T+c`T -2式中a 、b 、c 、b`及c`对指定气体皆为常数,使用这些公式时,要注意所适用的温度范围。
(6)平均摩尔定压热容Cp,mCp,m=⎰21,T T m p dT nC (T 2-T 1)四、理想气体可逆绝热过程方程,m2121(/)(/)1V C R T T V V =,m2121(/)(/)1p C RT T p p -= 1)/)(/(1212=r V V p pγγ2211V p V p =ξ=△n B /v BνB 为B 的反应计算数,其量纲为1。
第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T )三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程: W =nRT 1221ln ln p p nRT V V =2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容 热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p =a +bT +c’T 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B mr θθν∆=∆∑ 反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
热力学第一定律1、热力学第一定律:△U=Q+W2、体积功:(1)气体向真空膨胀:W=0(2)气体恒外压膨胀:W=—P外*△V(3)外压比内压差无限小膨胀:W=—∫p*dV 若气体为理想气体时,W=—nRTln(p1/p2)=—nRTln(v2/v1)(4)可逆相变的体积功:W=—nRT3、定容及定压下的热:(焓)△H=△U+△(PV)4、定压下:Q=△H=nCp,m*△T定容下:Q=△U=nCv,m*△T (Cp,m=Cv,m+R)5、理想气体的绝热过程:pV^γ=常数(γ=Cp,m/Cv,m)6、实际气体的节流膨胀(等焓膨胀)△H=07、定容与定压反应热:△H=△U+RT△n (Qp=Qv+RT△n)8、反应进度ζ:ζ=(n2-n1)/v9、任意一反应的反应焓等于产物生成焓之和减去反应物生成焓之和任意一反应的反应焓等于反应物燃烧焓之和减去产物燃烧焓之和10、反应焓与温度的关系(基尔霍夫方程):△H2-△H1=△Cp(T2-T1)热力学第二定律1、克劳休斯不等式:△S>=Q/T2、卡诺热机的效率:η=(T2-T1)/T23、定温过程的熵变:△S=nRln(p1/p2)4、定压熵变:△S=nCp,m*ln(T2/T1)5、定容熵变:△S=nCv,m*ln(T2/T1)6、绝热可逆过程为等熵过程(△S=0)7、定温定容系统:亥姆霍兹函数A=U—TS8、定温定压系统:吉布斯函数G=H—TS=A+pV (可逆相变:△G=0)9、热力学函数之间的关系:dU=TdS-p*dVdH=TdS+VdpdA=-SdT-p*dVdG=-SdT+Vdp10、吉布斯-亥姆霍兹公式:(△G/T2)-(△G/T1)=△H(1/T2-1/T1)。
第三章 热力学第二定律主要公式及使用条件1. 热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
此式适用于在任意两个不同温度的热源之间一切可逆循环过程。
2. 卡诺定理的重要结论2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义4. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆5. 熵判据a mb s y s i s o S S S ∆+∆=∆{0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。
在隔离系统中,不可逆过程即自发过程。
可逆,即系统内部及系统与环境之间皆处于平衡态。
在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。
此式只适用于隔离系统。
6. 环境的熵变rd δ/S Q T =ambys amb amb amb //S T Q T Q s -==∆7. 熵变计算的主要公式222r 111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出(1),m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程(2) T 2112l n (/)l n (/)S n R V V n R p p ∆== 此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
物理化学公式物理化学公式是物理学和化学的交叉学科的重要组成部分,被广泛应用于科学和工程领域。
这些公式描述了物质和能量之间的关系,提供了揭示自然界行为的数学工具。
在本文中,将介绍一些物理化学领域的常见公式。
物理化学学科涉及的公式众多且复杂,其中一些是由著名科学家在长期的研究和实验基础上总结出来的。
以下是一些物理化学中常见的公式:1. 理想气体状态方程:PV = nRT其中,P是气体的压强,V是体积,n是摩尔数,R是气体常数,T 是温度。
该公式描述了理想气体在不同温度和压力下的状态。
2. 质量守恒定律:m₁ + m₂ = m₃这是化学反应中最基本的公式,表示反应前后物质的质量守恒。
