《电磁场理论》3.1 唯一性定理
- 格式:ppt
- 大小:655.00 KB
- 文档页数:14
唯一性定理蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。
证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。
如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面1S 、2S 上各自的面电荷分布为σ 和 σe 。
壳内外的场是这四部分电荷共同激发的。
根据定理,首先写出壳内空间电势应满足的条件:(一) 2ρϕε∇=- ,ρ 为壳内电荷分布。
(二)壳内表面1S 上的边界条件是:2S 上的总电量 1s dS q σ=-⎰ (1)其中 Vq dV ρ=⎰ 是壳内的总电量,V 是壳内区域的体积。
在壳层内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1)成立。
因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - ,和导体壳本身是有电势还是用总电量给定无关。
根据唯一性定理,满足(一)、(二)的ϕ 就是解。
由于(一)e和(二)与壳外的ρe 和 σρ 的电势并不唯一,可以差一个常数。
当然当壳用电势 0φ 给定时,1S 上的边界条件就是10|S ϕφ= 。
所以壳内不但电场唯一,而且电势也是唯一。
2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。
试用唯一性定理: (一)判断0R φ是否球壳外空间的电势分布。
(二)求球壳内空间的电势分布解:(一)首先必须找出球内外电势应满足的条件,他们是:(a )20∇ϕ=(b )球壳外表面1S 上的边界条件,10s ϕ=φ (c )无穷远边界条件,0R →∞ϕ→若R φ是解,根据唯一性定理,它必须满足以上三个条件。
下面来检验:220010R Rφ∇=φ∇= (0),R ≠ 方程已满足。
电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义?矢量场F穿出闭合曲面S的通量为:当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。
当小于0时,小于有汇集矢量线的源,称为负通量源。
当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。
1.8什么是散度定理?它的意义是什么?矢量分析中的一个重要定理:称为散度定理。
意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。
1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义?矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。
大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。
等于0,表示场中没有产生该矢量场的源。
1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗?在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。
能用于闭合曲面.1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性?=0,即F为无散场。
1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性?=0即为无旋场1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?不对。
电力线可弯,但无旋。
1.14 无旋场与无散场的区别是什么?无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。
二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
《电磁场》复习题A一、填空题1、描述电场对于电荷作用力的物理量叫做______________。
2、E线和等位面之间的关系是______________,和电场强度关系是______________。
3、静电场中的折射定律是______________。
4、静电场边界条件中的自然边界条件是______________。
5、静电场中,虚位移法求静电力的两个公式是______________、______________。
6、恒定磁场中的分界面衔接条件是______________、______________。
7、恒定磁场的泊松方程为______________。
8.材料能够安全承受的最大电场强度称为___________。
9.平板电容器的板面积增大时,电容量___________。
10.在均匀媒质中,电位函数满足的偏微分方程称为___________。
11.深埋于地下的球形导体接地体,其半径越大,接地电阻越___________。
12.多匝线圈交链磁通的总和,称为___________。
13.恒定磁场中的库仑规范就是选定矢量磁位A的散度为___________。
14.磁通连续性定理的微分形式是磁感应强度B的散度等于___________。
15.正弦电磁波在单位长度上相角的改变量称为___________。
16.电磁波的传播速度等于___________。
17.电场能量等于电场建立过程中外力所做的___________。
