绝缘电阻和吸收比极化指数试验
- 格式:ppt
- 大小:149.50 KB
- 文档页数:17
绝缘试验中,测量极化指数、吸收比的用途及合格标准本文关键词:吸收比极化指数绝缘电阻吸收比多少合格吸收比与极化指数的特征极化指数和吸收比是用来鉴别大型电气设备绝缘性能,小容量电气设备测量绝缘电阻即可,吸收比和极化指数是两个不同时间下绝缘电阻的比值,与设备的尺寸无关,消除尺寸、结构的影响,并且与温度基本无关,无须换算,反应电气设备的局部和整体缺陷。
绝缘电阻吸收比吸收比指的是在同一次试验中,用数字兆欧表测得60s与15s时的绝缘电阻值之比,由于给设备加直流电压的时间长度不同,对设备的潮湿等状况影响也不同,因此比较两个时间比值,可以判断设备是否是因为潮湿的原因影响了绝缘电阻,绝缘受潮时吸收比最小值为1,干燥时吸收比均大于1,吸收比试验,通常用于电容量较大的电气设备,小型电气设备测量绝缘电阻即可。
吸收比和极化指数合格范围极化指数在比值不低于1.5,R60s大于10000MΩ时,极化指数忽略,吸收比比值大于1.3或1.2即合格,吸收比不合格时应测量极化指数,二者取其一。
绝缘电阻极化指数极化指数PI是指在同一次试验中,加压10min时的绝缘电阻值与加压1min时的绝缘电阻值之比。
《电气装置安装工程电气设备交接试验标准》(GB 50150-2006),7.0.9第4条,变压器电压等级为220kV及以上且容量为120MVA及以上时,宜用5000V兆欧表测量极化指,测得值与产品出厂值相比应无明显差别,在常温下不小于1.3。
吸收比和极化指数都与绝缘电阻有关,当给被试物施加一定的直流电压后,在直流电压的作用下流过被试物绝缘介质的电流,通常由电容电流、介质吸收电流和电导(泄漏)电流三部分组成,其中,电容电流是由绝缘介质弹性极化引起的,绝缘介质的极化过程很快,电容电流只是在直流电压加到绝缘介质上的瞬间出现,然后很快衰减为零,电容电流的大小主要由外加电压的高低、电源内阻的大小、绝缘材料的材质、几何尺寸、结构等因素决定,与介质的绝缘能力无关。
绝缘电阻测试仪测量吸收比和极化指数作用
绝缘电阻测试仪测量吸收比和极化指数作用。
一、什么是吸收比和极化指数
1、吸收比:在同一次绝缘电阻试验中,1分钟时的绝缘电阻值与15秒时的绝缘电阻值之比。
2、极化指数:在同一次绝缘电阻试验中,10分钟中时的绝缘电阻值与1分钟时的绝缘电阻值之比值。
二、绝缘电阻测试仪测量吸收比与极化指数的意义
在绝缘电阻测试中,某一个时刻的绝缘电阻值是不能全面反映被试品绝缘性能好坏的,绝缘材料在加上高压后均存在对电荷的吸收比过程和极化过程.所以,电力系统要求在主变压器、电缆、电机等绝缘测试中应测量吸收比和极化比来判定绝缘状况的优劣.
