《电动力学第三版》chapter2_2唯一性定理
- 格式:ppt
- 大小:460.50 KB
- 文档页数:13
场:描述一定空间中连续分布的物质对象的物理量。
梯度:函数在空间某点的方向导数有无穷多个,其中值为最大的那个定义为梯度。
唯一性定理:在空间某一区域内给定场的散度和旋度以及矢量场在区域边界上的法线分量,则该矢量场在区域内是唯一确定的。
第一章电磁现象的普遍规律静电场:它的方向沿试探电荷受力的方向,大小与试探点电荷无关。
给定Q,它仅是空间点函数,静电场是一个矢量场。
场的叠加原理:电荷系在空间某点产生的电场强度等于组成该电荷系的各点电荷单独存在时在该点产生的场强的矢量和。
电荷守恒定律:封闭系统内的总电荷严格保持不变。
对于开放系统,单位时间流出区域V 的电荷总量等于V内电量的减少率。
电磁感应现象的实质:变化磁场激发电场。
有极分子:无外场时,正负电荷中心不重合,有分子电偶极矩。
但固有取向无规,不表现宏观电矩。
无极分子:无外场时,正负电荷中心重合,无分子电偶极矩,也无宏观电矩。
分子电流:介质分子内部电子运动可以认为构成微观电流。
无外场时,分子电流取向无规,不出现宏观电流分布。
介质的极化:介质中分子和原子的正负电荷在外加电场力的作用下发生小的位移,形成定向排列的电偶极矩。
或原子、分子固有电偶极矩不规则的分布,在外场作用下形成规则排列。
极化使介质内部或表面上出现的电荷称为束缚电荷。
介质的磁化:介质中分子或原子内的电子运动形成分子电流,微观上形成不规则分布的磁偶极矩。
在外磁场力作用下,磁偶极矩定向排列,形成宏观上的磁偶极矩。
传导电流:介质中可自由移动的带电粒子,在外场力作用下,导致带电粒子的定向运动,形成电流。
磁化电流:当介质被磁化后,由于分子电流的不均匀会出现宏观电流,称为磁化电流。
能量:物质运动强度的量度,表示物体做功的物理量。
主要形式:机械能、热能、化学能、电磁能、原子能。
能量守恒与转化:能量在不同形式之间可以相互转化,但总量保持不变。
能流密度矢量(玻印亭矢量):它表示单位时间、垂直通过单位面积的能量,用来描述能量的传播。
电动力学第三版pdf
《电动力学第三版》是由赫伯特·梅斯和罗伯特·塞波尔联合撰
写的一部指南,用于指导电动力学的研究。
书中首先介绍了电动力学
的基础知识,概述了主要的物理学定律,研究了电场、磁场和重力,
并展示了它们之间的相互作用。
接下来,介绍了磁力线和漫射理论,
讨论了电动机的性能结构以及适用集成电路和电源控制系统的设计等。
最后,作者们还讨论了用于把电动力学原理应用于日常生活中的应用,如飞行器推进和流体控制等。
《电动力学第三版》为学习、研究电动
力学提供了宝贵的参考资源。
电动力学重点知识总结(期末复习必备)静电场的基本方程可以用微分形式和积分形式表示。
微分形式为$\nabla\times\mathbf{E}=0$,积分形式为$\oint\mathbf{E}\cdot d\mathbf{l}= -\int_S(\nabla\cdot\mathbf{E})dS=\frac{1}{\epsilon}\int_V\rho(\m athbf{x'})dV'$。
这些方程反映了电荷激发电场及电场内部联系的规律性,物理图像是电荷是电场的源,静电场是有源无旋场。
静磁场的基本方程也可以用微分形式和积分形式表示。
微分形式为$\nabla\times\mathbf{B}=\mu\mathbf{J}$,积分形式为$\oint\mathbf{B}\cdot d\mathbf{l}=\mu I$。
这些方程反映了静磁场为无源有旋场,磁力线总闭合的规律性。
它的激发源仍然是运动的电荷。
需要注意的是,静电场可以单独存在,而稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。
电荷守恒实验定律表明了电荷的守恒性质,即$\nabla\cdot\mathbf{J}+\frac{\partial\rho}{\partial t}=0$。
稳恒电流的情况下,$\nabla\cdot\mathbf{J}=0$。
稳恒电流的情况下,$\nabla\cdot\mathbf{J}=n(\mathbf{J}_s-\mathbf{J})$。
真空中的麦克斯韦方程组包括四个方程,分别是$\nabla\times\mathbf{E}=-\frac{\partial\mathbf{B}}{\partial t}$,$\nabla\times\mathbf{B}=\mu\mathbf{J}+\mu\epsilon\frac{\partial\mathbf{E}}{\partial t}$,$\nabla\cdot\mathbf{E}=\frac{\rho}{\epsilon}$,$\nabla\cdot\mathbf{B}=0$。
第二章 静 电 场静电场:静止电荷或电荷分布不随时间变化产生的电场一.主要内容:应用电磁场基本理论解决最简单的问题:电荷静止或电荷分布不随时间变化,产生的场不随时间变化的静电场问题。
本章研究的主要问题是:在给定自由电荷分布及介质和导体分布的情况下如何求解静电场。
由于静电场的基本方程是矢量方程,求解很难,并不直接求解静电场的场强,而是通过静电场的标势来求解。
首先根据静电场满足的麦克斯韦方程,引入标势,讨论其满足的微分方程和边值关系。
在后面几节中陆续研究求解:分离变量法、镜像法和格林函数法。
最后讨论局部范围内的电荷分布所激发的电势在远处的展开式。
知 识 体 系:1.静电场的微分方程:0=⨯∇ED ρ∇⋅= 边值关系:()12=-⨯E E n()21n D D σ⋅-= 静电场的能量:12W E DdV ∞=⋅⎰ 12V W dV ρϕ=⎰2.静电边值问题的构成:21122121S S S S S S n n n ρϕεϕϕϕϕεεσϕϕ⎧∇=-⎪⎪=⎪⎪∂∂⎨-=-⎪∂∂⎪∂⎪⎪∂⎩或 3.静电边值问题的基本解法: (1)镜像法 (2)分离变量法条件:电势满足拉普拉斯方程:20ϕ∇= (3)电多极矩引入电势:E ϕ=-∇ 122121SSSSnnϕϕϕϕεεσ⎧=⎪⎨∂∂-=-⎪∂∂⎩——微分方程 ——边界条件(由唯一性定理给出)(4) 格林函数法二.内容提要:1.静电场的电势及其微分方程: (1)电势和电势梯度因为静电场为无旋场,即0=⨯∇E,所以可以引入标量函数ϕ,引入后ϕ-∇=E电势差:空间某点电势无物理意义,但两点间电势差有意义选空间有限两点Q P →⎰⋅-=-QPP Q l d E ϕϕ参考点:(1)电荷分布在有限区域,通常选无穷远为电势参考点 )(0∞→=∞Q ϕ⎰∞⋅=PP l d E ϕ(2)电荷分布在无限区域不能选无穷远点作参考点,否则积分将无穷大。
电荷分布在有限区域时的几种情况的电势 (1) 真空中点电荷300()44PQr QP dl r rϕπεπε∞'=⋅='⎰无限大均匀线性介质中点电荷 : rQ πεϕ4=(2) 电荷组 : ∑==ni ii r Q P 104)(πεϕ(3) 连续分布电荷:无穷远处为参考点⎰''=VrV d x P 04)()(περϕ(2)电势满足的微分方程和边值关系泊松方程:ερϕ-=∇2 ○1 其中ρ仅为自由电荷分布,适用于均匀各向同性线性介质。