二、选择题1.两点电荷所带电量大小不等,则电量大者所受作用力()A.更大B.更小C.与电量小者相等D.大小不定2.静电场中,场强大处,电位()A.更高B.更低C.接近于零D.高低不定3.A 和B 为两个均匀带电球,S 为与A 同心的球面,B 在S 之外,则S 面的通量与B 的( )A .电量及位置有关B .电量及位置无关C .电量有关、位置无关D .电量无关、位置有关4.一中性导体球壳中放置一同心带电导体球,若用导线将导体球与中性导体球壳相联,则导体球的电位( )A .会降低B .会升高C .保护不变D .变为零5.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的() A .ε倍 B .εr 倍C .倍ε1D .倍r1ε6.导电媒质中的恒定电流场是( )A .散度场B .无散场C .旋度场D .无旋场7.在恒定电场中,电流密度的闭合面积分等于( )A .电荷之和B .电流之和C .非零常数D .零8.电流从良导体进入不良导体时,电流密度的切向分量( )A .不变B .不定C .变小D .变大9.磁感应强度B 的单位为( )A .特斯拉B .韦伯C .库仑D .安培10.如果在磁媒介中,M 和H 的关系处处相同,则称这种磁媒质为( )A .线性媒质B .均匀媒质C .各向同性媒质D .各向异性媒质三、名词解释1、非极性分子2、体电流密度3、恒定磁场4、时变场5、动生电动势四、简答题1、什么是唯一性定理?2、什么是传导电流、什么是运流电流,什么是位移电流。
时变电磁场唯一性定理下面我们讨论由多种媒质所组成的场域V 。
为叙述方便,先引入内边界面和外边界面的概念。
内边界面是指边界面两侧区域都是场域的边界面,内边界面位于场域V 内。
外边界面是指边界面两侧区域中有一侧属于场域V 而另一侧不属于场域V 的边界面,外边界面是场域最外侧的边界面。
内边界面的两侧区域都是未知的待求场域;而外边界面的两侧区域中有一侧是待求场域而另一侧是常量为已知的场域。
唯一性定理 假设:1)形状不随时间t 变化的场域V 是由m 个线性媒质1V , 2V ,...,m V 所组成,i V 的边界面i Γ是由分片光滑曲面所组成的闭曲面,V 的外表面是Γ,1,2,...,i m =。
2)外部电流源s J 和K 分布在有限区域内,矢量,,,,,s e h e h J K G G F F 和标量ρ是不全为零的有界的已知量。
3)媒质i V 的介电常量0i ε>,磁导率0i μ>,电导率0i γ≥,1,2,...i m =。
4) i V 中的电场强度i E 和磁场强度H i 在闭如果区间i i V +Γ上存在连续偏导数,1,2,...,i m =。
在上述条件下,如果由以下初边值(2.79)—(2.90)所确定的场量E 和H 存在,那么它们分别有唯一的有界非零解。
1. 约束方程()()()(),(),,s M t M M M t M t t γε∂⎛⎫∇⨯-+= ⎪∂⎝⎭H E J (2.79)()()(),,0M t M M t tμ∂∇⨯+=∂E H (2.80) M V ∈, 0t >2.初始条件 ()()0,|t e M t M ==E G , M V ∈ (2.81)()()0,|t h M t M ==H G , M V ∈ (2.82)()0,|0t M t μ=∇=⎡⎤⎣⎦H , M V ∈ (2.83)()()0,|t M t M ερ=∇=⎡⎤⎣⎦E , M V ∈ (2.84)3.内边界面上得边界条件在内边界面ij Γ上场量应同时满足以下两式:()()(),,0ij j i p p t p t ⎡⎤⨯-=⎣⎦n E E (2.85)()()()(),,,ij j i ij p p t p t p t ⎡⎤⨯-=⎣⎦n H H K (2.86)以上两式中,各个场量的含义为()(),,lim j j j p p p t p t →=E E , ()(),,lim i i i p pp t p t →=E E()(),,lim j j j p p p t p t →=H H ,()(),,lim i i i p pp t p t →=H Hi i p V ∈,j j p V ∈, ij p ∈Γ, i j <, 0t >1,2,...,1i m =-;2,3,...,j m =4.外边界面上的边界条件在外变截面out Γ上,场量仅需满足以下两式的其中之一:()()(),,e Q Q t Q t ⨯=n E F (2.87)或()()(),,h Q Q t Q t ⨯=n H F (2.88)以上两式中,场量的含义为()(),,lim M Q Q t M t →=E E ,()(),,lim M QQ t M t →=H HM V ∈, out Q ∈Γ, t o >5. 无限远条件当场域是无界区域时,在无限远处场量应同时满足以下两式: lim er r →∞=E D (2.89) lim h r r →∞=H D(2.90)符号说明:ij Γ是i V 和j V 的公共变截面,由于ij Γ位于V 内,所以ij Γ为内边界面;Γ是整个区域V 的外表面,当V 是有界区域时Γ就是外边界面out Γ,当V 是无界区域时out in Γ=Γ+Γ,这里in Γ是无界区域中无限假想的光滑曲面;ij n 是ij Γ上从i V 指向j V 的单位法向矢量;s J 和ij K 分别是外源的电流密度和电流面密度;n 是外边界面out Γ上得单位法向矢量;e G ,h G ,e F ,h F 均为已知的矢量函数;ρ是分布在有限区域内的外源电荷密度;r 是坐标原点o 到场点p 之间的距离;e D 和h D 分别是与坐标无关的有界常矢量。
《电磁场与电磁波》试题《电磁场与电磁波》试题.txt 2.设线性各向同性的均匀媒质中,称为方程。
3.时变电磁场中,数学表达式称为。
4.在理想导体的表面,的切向分量等于零。
5.矢量场穿过闭合曲面S的通量的表达式为:。
