静电唯一性定理
- 格式:doc
- 大小:64.00 KB
- 文档页数:2
关于静电场的唯一性定理静电场的唯一性定理被称为静电学中的一颗明珠。
说说静电场唯一性定理的重大意义。
静电场的唯一性定理是以库仑定律为基础推导出来的一个极为重要和有用的定理,它是静电学中极有品位和令人赞叹的定理。
静电场的唯一性定理有许多种表述。
其中一种常见的表述是:若区域V 内给定电介质分布和自由电荷分布()r ρ ,在V 的边界面S 上给定电位S ϕ或者电位的法向空间变化率Sn ϕ∂∂,若区域内有导体存在,如果还给定各导体的电位或者各导体所带的自由电量,则V 内的静电场就唯一地确定了。
静电场的唯一性定理表明,一定的空间区域外界的电荷对该区域内静电场的影响,完全体现在该区域的边界面上。
只要一定的空间区域内的电介质的分布和自由电荷的分布给定了,同时该区域边界面上的电位或者电位沿边界面的法线方向的空间变化率的分布给定了,那么不论外界的电荷分布怎样改变,该区域内的静电场都是唯一确定的。
因此,静电场的唯一性定理给出了确定静电场的条件,为求电场强度以及设计静电场指明了方向。
(镜像法就是建立在唯一性定理的基础之上的。
)更重要的是它具有十分重要的实用价值。
无论采用什么方法得到解,只要该解满足泊松方程、边值关系和给定的边界条件,则该解就是唯一的正确解。
因此对于许多具有对称性的问题,可以不必用繁杂的数学去求解泊松方程,而是通过提出尝试解,然后验证是否满足泊松方程、边值关系和边界条件。
满足即为唯一解,若不满足,可以加以修改。
如果有人精于设计和求解静电场,那么他已经是一个有名望的专家学者了,并且享有丰厚的报酬。
因此,虽然静电学是电磁场理论中相对比较简单的一门学问,请同学也不要小看它。
一个外行人,有谁会相信上述有名望的专家学者的工作基础就是高中生都明白的库仑定律呢?大理大学工程学院教授罗凌霄2020年3月20日。
静电场唯一性定理
静电场唯一性定理是一种重要的物理定理,它有助于我们理解电场,研究电磁场,有助于研究一般相对论、量子力学和统计物理等科学理论的发展。
它指出,当电场的空间和时间的变化都可以完全确定时,其静态状态就是唯一的。
在实际应用中,它为解决复杂的电力电子、光电子和微电子学问题提供了有力的理论支持。
静电场唯一性定理是由19世纪90年代著名物理学家雷诺兹等提出的。
他们提出,电场的动量和能量有相应的定律,可以用来描述其变化,不论是在空间上还是时间上都是这样。
根据它们提出的新定律,假设电场的状态完全确定,不论是在空间上还是时间上,其静态状态都是唯一的。
结合泰勒到的变分原理,可以证明静电场唯一性定理的有效性。
当电场的状态完全确定时,可以用变分原理来证明它的静态态一定是唯一的,这就是静电场唯一性定理的关键性证明过程。
除了可以用于研究电场外,静电场唯一性定理也可以用于研究重力场。
由于重力场是空间和时间变量关系的最简单形式,可以用静电场唯一性定理来分析它,并且可以证明重力场也是唯一的。
总之,静电场唯一性定理是一种重要的物理定理,它对研究电场、重力场以及一般相对论、量子力学和统计物理等科学理论都有着重要的意义。
通过它,我们可以更加有效率地研究和分析物理现象,从而不断地拓展物理知识面,并进一步深入地研究物理本质。
- 1 -。
关于静电场中唯一性定理的证明
静电场中唯一性定理:满足静电场的**Maxwell方程组的唯一解,取决于指定的边界条件而不受初始条件的约束。
为了证明该定理,我们首先考虑Maxwell方程组:
$\nabla\cdot\vec{E} = \frac{\rho}{\varepsilon_0}$
可以看出,这套方程是由边界条件决定的,其解也是由边界条件决定的。
为证明唯一性定理,我们使用变分法从而得出以下**Euler-Lagrange方程组:
$\frac{\partial L}{\partial \vec{E}}-\frac{\partial}{\partial
\vec{x}}\frac{\partial L}{\partial(\frac{\partial\vec{E}}{\partial
x})}+\frac{\partial}{\partial t}\frac{\partial L}{\partial\frac{\partial
\vec{E}}{\partial t}}=0$
其中,$L$表示Lagrange函数,它是由Maxwell方程组构成的。
由此,我们可以得出雅可比方程:
这组方程有两个基本性质,一是称为“唯一性原理”,一是称为“不变性定理”。
不变性定理:对于给定的满足Maxwell方程组的特定边界条件,解不会随着时间变化而变化。
这两个定理说明,解是唯一的,而且不受初始条件的限制,而只受边界条件的约束。
因此,以上证明了静电场中唯一性定理。
静电场唯一性定理
静电场唯一性定理是指:在相同的静电场中,对任意一点,总的电场强度和电场的方向唯一确定,其相应的力场强度和力场方向也唯一确定。
一、定理内容
1、静电场唯一性定理指出:在同一个静电场中,总的电场强度以及它的方向,是唯一确定的。
2、电场强度和方向唯一确定,则相应的力场方向及强度也唯一确定。
3、对于任何一点,在同一个静电场中,电场强度和力场强度(方向)都是唯一确定的,而不用管附近是否有其它电荷存在。
二、定理的严谨性
