3.1 唯一性定理
- 格式:ppt
- 大小:644.00 KB
- 文档页数:2
唯一性定理唯一性定理是数学中的重要定理之一,它指出了在某些条件下,特定类型的方程或问题只有唯一解。
唯一性定理最经典的形式是微分方程的唯一性定理,它在微积分和微分方程的研究中占据重要的地位。
微分方程是描述自然现象和物理规律的重要工具,通过对微分方程的求解,可以得到问题的解析解,从而更好地理解和预测现象。
然而,并不是所有的微分方程都能够得到解析解,有些方程可能只能通过数值方法进行求解。
因此,唯一性定理提供了一种重要的判据,用于确定方程是否有唯一解。
在微分方程的唯一性定理中,通常需要满足连续性和局部利普希茨条件。
连续性要求方程中的函数在某个区域内是连续的,这是非常基本的要求,因为连续性是数学分析中的重要概念。
局部利普希茨条件则要求方程中的函数在一定范围内具有有界的导数,这个条件保证了方程的解在某个区间内是唯一的。
微分方程的唯一性定理可以通过三个步骤来证明。
首先,需要利用泰勒级数展开将微分方程转化为一个无穷级数。
其次,需要证明无穷级数的解存在且唯一。
最后,通过局部利普希茨条件和连续性条件,得到解的存在范围。
除了微分方程的唯一性定理,数学中还有一些其他类型问题的唯一性定理。
例如,线性代数中的矩阵方程的唯一性定理,数论中的素因数分解的唯一性定理等等。
这些定理都有一个共同点,即在满足一定条件下,问题的解是唯一的。
唯一性定理在数学研究和应用中有着广泛的应用。
通过这些定理,我们可以确定问题是否存在唯一解,从而帮助我们深入研究和理解问题。
唯一性定理也经常被用于证明其他定理,深化了我们对数学的认识和理解。
总之,唯一性定理是数学中的一类重要定理,它指出了在满足特定条件下,方程或问题具有唯一解的情况。
微分方程的唯一性定理是其中最经典和重要的定理之一,它在微积分和微分方程的研究中扮演着重要的角色。
唯一性定理的应用广泛,帮助我们理解和解决各种数学问题,并进一步推动数学的发展。
唯一性定理除了在微分方程中应用广泛,还在其他数学领域中有重要的应用。
唯一性定理蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。
证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。
如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面1S 、2S 上各自的面电荷分布为σ 和 σe 。
壳内外的场是这四部分电荷共同激发的。
根据定理,首先写出壳内空间电势应满足的条件:(一) 2ρϕε∇=- ,ρ 为壳内电荷分布。
(二)壳内表面1S 上的边界条件是:2S 上的总电量 1s dS q σ=-⎰ (1)其中 Vq dV ρ=⎰ 是壳内的总电量,V 是壳内区域的体积。
在壳层内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1)成立。
因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - ,和导体壳本身是有电势还是用总电量给定无关。
根据唯一性定理,满足(一)、(二)的ϕ 就是解。
由于(一)e和(二)与壳外的ρe 和 σρ 的电势并不唯一,可以差一个常数。
当然当壳用电势 0φ 给定时,1S 上的边界条件就是10|S ϕφ= 。
所以壳内不但电场唯一,而且电势也是唯一。
2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。
试用唯一性定理: (一)判断0R φ是否球壳外空间的电势分布。
(二)求球壳内空间的电势分布解:(一)首先必须找出球内外电势应满足的条件,他们是:(a )20∇ϕ=(b )球壳外表面1S 上的边界条件,10s ϕ=φ (c )无穷远边界条件,0R →∞ϕ→若R φ是解,根据唯一性定理,它必须满足以上三个条件。
下面来检验:220010R Rφ∇=φ∇= (0),R ≠ 方程已满足。
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