6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。
8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。
二、简述题(每小题5分,共20分)11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题(每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量,,求(1)(2)17.在无源的自由空间中,电场强度复矢量的表达式为(1)试写出其时间表达式;(2)说明电磁波的传播方向;四、应用题(每小题10分,共30分)18.均匀带电导体球,半径为,带电量为。
试求(1)球内任一点的电场强度(2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示),(1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程;(2)求槽内的电位分布五、综合题(10 分)21.设沿方向传播的均匀平面电磁波垂直入射到理想导体,如图3所示,该电磁波电场只有分量即(1) 求出入射波磁场表达式;(2) 画出区域1中反射波电、磁场的方向。
电磁场与电磁波复习资料⼀、名词解释1. 通量、散度、⾼斯散度定理通量:⽮量穿过曲⾯的⽮量线总数。
(⽮量线也叫通量线,穿出的为正,穿⼊的为负)散度:⽮量场中任意⼀点处通量对体积的变化率。
⾼斯散度定理:任意⽮量函数A的散度在场中任意⼀个体积内的体积分,等于该⽮量函在限定该体积的闭合⾯的法线分量沿闭合⾯的⾯积分。
2. 环量、旋度、斯托克斯定理环量:⽮量A沿空间有向闭合曲线C的线积分称为⽮量A沿闭合曲线l的环量。
其物理意义随A所代表的场⽽定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重⼒场中,环量是重⼒所做的功。
旋度:⾯元与所指⽮量场f之⽮量积对⼀个闭合⾯S的积分除以该闭合⾯所包容的体积之商,当该体积所有尺⼨趋于⽆穷⼩时极限的⼀个⽮量。
斯托克斯定理:⼀个⽮量函数的环量等于该⽮量函数的旋度对该闭合曲线所包围的任意曲⾯的积分。
3. 亥姆霍兹定理在有限区域V内的任⼀⽮量场,由他的散度,旋度和边界条件(即限定区域V的闭合⾯S上⽮量场的分布)唯⼀的确定。
说明的问题是要确定⼀个⽮量或⼀个⽮量描述的场,须同时确定其散度和旋度4. 电场⼒、磁场⼒、洛仑兹⼒电场⼒:电场⼒:电场对电荷的作⽤称为电⼒。
磁场⼒:运动的电荷,即电流之间的作⽤⼒,称为磁场⼒。
洛伦兹⼒:电场⼒与磁场⼒的合⼒称为洛伦兹⼒。
5. 电偶极⼦、磁偶极⼦电偶极⼦:⼀对极性相反但⾮常靠近的等量电荷称为电偶极⼦。
磁偶极⼦:尺⼨远远⼩于回路与场点之间距离的⼩电流回路(电流环)称为磁偶极⼦。
6. 传导电流、位移电流传导电流:⾃由电荷在导电媒质中作有规则运动⽽形成的电流。
位移电流:电场的变化引起电介质内部的电量变化⽽产⽣的电流。
7. 全电流定律、电流连续性⽅程全电流定律(电流连续性原理):任意⼀个闭合回线上的总磁压等于被这个闭合回线所包围的⾯内穿过的全部电流的代数和O8. 电介质的极化、极化⽮量电介质的极化:把⼀块电介质放⼊电场中,它会受到电场的作⽤,其分⼦或原⼦内的正,负电荷将在电场⼒的作⽤下产⽣微⼩的弹性位移或偏转,形成⼀个个⼩电偶极⼦,这种现象称为电介质的极化。
5ξ电磁场的边值关系一.引言当介质分布均匀时,出现了界面,→D ,→B 有跃变,界面两侧场值的关系 1.边值关系:描述介质界面两侧的场矢量与界面上电荷,电流的关系 2.麦氏方程组的微分形式要求→E ,→D ,→B ,→H 在介质中连续麦氏方程组的积分形式在场量不连续时不成立。
故不能用微分形式导出边值关系,而用积分形式讨论边值关系。
⎪⎪⎪⎭⎪⎪⎪⎬⎫=∙=∙⎰⎰⎰→→→→s s v S d B dv S d D 0ρ⇒导出法向关系⎪⎪⎪⎭⎪⎪⎪⎬⎫∙∂∂+∙=∙∙∂∂-=∙⎰⎰⎰⎰⎰→→→→→→→→→→s s l l S d t DS d j l d H S d tB l d E ⇒导出切向关系二.边值关系(法向关系证明从略,切向关系讲一例后推论) 1.→D 的法向有跃变⎰⎰=∙→→vsdv S d D ρ⇒σfD D n =-∙→→→)(12 (1)推论:εσσρρε0120)()(1pf v pf sE E n dv S d E +=-∙⇒+=∙→→→→→⎰⎰ (2)dv S d P ps⎰⎰-=∙→→ρ→⇒n )(12→→-∙P P =-σP(3)2.→B 的法向连续0)(0)(0112212=-∙−−−−→−=-∙⇒=∙→→→→→→→→⎰H u H u B B n n S d B s线性各向同性(4) 3.的→E 切向连续→→→→∙-=∙⎰⎰S d B dt d l d E s l 0)(12=-⨯⇒→→→E E n E Et t12= (5)4.的切向跃变→H→→→→→→→→→→=-⨯⇒∙∂∂+∙=∙⎰⎰⎰αf sflH H jn s d t DS d l d H )(12 (6)0)(012=-⨯=→→→→H H n f时,αH Ht t12= (7)线性各向同性:uB uBtt 1122=(8)推论:→→→→→→→→=-⨯⇒∙=∙⎰⎰αm s Ml M M jn S d l d M )(12 (9)5.→jf的法向跃变⎰⎰-=∙→→dv dt dS d sfjρtn f f f jj ∂∂-=-∙⇒→→→σ)(12 (10)0=∂∂t时,0)(12=-∙→→→jj f f n (11)三.说明1.上述关系在介质界面静止时导出,运动时,D ,B 法向关系仍成立,但E ,H 切向改变2.规定:界面法向n 从介质1指向介质2,否则差一负号3.具普遍意义:对任意矢量场,只要场方程与麦式方程组形式相同,其边值关系亦相同。