设晶体有N个原胞,每个原胞有S个原子,原子总数NS 每个原子3个自由度 总自由度=3NS,总格波数= 3NS.
2: 独立格波的总数=晶体中原子总自由度数
每一种格波都有一定的频率ω和波矢q ,由色散关系ω (q)决定二者关系 该种格波是所有原子都共同参与的集体运动形式,称为:简正振动模式
3NS
ωj (q) j=1,2,…3s 共有3s支 q=q1 q2…qN
吉林建筑工程学院材料学院
3.4声子,声子谱的测定 前面是按经典理论得出结果
第三章 晶格振动与晶体的热学性质
量子理论处理:写出研究对象的哈密顿量,求解相应 的薛定谔方程,求解 哈密顿量=动能+位能 体系能量=格波能量 理论上可以证明: 格波总能量等价于N个简谐振子能量之和
吉林建筑工程学院材料学院
3.4声子,声子谱的测定
说明:振子能量的增减只能是
的整数倍, 3NS种独立格波, 3NS谐振子
吉林建筑工程学院材料学院
因此,与之等价的格波的能量也是量子化的 格波≠谐振子
3.4声子,声子谱的测定
1 E ( n) 2 1 E ( 2) 2 1 E ( 1) 2 1 E 2
第三章 晶格振动与晶体的热学性质
描述晶格振动的基本成分----- 3NS种独立格波
吉林建筑工程学院材料学院
3.4声子,声子谱的测定 理论依据
第三章 晶格振动与晶体的热学性质
运动方程是线性的
d 2 xn m 2 ( xn1 xn1 2 xn ) dt
方程特解为:
xn Ae
i (t naq )
普遍解=特解线性组合 实际运动情况=独立格波线性组合
3.4声子,声子谱的测定
第三章 晶格振动与晶体的热学性质