6.3等可能事件的概率(一)
- 格式:ppt
- 大小:1.49 MB
- 文档页数:32
《等可能条件下的概率(一)》教案一、教学目标【知识与技能】理解和掌握在相等条件下,事件发生的概率的计算公式。
【过程与方法】通过具体的情境,进一步理解概率的意义,提高初步的抽象概括能力。
【情感态度与价值观】提高学习数学的兴趣,培养对数学的亲近感、合作意识,在合作中体现团队精神。
二、教学重难点【教学重点】等可能条件下,事件发生的概率。
【教学难点】在具体的情境中,能借助概率的计算判断事件发生的可能性的大小。
三、教学过程(一)导入新课抛掷一枚骰子,提问:(1)朝上点数的试验的结果是有限的吗?请大家一一列举出来。
(2)事件1:朝上点数大于4的情况有哪几种?事件2:朝上点数不大于4的情况有哪几种?学生在教师的引导下,列举出所有的情况,并将属于事件1和事件2的情况归类。
那么大家想计算事件1和事件2发生的概率怎么计算呢,大家一起来学习本堂课的知识,进而板书课"等可能条件下的概率"(二)生成新知1.组织小组讨论总结规律小组展开讨论,小组汇报讨论结果:符合事件1的是朝上点数为4点,朝上点数为5点,有两种情况。
符合事件2的有4种情况。
说明:我们所研究的事件大都是随机事件,所以其概率在0和1之间。
(三)深化新知不透明的袋子里有3个白球,4个红球,这些球除开颜色以外都相同,均匀搅拌后从中抽取1个球,问:(1)会出现哪些结果?(2)摸出白球的概率?(3)摸出红球的概率?(四)小结作业小结:引导学生自主思考本节所学,通过提问的方式总结全部知识点并补充。
作业:抛掷一枚均匀的骰子,它落地时,朝上点数为4的概率是( ),朝上点数是奇数的概率是( ),朝上点数是0的概率是( ),朝上点数大于3的概率是( )。
四、板书设计。
河北省邯郸市肥乡县七年级数学下册第六章频率初步3 等可能事件的概率6.3.3 等可能事件的概率教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邯郸市肥乡县七年级数学下册第六章频率初步3 等可能事件的概率6.3.3 等可能事件的概率教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邯郸市肥乡县七年级数学下册第六章频率初步3 等可能事件的概率6.3.3 等可能事件的概率教案(新版)北师大版的全部内容。
6。
3等可能事件的概率课题 6.3等可能事件的概率3课型教学目标了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率.重点等可能性事件的概率的意义及其求法。
难点等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。
教学用具教学环节说明二次备课复习抛掷一枚均匀硬币,1. 出现正面向上;2. 出现正面向上或反面向上;3。
出现正面向上且反面向上。
各是什么事件?概率分别是多少?(学生回答)1。
随机事件,概率是1/22。
必然事件,概率是 13. 不可能事件,概率是0新课导入同学们,你们参加过商场抽奖吗?我们美丽的无为的大商场即将在五一黄金周进行有奖销售活动(拿出转盘,一面是把转盘均匀6份,一面是不均匀的6份)出示不均匀的一面课程讲授情境一:无为商之都五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:1:电冰箱一台 2:可口可乐一听 3:色拉油250ml4:谢谢光顾 5:洗衣粉一袋 6:光明酸奶500ml你希望抽到什么?抽到电冰箱的可能性与抽到洗衣粉一袋相同吗?出示均分6份一面情境二:无为百货大楼五一黄金周进行有奖销售活动,购满200元可进行一次摇奖,奖品如下:1:雪碧250ml一听 2:可口可乐一听 3:洗衣粉一袋4:光明酸奶125ml 5:康师傅方便面一盒6:娃哈哈矿泉水一瓶现在你觉得抽到可口可乐一听与洗衣粉一袋的可能性相同吗?抽到1的可能性是多少呢?你是怎么的到的呢?求一个随机事件的概率的基本方法是通过大量的重复试验;那么能否不进行大量重复试验,只通过一次试验中可能出现的结果求出其概率呢?这就是今天我们要学习的等可能性事件的概率(板书课题)(强调等可能性)引入公式:基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件.如果一次试验由n个基本事件组成,而且所有的基本事件出现的可能性都相等,那么每一个基本事件的概率都是1/n 。
【纠错必备】等可能事件的概率
易错点1 错误理解概率的真正含义
例1 “闭上眼睛从口袋中随机摸出一球恰好是红球的概率是7
2”的意思是摸球7次就有2次摸出红球.你认为这种说法对吗?