静电场唯一性定理可以从两个层面上来说明它的严谨性:
1、在相同静电场中,总电场强度和电场方向是唯一确定的,这样在相同的静电场中,不管电荷位置以及大小如何变化,都会得到相同的电场结果。
2、只要电荷总量不变,就可以确定电场强度,而不用考虑附近有没有
其它电荷的存在,所以,电场的强度和方向都是唯一确定的。
三、定理的应用
1、用来研究静电场:静电场唯一性定理是用来研究电场的重要定理,
可以用来评估复杂的电场结构,也可以用来求解各类电力学问题,如:电场及电动势分布,电容电感等问题。
2、在分析电场结构时有重要作用:静电场唯一性定理在分析电场结构
时有重要作用,它可以把电场潜力和电场强度根据电荷分布范围与数量,用一种抽象的模型来简化整个计算过程,以达到某种理想的数值
结果。
3、研究电场特性时也有用:静电场唯一性定理也用在研究电场特性时,由于电场强度和方向都是唯一确定的,所以,在研究电场物理学时,
可以从多种不同的角度出发,以简化分析,缩小计算空间,这样可以
得出更加准确的结果。
静电唯一性定理
我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若:
1) 区域V 内的电荷分布给定;
2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数
s n ϕ∂∂, 则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(x ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数
s n ϕ∂∂)。
即: 2212,ρρϕϕεε
∇=-∇=- 并有
12s s s ϕϕϕ==
或
12
s
s s n n n ϕϕϕ∂∂∂==∂∂∂ 式中s ϕ和s
n ϕ∂∂为给定的边界条件。
令φ = φ1 – φ2,则在区域V 内各点: 2212()0φϕϕ∇=∇-= (2-2-1)
及在边界s 上各点:
120s s s φϕϕ=-= (2-2-2)
或
12
0s s s
n n n ϕϕφ∂∂∂=-=∂∂∂ (2-2-3) 利用公式
22d d ()d V V s
V V φφφφφ∇+∇=∇⎰⎰⎰s 将式(2-2-1)带入上式得:
2d ()d d V s
s V s n φφφφφ∇=∇∂=∂⎰⎰⎰s (2-2-4)
若在边界s 上各点无论是给定了电势或给定了电势法向偏导数均有:
2
d 0V V φ∇=⎰ (2-2-5)
因|∇φ|2 ≥ 0,满足上式的条件只能是在求解区域V 内各点∇φ = 0。
因此,
φ1 - φ2= 常数
如果在边界上(或部分边界上)给定了电势φ|s ,则因φ1|s = φ2|s ,此常数为零;若全部边界条件给出的不是电势,而是(∂φ/∂n )|s ,此常数不一定为零。
但由式E = -∇φ,区域V 内的电场唯一确定,一个常数并不改变电场的基本特性,通常为了方便,此常数可选择为零。
由此,我们最初假定φ1和φ2是两个不同的电势解是不成立的。
这样我们就证明了静电唯一性定理。
在边界上各点给定电势值φ|s 的条件通常我们称为第一类边界条件;而给定法向偏导数条件(∂φ/∂n )|s 则称为第二类边界条件。
从式(2-2-4)来看,若部分边界上给出第一类边界条件,部分边界上给出第二类边界条件,并不改变我们的结论。
若空间存在不同的介质,显然这种情况并没有影响我们的证明过程。
因此也不改变我们的结论。
但在实际中,我们通常是将每一种介质作为一个子区域来求解电势问题。
子区域之间的电势通过电势的边值关系连接(衔接)起来而得到整个空间的电势解。
因此,在这种情况下,还必须给出介质分界面的电荷密度,这仍然是“给出求解区域内的电荷分布”情况。
若空间存在导体,导体区域不是我们的求解区域,而导体表面则是求解区域的边界。
因此,若空间存在导体,则必须给出导体上的电势或导体所带电荷量,否则不能得到唯一解。
给出了导体上的电势,这是属于第一类边界条件。
对于给出了导体所带的电量Q ,因导体电荷分布在表面上,面电荷密度0fs n ϕρε∂=-∂,而s d fs s Q ρ=⎰,因此这种情况仍属于第二类边界条件问题,其中s 为包围导体的封闭面。
在应用静电唯一性定理时,要注意的是,有时边界面在无穷远处。
静电唯一性定理有两个重要的意义:
(1) 它指明了确定电势解的条件是什么。
这些条件是:
i) 求解区域内的电荷分布情况必须给出(包含ρf = 0);
ii) 求解区域边界上各点必须给定电势值φ|s ,或电势法向偏导数s
n ϕ∂∂。
(2) 因满足给定边界条件的泊松方程的解是唯一的,因此我们可以尝试解。
只要尝试解满足区域内电荷分布,满足边界条件,此尝试解就是唯一解。
从实际的观点来看,静电唯一性定理的意义在于:无论我们用什么方法,一旦得到了满足给定边界条件的泊松方程的解,则此解是唯一的,而不用担心有其它的解。
这个“无论什么方法”,指的是系统的分析方法、或机灵的猜测、或幸运的猜测、或简单的记住了过去的类似解而给出符合问题的变形等等方法。
需要指出的是:“满足泊松方程的解”意味着解满足了求解区域内的电荷分布。
或者说给定电荷分布既是给定了泊松方程的具体形式。
因此,根据静电唯一性定理,确定电势解的全部条件(简称定解条件)为泊松方程的具体形式和所有边界条件。