绝缘电阻测量中吸收比或极化指数能反映发电机或主变压器绝缘的受潮程度。
绝缘受潮后吸收比值或极化指数降低,因此它是判断绝缘是否受潮的一个重要指标。
绝缘电阻、吸收比、极化指数的测量时,应当选择合适的数字兆欧表,在这里为大家推荐一款功能强大性能优良的兆欧表数字绝缘电阻测试仪,如想了解更多请点击数字绝缘电阻测试仪的操作方法。
以上是为大家讲解的绝缘测试中吸收比与极化指数应用和意义。
变压器绕组绝缘电阻、吸收比和极化指数测试1 绝缘电阻、吸收比和极化指数1.1 绝缘电阻测量电气设备的绝缘电阻,是检查设备绝缘状态最简便和最基本的方法。
在现场普遍用兆欧表测量绝缘电阻。
绝缘电阻值的大小常能灵敏地反应绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
例如:各种贯穿性短路、瓷件破裂、引线接壳、器身内有铜线搭桥等现象引起的半贯通性或金属性短路等。
干燥前后,绝缘电阻变化比介质损耗因数变化大得多:对7500kVA变压器,ΔR=4000%>>Δtanδ=250%。
用兆欧表测量设备的绝缘电阻,由于受介质吸收电流的影响,兆欧表指示值随时间逐步增大,通常读取施加电压后60s的数值或稳定值,作为工程上的绝缘电阻值。
1.2 吸收比和极化指数吸收比K1为60s绝缘电阻值(R60s)与15s 绝缘电阻值(R15s)之比值,即图1某台发电机绝缘电阻R与时间t的关系1—干燥前15℃;2—干燥结束时73.5℃;3—运行72h后,并冷却至27℃对于大容量和吸收过程较长的变压器、发电机、电缆等,有时R60s/R15s吸收比值尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即10(R10min)和1min(R1min)时绝缘电阻的比值K,称作绝缘的极化指数在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机或油浸变压器绝缘的受潮程度。
绝缘受潮后吸收比值(或极化指数)降低(如图1),因此它是判断绝缘是否受潮的一个重要指标。
应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比值仍然很好。
吸收比不能用来发现受潮、脏污以外的其他局部绝缘缺陷。
2 使用仪表最常用的测量仪表是兆欧表。
2.1 兆欧表的型式兆欧表按电源型式通常可分为发电机型和整流电源型两大类。
发电机型一般为手摇(或电动)直流发电机或交流发电机经倍压整流后输出直流电压;整流电源型由低压50Hz交流电(或干电池)经整流稳压、晶体管振荡器升压和倍压整流后输出直流电压。
现场绝缘试验实施导则绝缘电阻、吸收比和极化指数试验DL474.1-92中华人民共和国能源部佃92-11-03批准1993-04-01 实施1主要内容和适用范围1.1本导则提出了绝缘电阻、吸收比和极化指数试验所涉及的仪表选择、试验方法和注意事项等一系列技术细则,贯彻执行有关国家标准和能源部《电气设备预防性试验规程》的相应规定。
1.2本导则适用于在发电厂、变电所、电力线路等现场和在修理车间、试验室等条件下对高、低压电气设备绝缘进行绝缘电阻、吸收比和极化指数试验。
2试验内容2.1绝缘电阻测量电气设备的绝缘电阻,是检查设备绝缘状态最简便和最基本的方法。
在现场普遍用兆欧表测量绝缘电阻。
绝缘电阻值的大小常能灵敏地反应绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
用兆欧表测量设备的绝缘电阻,由于受介质吸收电流的影响,兆欧表指示值随时间逐步增大,通常读取施加电压后60s的数值或稳定值,作为工程上的绝缘电阻值。
2.2吸收比和极化指数吸收比心为60s绝缘电阻值(R60S)与15s绝缘电阻值(R15S)之比值,即K __?603K1 _R15scaH)nt8060拒2ffl]Qfl图1某台发电机绝缘电阻R与时间t的关系1—干燥前15C;2—干燥结束时735C;3 —运行72h后,并冷却至27 C对于大容量和吸收过程较长的变压器、发电机、电缆等,有时R60s/R l5s吸收比值尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即10min(R伽in)和R lmin(R lmin)时绝缘电阻的比值K,称作绝缘的极化指数K _ R10minK2K在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机或油浸变压器绝缘的受潮程度。