3. 热力学第一定律(能量守恒定律):ΔU = q + w其中,ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外做功。
这个公式表明了能量在物理化学过程中的守恒。
4. 阿伏伽德罗常数(用于描述分子和原子间的关系):Nₐ = 6.0221 × 10²³ mol⁻¹它表示在摩尔中包含的粒子数目,由此可推导出物质的摩尔质量。
5. 波尔原子模型公式:E = -2.178 × 10⁻¹⁸ (Z²/n²) J其中,E表示氢原子的能量,Z表示核电荷数,n表示电子的主量子数。
这个公式用于描述氢原子的能级和能量。
6. 平均气体动能公式:KE = (3/2) kT其中,KE表示气体分子的平均动能,k是玻尔兹曼常量,T是温度。
这个公式表明了温度和气体分子动能之间的关系。
7. 化学反应速率公式:v = k[A]ⁿ[B]ᵐ这是描述化学反应速率的公式,v表示反应速率,k是速率常数,[A]和[B]分别表示反应物A和B的浓度,ⁿ和ᵐ是反应物在反应速率中的指数。
8. Nernst方程:E = E° - (RT/nF) ln(Q)该方程描述了电池电势的计算,E表示电池的电势,E°是标准电势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物浓度的比值。
理气:pV=nRT , n = m /M ;分压或分体积;:B =c B RT =p y B ;压缩因子:Z = pV /RT 实/真 体积功:δW = -p 外dV热力学第一定律:∆ U = Q +W , d U =δQ +δW焓的定义: H =U + pV 热容:定容C V ,m = δQ V /dT = (∂ U m /∂ T )V 定压:C p ,m = δQ p /dT = (∂ H m /∂ T )P理气:C p ,m - C V ,m =R ;凝聚态:C p ,m - C V ,m ≈0体积膨胀系数:αV =(əV/əT )P /T等温压缩率:κV =-(əV/əP )T /T范德华方程:(P+a/Vm 2)(Vm -b)=RT,由(əP/əVm)Tc =0 ,(ə2P/əVm 2)Tc =0,可求a,b 波意尔温度T B :P →0 lim (ə(PVm )/əP )T B =0标准摩尔反应焓:∆ r H m θ = ∑ v B ∆ f H B θ (T ) = -∑ v B ∆ c H B θ (T )基希霍夫公式(适用于相变和化学反应过程)∆ r H m θ(T 2)= ∆ r H m θ(T 1)+∫T1T2∆ r C p ,m d T恒压摩尔反应热与恒容摩尔反应热的关系式Q p -Q V = ∆ r H m (T ) -∆ r U m (T ) =∑ v B (g)RT恒温过程d T =0, ∆ U =∆ H =0, Q =W非恒温过程,∆ U = n C V ,m ∆ T , ∆ H = n C p ,m ∆ T对于凝聚物质:∆ U ≈∆ H = n C p ,m ∆ T恒压过程:p 外=p =常数,无其他功W '=0(W = -p 外(V 2-V 1), ∆ H = Q p =∫T1T2 n C p ,m d T ,∆ U =∆ H -∆(pV ),Q =∆ U -W真空膨胀过程p 外=0,W =0,Q =∆ U理想气体结果:d T =0,W =0,Q =∆ U =0,∆ H =0恒容过程: W =0,Q V =∆ U = ∫T1n C V ,m d T,∆ H =∆ U +V ∆ p绝热可逆:W =∫V1V2-p d V = ∆ U =∫T1T2 n C V ,m d T ,∆ H =∆ U +∆ pV 。
物理化学公式汇总物理化学是一门运用物理学的原理和方法来研究化学现象和规律的学科,其中涉及众多的公式。
这些公式是理解和解决物理化学问题的重要工具。
下面为大家汇总一些常见且重要的物理化学公式。
首先是热力学方面的公式。
热力学第一定律:ΔU = Q + W 。
其中,ΔU 表示系统内能的变化,Q 表示系统吸收的热量,W 表示系统对外做功。
这个公式揭示了能量的守恒与转化关系。
热力学第二定律有多种表述方式,其中克劳修斯表述为:热量不能自发地从低温物体传到高温物体。
开尔文表述为:不可能从单一热源吸取热量使之完全变为有用功而不产生其他影响。
熵增原理的数学表达式为:ΔS ≥ 0 ,其中ΔS 表示熵的变化。
熵是系统混乱度的度量。
理想气体状态方程:pV = nRT 。
p 是压强,V 是体积,n 是物质的量,R 是理想气体常数,T 是温度。
这个公式在研究气体的性质和行为时经常用到。
热力学能的定义式:U = U(T, V) 。
表明热力学能是温度和体积的函数。
接着是热力学函数的相关公式。
焓的定义式:H = U + pV 。
吉布斯自由能的定义式:G = H TS 。
在恒温恒压条件下,ΔG ≤ 0 时反应自发进行。
亥姆霍兹自由能的定义式:A = U TS 。
在恒温恒容条件下,ΔA ≤ 0 时过程自发进行。
然后是化学平衡方面的公式。
标准平衡常数表达式:Kθ =Π(piθ)^νi 。
其中piθ 是平衡时各物质的分压,νi 是化学计量数。
范特霍夫等温方程:ΔG =ΔGθ + RTlnQ 。
Q 是反应商,通过比较ΔG 的正负可以判断反应进行的方向。
再来看电化学方面的公式。
法拉第定律:Q = nZF 。
Q 表示通过电极的电量,n 是电极反应中转移的电子数,Z 是离子的电荷数,F 是法拉第常数。
能斯特方程:E =Eθ (RT / nF)lnQ 。
用于计算非标准状态下的电极电势。
最后是动力学方面的公式。
质量作用定律:对于基元反应 aA +bB → cC + dD ,反应速率 v = kA^aB^b 。