错解:这种说法是对的.
剖析:造成错解的原因是没有真正理解概率的含义.概率是针对大量试验而言的,大量试验反映出来的规律,并非在每一次试验中都一定存在.
正解:这种说法不对.这句话的意思是:如果摸球很多次的话,平均7次大约有2次摸出红球.
易错点2 错误使用概率计算公式
例2 在一个口袋中装有5个黄球和10个红球,它们除颜色外没有其他区别,并且口袋中的球已经被搅匀,问闭上眼睛从口袋中随机地摸出一球,恰好是黄球的概率是多少? 错解:恰好是黄球的概率P =105=2
1 . 剖析:造成错解的原因是没有明确所有等可能的结果有哪些.口袋里共有15个球,故有15种等可能的结果.错解中的概率是“部分与部分之比”,而不是“部分与整体之比”. 正解:恰好是黄球的概率P =1055 =3
1 . 易错点3 错误估计与图形面积有关的概率
例3 有一个转盘,由红、白、蓝三种颜色组成,转动该转盘,待转盘停止后,指针指向各颜色区域的概率是多少?
错解:指针指向各颜色区域的概率是3
1. 剖析:指针指向各颜色区域的概率的大小由转盘中三种颜色区域的面积分别占总面积的百分比来确定,造成错解的原因是误认为三种颜色区域的面积相等.
正解:由于不知道红、白、蓝三种颜色区域的面积分别占总面积的百分比,所以无法确定指针指向各颜色区域的概率大小.只有当转盘中三种颜色区域的面积相等时,指针指向各颜色区域的概率才是
31.。
游戏中的概率一、教材分析:《游戏中的概率》是北师大版七年级下学期第六章第三节的内容,是在学生了解了确定事件和不确定事件的概念及事件发生可能性的意义之后的又一个重要知识点。
本章是上学期知识的延续,本节在本章中起着承上启下的作用。
为下节课进一步了解概率的意义和计算事件发生的概率打下基础。
通过具体情境体会概率,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型。
本节课充分体现了新课程所倡导的“从生活走进课程,从课程走进社会”的理念。
教材首先用一个不公平游戏的情景,让学生从“猜测--试验并收集试验数据--分析试验结果”的活动中进一步了解确定现象的特点,然后又用一个投骰子的游戏让学生总结出不确定事件发生的范围。
通过这一课的学习,要求学生达到灵活运用数学知识解决实际问题的最终目的。
二、学情分析:七年级的学生活泼好动,对生活中的各类游戏和各类事件充满了兴趣和探究的欲望。
他们喜欢交流、合作探究,同时也具备了一定的归纳总结、表达的能力。
他们在上学期已经学习了确定事件和不确定事件的概念,并且知道不确定事件是有大小的,同时学生在平时的学习和生活中对确定事件的发生也有一定的经验,但对不确定事件的大小还有一定的困惑,多数学生认为不确定事件发生的可能性是50%。
三、教学目标:鉴于学生是学习和发展的主人,所以在确定教学目标时,不仅根据教材和课标,更依据学生已有的知识储备和身心特点确定教学目标如下:1.知识与技能目标:通过讨论游戏的公平性让学生了解必然事件、不可能事件和不确定事件发生的可能性大小。
2.过程与方法目标:经历“猜测----试验并收集试验数据-----分析试验结果”的活动,发展学生动手操作能力及分析和解决问题能力。
3.情感态度与价值观目标:在生活的情景里,学生的经验中体验数学的价值,感受学习数学的乐趣;在活动中品尝与他人合作的乐趣,学会与人合作及交流,建立自信,培养勇于探索的精神。
四、教学重点:经历“猜测,实验并收集实验数据,分析实验结果”的过程,了解必然事件、不可能事件和不确定事件发生的可能性大小。
北师大版数学七年级下册6.3《等可能事件的概率》说课稿4一. 教材分析《北师大版数学七年级下册6.3《等可能事件的概率》》是北师大版初中数学七年级下册第6章《事件的概率》的第三节内容。
本节课的主要内容是让学生理解等可能事件的概率的定义,学会求解等可能事件的概率的方法,能运用等可能事件的概率解决实际问题。
教材通过引入转盘、掷骰子等生活中的实例,引导学生探究等可能事件的概率,培养学生的动手操作能力和抽象思维能力。
二. 学情分析学生在七年级上册已经学习了事件的分类和概率的基本概念,对概率有了初步的认识。
但学生对等可能事件的概率的理解和应用还不够深入,需要通过本节课的学习进一步巩固和提高。
此外,学生对实际问题的解决能力还有待提高,需要通过本节课的实例分析和操作,培养学生的解决问题的能力。
三. 说教学目标1.知识与技能:理解等可能事件的概率的定义,学会求解等可能事件的概率的方法,能运用等可能事件的概率解决实际问题。
2.过程与方法:通过实例分析和操作,培养学生的动手操作能力和抽象思维能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:等可能事件的概率的定义和求解方法。
2.教学难点:对等可能事件的概率的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法、小组合作法等教学方法,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、实物模型等教学手段,辅助学生直观理解等可能事件的概率的概念和方法。
