§ 3.1 解的存在唯一性定理和逐步逼近法
- 格式:ppt
- 大小:1.19 MB
- 文档页数:37
§3.1 解的存在唯一性定理与逐步逼近法习题与解答1 求方程dxdy =x+y 2通过点(0,0)的第三次近似解; 解: 取0)(0=x ϕ 200200121)()(x xdx dx y x y x xx ==++=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x +=+=++=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003+++=⎰ϕ = 1185244001160120121x x x x +++2 求方程dxdy =x-y 2通过点(1,0)的第三次近似解; 解: 令0)(0=x ϕ则 200200121)()(x xdx dx y x y x xx ==-+=⎰⎰ϕ 522200210220121])21([])([)(x x dx x x dx x x y x x x -=-=-+=⎰⎰ϕϕ dx x x x y x x ])20121([)(252003--+=⎰ϕ =1185244001160120121x x x x -+-3 题 求初值问题:⎪⎩⎪⎨⎧=-=0)1(2y x dx dy R :1+x ≤1,y ≤1 的解的存在区间,并求解第二次近似解,给出在解的存在空间的误差估计;解: 因为 M=max{22y x -}=4 则h=min(a,M b )=41 则解的存在区间为0x x -=)1(--x =1+x ≤41 令 )(0X ψ=0 ;)(1x ψ=y 0+⎰-xx x 0)0(2dx=31x 3+31; )(2x ψ =y 0+])3131([2132⎰-+-xx x dx=31x 3-9x -184x -637x +4211 又 yy x f ∂∂),(2≤=L 则:误差估计为:)()(2x x ψ-ψ≤322)12(*h L M +=24114 题 讨论方程:3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件, 并求通过点(0,0)的一切解;解:因为yy x f ∂∂),(=3221-y 在y 0≠上存在且连续; 而3123y 在y 0 σ≥上连续 由 3123y dx dy =有:y =(x+c )23又 因为y(0)=0 所以:y =x 23另外 y=0也是方程的解;故 方程的解为:y =⎪⎩⎪⎨⎧≥00023 x x x或 y=0;6题 证明格朗瓦耳不等式:设K 为非负整数,f(t)和g(t)为区间βα≤≤t 上的连续非负函数, 且满足不等式:f(t)≤k+⎰tds s g s f α)()(,βα≤≤t则有:f(t)≤kexp(⎰tds s g α)(),βα≤≤t证明:令R (t )=⎰tds s g s f α)()(,则R '(T)=f(t)g(t)R '(T)-R(t)g(t)= f(t)g(t)- R(t)g(t) ≤kg(t)R '(T)- R(t)g(t)≤kg(t);两边同乘以exp(-⎰tds s g α)() 则有:R '(T) exp(-⎰tds s g α)()-R(t)g(t) exp(-⎰t ds s g α)()≤ kg(t) exp(-⎰tds s g α)()两边从α到t 积分:R(t) exp(-⎰t ds s g α)()≤-⎰t ds s kg α)(exp(-⎰tdr r g α)()ds即 R(t) ≤⎰t ds s kg α)( exp(-⎰tsdr r g )()ds又 f(t) ≤1≤k+R(t) ≤k+k ⎰t s g α)(exp(-⎰tsdr r g )()ds≤k(1-1+ exp(-⎰t s dr r g )()=k exp(⎰stdr r g )()即 f(t) ≤k ⎰tdr r g α)(;7题 假设函数f(x,y)于(x 0,y 0)的领域内是y 的 不增函数,试证方程dxdy = f(x,y)满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多只有一个解; 证明:假设满足条件y(x 0)= y 0的解于x ≥ x 0一侧有两个ψ(x),ϕ(x) 则满足:ϕ(x)= y 0+⎰xx x x f 0))(,(ϕdxψ(x)= y 0+⎰xx x x f 0))(,(ψdx不妨假设ϕ(x) ψ(x),则ϕ(x)- ψ(x)≥0而ϕ(x)- ψ(x)= ⎰x x x x f 0))(,(ϕdx-⎰xx x x f 0))(,(ψdx=⎰-xx x x f x x f 0))(,())(,([ψϕdx又因为 f(x,y)在(x 0,y 0)的领域内是y 的 增函数,则: f(x, ϕ(x))-f(x, ψ(x))≤0则ϕ(x)- ψ(x)= ⎰-xx x x f x x f 0))(,())(,([ψϕdx ≤0则ϕ(x)- ψ(x)≤0所以 ϕ(x)- ψ(x)=0, 即 ϕ(x)= ψ(x) 则原命题方程满足条件y(x 0)= y 0的解于x ≥ x 0一侧最多 只有一个解;。
第三章一阶微分方程的解的存在定理微分方程来源于生产实际,研究微分方程的目的就在于掌握它所反映的客观规律,能动地解释所出现的各种现象并预料未来的可能情况。
对于反映某一运动规律的微分方程,如果能找出其通解的表达式,一般来说,就能按给定的一定条件相应地选定其中的任意常数,获得所需要的特解并通过其表达式了解它对某些参数的依赖情况,从而适当地选择这些参数,使得对应的解——“运动”具有所需的性能。
在第二章里,我们已经介绍了能用初等解法的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求出它的通解的,而实际问题中所需要的往往是要求满足某种初始条件的解。
因此,对初值问题的研究被提到了重要的地位。
自然要问:初值问题的解是否存在?如果存在是否唯一呢?容易举出解存在而不唯一的例子。
例如方程过点的解就不是唯一的。
事实上,易知是方程的过点的解。
此外,容易验证或更一般地,函数都是方程的过点而定义与区间上的解,这里的满足的任一数。