3.1 一阶微分方程存在唯一性定理(Existence and Uniqueness Theorem ofInitial Value Problem of ODE )[教学内容] 1. 上一章内容小结和习题课; 2.介绍研究初值问题解的存在唯一性定理必要性; 3. 介绍柯西解的存在唯一性定理和Picard定理; 4. 介绍定理的证明.[教学重难点] 重点是知道并会运用微分方程初值问题的解的存在唯一性定理,难点是如何引入了解定理的证明思路和过程[教学方法] 自学1、2、3;讲授4、5课堂练习[考核目标]1.知道一阶微分方程的类型及其解法;2. 知道Lipshitz条件和解的存在唯一性定理(柯西版本和Picard版本);3. 知道Picard定理的证明思路和过程;4. 会用Picard函数序列给出微分方程初值问题的近似函数解.5. 了解和掌握Graonwall积分不等式.1. 一阶微分方程类型及其初等解法小结(1)认识一阶微分方程:一阶线性方程(交换x,y或Bernoulli方程及其他可通过引入变量替换化为一阶线性方程的)、一阶可分离变量型方程(齐次方程以及其他可化为可分离变量型的)、一阶对称形式的恰当方程(通过引入积分因子可化为恰当方程的方程)一阶隐方程(可解出x或y的类型,以及x, y, y’只含有其中两个的方程类型)(2)解法常数变易公式、Bernoulli方程的变量替换分离变量方法、齐次方程的变量替换恰当方程的解法、积分因子的求法隐方程的求导法和参数法(3)例题上述提到的方程类型各举出一个例子来,并用上面的方法来求解,允许一题多解.(4)介绍一些可以化为微分方程来求解的函数方程和积分方程(参见上节讲义).(5)预告:下周二上午第一节课进行上一章测试,请相互转告.2. 必要准备:数学中的进化论生物上,比如水稻品种一代一代通过基因重组往高产优质方向优化,还有如下图片.在数学上也有类似的进化过程,下面就说一说.(1)考察三次代数方程 x 3+4x-2 0. 该方程没有有理根. 该方程只有唯一实根且落在[0,1]. 下面有两种思路来找到该方程的根.思路一:运用连续函数的零点定理, 记1] [0,]b ,[a 11=表示第一代;将]b ,[a 11平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第二代,即]21 [0,]b ,[a 22=;将]b ,[a 22平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第三代,即]21 ,41[]b ,[a 33=;将]b ,[a 33平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第四代,即]21 ,81[]b ,[a 44=;... ... 这样下去,]b ,[a n n 越来越接近方程的根 x ≈ 0.473466,其中误差就是|a b |n n -.思路二:运用教材P89习题9的结论和证明过程,改写方程为x 42x -3=+,记42x f(x)3+-= 则方程就是f(x)x =,方程的根也就是函数f(x)的不动点. 可以验证f(x)满足教材P89习题9的条件(自行验证),于是方程的根存在且唯一,下面就用进化的思想来寻找方程的根.选取第一代1x 1=(这里可以选其他实数);经过进化机制(用f(x)作用一下)得到第二代25.0)f(x x 12==;再经过进化机制(用f(x)作用一下)得到第三代496094.0)f(x x 23≈=;再经过进化机制(用f(x)作用一下)得到第四代469477.0)f(x x 34≈=;再经过进化机制(用f(x)作用一下)得到第五代474131.0)f(x x 45≈=;再经过进化机制(用f(x)作用一下)得到第六代473354.0)f(x x 56≈=;... ... n x 越来越接近方程的根 x ≈ 0.473466.打个比方,把方程的根比作我们想要的某种属性的对象,我们可以通过迭代(进化)过程来把它造出来或找出来。
第三章 一阶微分方程解的存在定理[教学目标]1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。
2. 了解解的延拓定理及延拓条件。
3. 理解解对初值的连续性、可微性定理的条件和结论。
[教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。
[教学方法] 讲授,实践。
[教学时间] 12学时[教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。
[考核目标]1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。
2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。
3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。
§1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。
例如方程dydx=过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数20 0() c<1x cy x c x ≤≤⎧=⎨-≤⎩都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。
解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。