六. 说教学过程1.导入新课:通过展示转盘、掷骰子等生活中的实例,引导学生思考事件的概率问题,激发学生的学习兴趣。
2.探究新知:引导学生通过小组合作、动手操作,探究等可能事件的概率的定义和求解方法。
3.实例分析:通过分析实际问题,让学生运用等可能事件的概率的方法解决问题,巩固新知。
4.练习巩固:设计相关练习题,让学生独立完成,检验学生对等可能事件的概率的理解和应用。
6.2频率的稳定性知识点一:频率的稳定性例1:某少儿活动中心在“六•-”活动中,举行了一次转盘摇奖活动,是一个可以自由转动的转盘.如图,当转动停止时,指针落在哪一个区域就可以获得相应的奖品(落在分界线上时重新摇奖)。
下表是活动进行中统计的有关数据。
(1)计算并完成表格:(2)当转动转盘的次数n很大时,概率将会接近多少?例2:在抛掷一枚硬币的实验中,某小组做了1000次实验,最后出现正面的频率为49.6%,此时出现正面的频数为()A 496B 500C 516D 不确定挑战自我,勇攀高分1.对某批乒乓球的质量进行随机抽查,结果如下表所示:完成上表。
2.下列事件发生的可能性为0的是()A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时40千米3.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况,分小组进行摸球试验,两人一组,共20组进行摸球试验。
其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次。
问从袋中任意摸出一个,巧好是红球的频率会稳定于多少?知识点二:概率例1:某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示根据表中数据,估计这种幼树移植成活的概率为_______(精确到0.1)。
例2:在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同。
小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%。
对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球。
北师大版数学七年级下册第六章6.3等可能事件的概率课时练习一、选择题(共15个小题)1.任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是()A.12B.13C.23D.16答案:B解析:解答:任意掷一枚质地均匀的骰子,掷出的点数可以是1,2,3,4,5,6,共6种可能,而大于4的点数只有5,6,所以掷出的点数大于4的概率是2163=,故选B.分析:本题关键是算出共有多少球,以及有几个红球.2.一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P(摸到红球)等于()A.12B.23C.15D.110答案:C解析:解答:袋中有2个红球,3个蓝球和5个白球,故共有球10个,所以从中任意摸出一个球,则P(摸到红球)=21105=,故选C.分析:本题关键是算出共有多少球,以及有几个红球.3.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A. P1> P2B.P1< P2C.P1=P2D.以上都有可能答案:A解析:解答:在甲图中,小球最终停留在黑色区域的概率为P1=63168=,在乙图中,小球最终停留在黑色区域的概率为P2= 39,38>39故选A.分析:本题关键是分别算出在各个图中各自的概率,然后进行比较.4.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对答案:C解析:解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.分析:本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.5.一个事件的概率不可能是()A.0B.12C.1D.32答案:D解析:解答:不论任何事件的概率,最小为0,最大为1,没有大于1的存在.故选D.分析:本题关键是清楚概率取值的范围是不小于0且不大于1.6.从1至9这些数字中任意取一个,取出的数字是偶数的概率是()A.0B.1C.59D.49答案:D解析:解答:在1至9这些数字中,共有2,4,6,8四个偶数,因此从这九个数字中任意取一个,取出的数字是偶数的概率是.故选D.分析:本题关键是清楚偶数有几个,然后运用比例就求出来了.7.小刚掷一枚硬币,一连9次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A.0B.1C.12D.23答案:C解析:解答:小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.分析:本题关键是清楚每次掷硬币,都是相互独立的事件.8.