本章介绍的存在唯一定理完满地回答了上面提出的问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义。
另一方面,由于能求得精确解的微分方程为数不多,微分方程的近似解法具有十分重大的实际意义,而解的存在和唯一又是进行近似计算的前提。
因为如果解根本不存在,却要去近似地求它,显然问题本身是没有意义的;如果有解存在而不唯一,由于不知道要确定是哪一个解,却要去近似地确定它,问题也是不明确的。
解的存在唯一性定理保证了所要求的解的存在和唯一,因此它也是近似求解法的前提和基础。
此外,我们将看到在定理的证明过程中还具体地提供了求近似解的途径,这就更增添了存在唯一性定理的实用意义。
由于种种条件的限制,实际测出的初始数据往往是不精确的,它只能近似地反映初始状态。
因此我们以它作为初始条件所得到的解是否能用做真正的解呢?这就产生了了解对初始值的连续依赖性问题,即当初始值微小变动时,方程的解的变化是否也是很小呢?如果不然的话,这样所求得的解就失去实用的意义,因它可能与实际情况产生很大的误差。
§3.1 解的存在唯一性定理与逐步逼近法 教学内容:介绍和证明解的存在唯一性定理;近似解的求解以及误差估计。
教学目标:掌握解的存在唯一性定理及其证明方法----Picard 逼近法问题的提出:我们在第二章介绍了一阶微分方程的几种解法,同时告诉我们大量的一阶微分方程不能用初等解法求其通解,而现实中所需要的恰恰是满足某种初值条件的解(包括数值形式的数值解),我们把主要精力集中在cauchy 问题()00(,),,dyf x y dxx y ϕ⎧=⎪⎨⎪=⎩的求解上。
与代数方程类似,对于不能用初等解法求解的微分方程,我们往往用数值方法求解(这是以后要学的计算方法的内容之一)。
在用数值方法求解cauchy 问题之前我们必须要解决两个基本问题。
(1)cauchy 问题()00(,)dyf x y dx x y ϕ⎧=⎪⎨⎪=⎩的解是否存在?如果解不存在,要去求解就毫无意义。
后面我们将给出cauchy 问题解存在的一般条件。
(2)若已知cauchy 问题的解存在,我们还必须进一步确认这样的解是否唯一?由于解不唯一,却要近似的去求其解,其问题也不明确。
例如 22dyx y dx=+,形式简单,但不能用初等方法求解。
例如 考虑cauchy 问题()00dyy dx y ⎧'==⎪⎨⎪=⎩的解的情况。
易知0y =是方程的解。
此外容易验证,2y x =或更一般地,函数20,0,(),1x c y x c c x ≤≤⎧=⎨-<≤⎩都是方程的过点(0,0)而定义于区间[0,1]上的解,其中c 是满足01c <<上的任意数。
解决问题的意义:1、 它是常微分方程理论中最基本的定理,具有重大的理论意义;2、 是进行近似计算的前提与基础,具有重大的实际意义;3、 定理的证明中给出了解的求解方法——Picard 逼近法,具有一般的意义,为求近似解提供了理论依据。
一、解的存在唯一性定理(一)首先考虑可从一般形式(,,)0F x y y '=解出 (,)dyf x y dx=的情形。
一阶常微分方程解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1)首先考虑导数已解出的一阶微分方程(3.1.1.1)这里是在矩形域(3.1.1.2)上的连续函数。
定义1 如果存在常数,使得不等式对于所有都成立,则函数称为在上关于满足利普希茨(Lipschitz)条件,称为利普希茨常数。
定理3.1 如果在上连续且关于满足利普希茨条件,则方程(3.1.1.1)存在唯一的解,定义于区间上,连续且满足初始条件(3.1.1.3)这里,。
我们采用皮卡(Picard)的逐步逼近法来证明这个定理。
为简单起见,只就区间来讨论,对于的讨论完全一样。
现在简单叙述一下运用逐步逼近法证明定理的主要思想。
首先证明求微分方程的初值问题的解等价于求积分方程的连续解。
然后去证明积分方程的解的存在唯一性。
任取一个连续函数代入上面积分方程右端的,就得到函数,显然也是连续函数,如果,那末就是积分方程的解。
否则,我们又把代入积分方程右端的,得到,如果,那末就是积分方程的解。
否则我们继续这个步骤。
一般地作函数(3.1.1.4)这样就得到连续函数序列:,,…,,….如果,那末就是积分方程的解。
如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数,即存在,因而对(3.1.1.4)取极限时,就得到即,这就是说是积分方程的解。
这种一步一步地求出方程的解的方法就称为逐步逼近法。
由(3.1.1.4)确定的函数称为初值问题(3.1.1.1)、(3.1.1.3)的第次近似解。
在定理的假设条件下,以上的步骤是可以实现的。
下面我们分五个命题来证明定理1。
命题1设是方程(3.1.1.1)的定义于区间上,满足初始条件(3.1.1.3)的解,则是积分方程(3.1.1.5) 的定义于上的连续解。
反之亦然。
证明因为是方程(3.1.1.1)的解,故有,两边从到取定积分得到把(3.1.1.3)代入上式,即有因此,是(3.1.1.5) 的定义于上的连续解。
§3。
1解的存在唯一性定理与逐次逼近法一、教学目的:讨论Picard 逼近法及一阶微分方程的解的存在与唯一性定理。
二、教学要求:熟练掌握Picard 逼近法,理解解的存在唯一性定理的条件、结论及证明思路,会用Picard 逼近法求近似解。
三、教学重点:Picard 存在唯一性定理及其证明。
四、教学难点:解的存在唯一性定理的证明.五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。
六、教学手段:传统板书与多媒体课件辅助教学相结合. 七、教学过程:3.1.1.解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础.例如方程dydx=过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数20 0() c<1x cy x c x ≤≤⎧=⎨-≤⎩都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。
解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。