确定晶格振动谱的实验方法
- 格式:ppt
- 大小:1.39 MB
- 文档页数:11
一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体中原子的振动行为。
在这个模型中,原子由质量为m的核和劲度系数为K的弹性相互作用构成。
通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。
下面将介绍一维单原子链晶格振动解析步骤:第一步:建立模型首先,我们要建立一维单原子链的模型。
假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。
原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。
这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。
第二步:求解运动方程接下来,我们需要求解原子在这个一维单原子链中的运动方程。
假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0))上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) -2*Un(t) + Un(t-0))表示受到的弹性相互作用力。
第三步:假设解的形式由于原子在一维单原子链中的振动属于谐振动问题,我们可以假设原子的位移满足解的形式为:Un(t) = An*exp(i*(k*n*a - ω*t))其中,An是振幅,k是波数,ω是角频率,n是原子的编号。
将这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。
声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。
第四步:得到声子色散关系将解的形式代入运动方程,我们可以得到关于角频率ω和波数k的关系式。
具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|声子色散关系描述了一维单原子链中的声子能量随波数变化的规律。
从这个关系式可以看出,一维单原子链中的声子有声学支和光学支两种振动模式,它们的能量随波数的变化方式不同。
晶体中晶格振动频谱的非谐性效应探究晶体是由排列有序的原子、离子或分子构成的固体。
在晶体中,晶格振动频谱是描述晶体内原子或离子围绕其平衡位置振动的频率分布。
传统的晶格振动频谱假设晶体中原子或离子的振动是谐振子,即其振动是线性的,并且与晶体中其他原子或离子的振动无关。
然而,实际晶体中的晶格振动往往受到非谐性效应的影响,这导致了晶格振动频谱的一些特殊行为。
非谐性效应来源于晶体中原子或离子间的相互作用,这种相互作用本质上是非线性的。
在非谐性振动中,晶格振动的幅度会随着振动的能量增加而变化,这容易导致晶格结构的失稳现象。
非谐性振动可通过分析原子间势能函数的非线性项来建模。
最简单的非线性势能函数是二次谐振子势能函数的修正,其形式为:V(x) = (1/2)kx^2 + (1/3)γx^3 + (1/4)δx^4其中,V(x) 是势能函数,k 是线性弹性常数,γ 是非谐性常数,δ 是更高阶非线性常数。
这个势能函数能够描述晶体中原子或离子振动的非谐性行为。
非谐性振动导致晶体中振动模式的频率发生变化。
传统的谐振子模型中,振动频率只与弹性常数 k 相关。
而在非谐性振动中,振动频率会因为非线性项的存在产生偏移。
随着振动幅度增加,振动频率随之发生改变,呈现出蓝移或红移的现象。
此外,非谐性效应还会引起晶体中的声子相互作用。
声子是描述固体中振动的量子,对于任何晶体,都存在一系列不同的声子模式。
在非谐性振动中,声子之间可以发生相互转化,例如三声子相互作用过程。
这些声子相互作用直接影响晶体的热传导性质和声学性质。
非谐性振动的实验观测可以通过许多技术手段进行,例如拉曼光谱、中子散射和红外光谱等。
这些实验方法可以用来研究晶体中声子的频率和幅度。
通过分析实验结果,可以确定晶体中非谐性效应的程度和影响。
对于晶体中晶格振动频谱的非谐性效应进行深入研究,不仅可以帮助我们更全面地理解晶体的结构和性质,还可以为设计新型材料和开展热传导研究提供有价值的参考。
第三章 晶格振动与晶体热力学性质3-1 一维晶格的振动一、 一维单原子链(简单格子)的振动 1. 振动方程及其解(1)模型:一维无限长的单原子链,原子间距(晶格常量)为a ,原子质量为m 。
用xn 和xk 分别表示序号为n 和k 的原子在t 时刻偏离平衡位置的位移,用x nk = x n -x k 表示在t 时刻第n 个和第k 个原子的相对位移。
(2)振动方程和解平衡时,第k 个原子与第n 个原子相距0r a k n =-)(r u 为两个原子间的互作用势能,平衡时为)(0r u ,t 时刻为)()(0r r u r u δ+=)()(0r r u r u δ+=⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=3332220)(d d 61)(d d 21d d )(000r r u r r u r r u r u r r r δδδ ⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=3332220000d d 61d d 21d d )()(nk r nk r nk r x r u x r u x r u r u r u 第 n 个与第 k 个原子间的相互作用力:⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-=2332200d d 21d d d d nk r nk r nkx r u x r u r u f 振动很微弱时,势能展开式中忽略掉(δr )二次方以上的高次项---简谐近似。
(忽略掉作用力中非线性项的近似---简谐近似。
) 得: nk nk r nkx x r u f β-=⎪⎪⎭⎫ ⎝⎛-=022d d 022d d r r u ⎪⎪⎭⎫⎝⎛=β()k n kn x x f --=∑β原子的振动方程: ()k n knx x mx--=∑β..只考虑最近邻原子间的相互作用,且恢复力系数相等:()()11..+-----=n n n n x x x x n m x ββ ()11..2+----=n n n x x x nm x β给出试探解:()naq t i n A x --=ωe ])1([1e aq n t i n A x +--+=ω原子都以同一频率ω,同一振幅A 振动,其中naq 表示第n 个原子在t=0时刻的振动相位,相邻原子间的位相差为aq 。