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定答案:B解析:解答:既然是一大串钥匙,那么应该多于3把,而其中只有一把是能够开锁的,因此任取一把,不能开门的可能性大于能开门的可能性,故选B.分析:本题关键是清楚一大串钥匙的含义.9.有100个相同大小的球,用1至100个数编号,则摸出一个是5的倍数号的球的概率是()A.120B.19100C.15D.以上都不对答案:C解析:解答:100个相同大小的球,用1至100个数编号,那么编号是5的倍数的共有20个,因此摸出一个是5的倍数号的球的概率是2011005=,故选C.分析:本题关键是找出5的倍数号的球共有多少个.10.某商店举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得,每10000张奖券为一个开奖单位,设立特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是()A.110000B.5010000C.10010000D.15110000答案:D解析:解答:每10000张奖券为一个开奖单位,共有奖:特等奖1个+一等奖50个+二等奖100个=151个奖,所以买100元商品的中奖的概率是15110000,故选D.分析:本题关键是找出共有奖多少个.11.在一个口袋中,共有50个球,其中白球20个,红球20个,其余为篮球,从中任摸一球,摸到不是白球的概率是()A.15B.25C.35D.45答案:C解析:解答:口袋中,共有50个球,其中白球20个,那么不是白球的球共有30个,所以摸到不是白球的概率是303505=,故选C.分析:本题关键是找出不是白球的球有多少个.12.在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( ) A . 0.34 B . 0.17 C . 0.66 D . 0.76 答案:C解析:解答:在一次抽奖中,抽中的概率和抽不中的概率之和是1,抽中的概率是0.34,则抽不中的概率是1-0.34=0.76,故选C .分析:本题关键是清楚抽中的概率和抽不中的概率之和是1.13.用1、2、3这三个数字,组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14C .15D . 16 答案:A解析:解答:用1、2、3这三个数字,组成一个三位数,共有6个不同的数为:123,132,213,231,312,321,其中偶数有132,312两个,所以组成的数是偶数的概率为2163=,故选A .分析:本题关键是找出共有几个数,以及偶数有几个.14.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏对双方( )A .公平B .对甲有利C .对乙有利D .无法确定公平性 答案:A解析:解答:同时掷两枚相同的硬币,所有等可能的事件如下表所示:同面朝上的概率为42=,异面朝上的概率为42=,故选A . 分析:本题关键是弄清楚等可能的事件是什么.15.小伟向一袋中装进a 只红球,b 只白球,它们除颜色外,无其他差别.小红从袋中任意摸出一球,问他摸出的球是红球的概率为( ) A .a b B . b a C .+a a b D .+ba b答案:C解析:解答:袋中装进a 只红球,b 只白球,共有球(a +b )只,所以从袋中任意摸出一球,摸出的球是红球的概率等于+aa b,故选C . 分析:本题关键是弄清楚红球的个数和共有球数. 二、填空题(共5个小题)16.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.答案:38. 解析:解答:由图可以看出,一共有最小规格的正三角形16个,其中涂黑了的有6个.有等可能的情况之下,扔沙包1次击中阴影区域的概率等于63168=. 分析:本题关键是数出共有的最小三角形和涂黑的三角形个数.17.必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______. 答案:必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.解析:解答:根据必然事件、不可能事件、不确定事件的意义,可得必然事件发生的概率是1,即P(必然事件)= 1;不可能事件发生的概率是0,即P (不可能事件)=0;若A 是不确定事件,则0)<(<A P 1.分析:本题考察对概率意义的理解,关键是明确各事件的概率.18.一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______. 答案:14|113解析:解答:一副扑克牌去掉大王、小王后还有52张,其中方块有13张,所以随意抽取一张,抽到方块的概率是131524=;在这52张中,3共有4张,因此抽到3的概率是415213=. 分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.19.任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.答案:1 2解析:解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,其中有三个奇数,因此朝上的点数是奇数的概率是12.分析:本题考察对概率意义的理解,关键是分析出朝上的点数中有几个是奇数.20.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.答案:1 4解析:解答:因为选择题有四个选项,所以小明靠猜测获得结果,其答对的概率是14.分析:本题考察对概率意义的理解,关键是根据选项个数,分析出概率是多少.三、解答题(共5个小题)21.下列事件中,哪些是确定事件?哪些是不确定事件?(1)任意掷一枚质地均匀的骰子,朝上的点数是6.答案:不确定事件;解答:任意掷一枚质地均匀的骰子,朝上的点数可能是1,2,3,4,5,6,因此,朝上的点数是6是不确定事件.(2)在一个平面内,三角形三个内角的和是190度.答案:确定事件,也是不可能事件;解答:根据三角形的内角和定理,在一个平面内,三角形三个内角的和是180度.因此,三角形三个内角的和是190度是确定事件,也是不可能事件.(3)线段垂直平分线上的点到线段两端的距离相等.答案:确定事件,也是必然事件;解答:根据线段的垂直平分线的性质可知,线段垂直平分线上的点到线段两端的距离相等,故是一个确定事件,也是必然事件.解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.22.请将下列事件发生的概率标在图中:(50%)0.5不可能发生必然发生(100%)1(1)随意掷两枚质地均匀的骰子,朝上面的点数之和为1;答案:(50%)0.5不可能发生必然发生(100%)解答:因为每一枚质地均匀的骰子,抛掷后朝上面的点数最小为1,所以两枚朝上面的点数之和最小为2,因此,点数之和为1是不可能发生的.(2)抛出的篮球会下落;答案:(50%)0.5不可能发生必然发生(100%)1解答:在地球万有引力的作用下,抛出的篮球会下落,这是必然发生的.所以可能性为1. (3)从装有3个红球、7个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);答案:310(50%)0.5不可能发生必然发生(100%)解答:口袋中装有3个红球、7个白球,共有10个球,任取一个球,恰好是红球的概率为3 10,所以点应该标在310处.(4)掷一枚质地均匀的硬币,硬币落下后,正面朝上.答案:(50%)0.5不可能发生必然发生(100%)解答:掷一枚质地均匀的硬币,硬币落下后,正面朝上与反面朝上的概率相同,都为12,所以点应该标在12即50%处. 解析:分析:本题考察对概率意义的理解,关键是根据各小题题干,分析出概率是多少.23.下面是两个可以自由转动的转盘,转动转盘,分别计算转盘停止后,指针落在红色区域的概率.答案:14|38解答:由图可以看出,在第一个转盘内,红色区域的圆心角是90°,因此可以算得指针落在红色区域的概率是9013604=;在第二个转盘内,红色区域的圆心角是135°,因此可以算得指针落在红色区域的概率是135273360728==. 解析:分析:本题考察对概率意义的理解,关键是根据图示,由圆心角的度数求出概率. 24.用10个球设计一个摸球游戏: (1)使摸到红球的概率为15; 答案:2个红球,8个白球;解答:在一个不透明的口袋内装大小材质相同的小球,其中2个红球,8个为白球,则摸到红球的概率符合要求.(2)使摸到红球和白球的概率都是2 5 .答案:4个红球,4个白球,2个其他颜色球.解答:在一个不透明的口袋内装大小材质相同的小球,其中4个红球,4个白球,2个黑球,则摸到红球和白球的的概率符合要求.解析:分析:本题考察对概率意义的理解,关键是根据要求,算出符合条件的各色小球的个数. 25.一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,请问(1)取出的小球编号是偶数的概率是多少?答案:1 2解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为偶数的有25个,所以取出的小球编号是偶数的概率是251 502=.(2)取出的小球编号是3的倍数的概率是多少?答案:8 25解答:一个不透明的口袋内装有50个大小材质相同且编号不同的小球,它们按照从1到50依次编号,将袋中的小球搅匀,然后从中随意取出一个小球,那么每一个小球被取到的概率是相同的.这其中,编号为3的倍数的小球共有16个,所以所频率为168 5025=.(3)取出的小球编号是质数的概率是多少?答案:6 25解答:从1到50这50个编号中,质数有2,3,5,7,11,13,17,19,23,29,31,37,共12个,所以小球编号是质数概率是126 5025=.解析:分析:本题考察对概率意义的理解,关键是找出各种符合条件的编号的个数.。