绝缘受潮后吸收比值(或极化指数)降低(如图1),因此它是判断绝缘是否受潮的一个重要指标。
应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比值仍然很好。
绝缘电阻、吸收比试验一、绝缘电阻试验使用范围绝缘电阻试验是电气设备绝缘试验中一种最简单、最常用的试验方法。
当电气设备绝缘受潮,表面变脏,留有表面放电或击穿痕迹时,其绝缘电阻会显著下降。
根据绝缘等级的不同,测试要求的区别,常采用的兆欧表输出电压有100v、250V、500V、1000V、2500V、5000V、10000V等。
由于绝缘电阻试验所施加的电压较低,对于一些集中性缺陷,即使可能是很严重的缺陷,但在测量时显示绝缘电阻仍然很大的现象,因此,绝缘电阻试验只适用于检测贯穿性缺陷和普遍性缺陷。
二、绝缘电阻试验的主要参数及技术指标电气设备的绝缘,不能等值为单纯的电阻,其等值电路往往是电阻电容的混合电路。
很多电气设备的绝缘都是多层的,例如电机绝缘中用的云母带,变压器等绝缘中用的油和纸,因此,在绝缘试验中测得的并不是一个纯电阻。
如图1-1 为双层电介质的一个简化等值电路。
图1-1双层电介质简化等值电路图1-2吸收曲线及绝缘电阻变化曲线当合上开关K将直流电压U加到绝缘上的瞬间,回路主要由电容分量I a组成。
等值电路中电流i的变化如图1-2中曲线所示,开始电流很大,以后逐渐减小,最后趋近于一个常数I;这个过程的快慢,与绝缘试品的电容量有关,电容g量越大,持续的时间越长,甚至达数分钟或更长时间。
图1-2中曲线i和稳态电流I g之间的面积为绝缘在充电过程中从电源“吸收”的电荷0。
这种逐渐“吸收”电荷的现象就叫做“吸收现象”。
从图1-2曲线可以看出,在绝缘电阻试验中,所测绝缘电阻是随测量时间变化而变化的,只有当1=8时,其测量值为R=J,但在绝缘电阻试验中,特别是电容量较大时,很难测量R8的值,因此,在实际试验中,规程规定,只需测量60s 时的绝缘电阻值,即R60S的值,当电容量特别大时,吸收现象特别明显,如大型发电机,可以采用10min时的绝缘电阻值。
对于不均匀的绝缘试品,如果绝缘状况良好,则吸收现象明显,如果绝缘受潮严重或内部有集中性的导电通道,这一现象则不明显。
3 电力设备绝缘试验原理及方法电气设备绝缘试验类型非破坏性试验1、绝缘电阻、吸收比;2、介质损耗角正切(tg );3、局部放电;4、绝缘油气相色谱分析等。
电气设备绝缘试验类型破坏性试验1、交流耐压试验;2、直流耐压试验;3、雷电冲击试验;4、操作冲击耐压试验。
常用绝缘材料气体:空气、六氟化硫、CO2、氮气等;液体:变压器油、电缆油、电容器油等;固体:无机材料:云母、石棉、电瓷、玻璃等;有机材料:纸、棉纱、木材、塑料等。
主要针对的问题:绝缘受潮、表面脏污、贯穿性裂纹、贯穿性放电痕迹常用兆欧表类型、电压等级:100V、250V、500V、1000V、2500V、5000V、10000V1绝缘电阻、吸收比试验选用兆欧表时的注意事项1.对有介质吸收现象的发电机、变压器等设备,绝缘电阻值、吸收比值和极化指数随兆欧表电压高低而变化,故历次试验应选用电压相同和负载特性相近的兆欧表。
2.对二次回路或低压配电装置及电力布线测量绝缘电阻,并兼有进行直流耐压试验的目的时,可选用2500V兆欧表。
由于低压装置的绝缘电阻一般较低(1M S2-20MQ ) ,兆欧表输出电压因受负载特性影响,实际端电压并不高。
用2500V兆欧表代替直流耐压试验时,应考虑到由于绝缘电阻低而使端电压降低的因素。
绝缘电阻的测量原理:绝缘电阻测量过程中的电流曲线ic:电容电流;ia:吸收电流;ig:泄漏电流1、手摇式兆欧表测试原理(比流计)兆欧表接线端子:线路端子(L ),接地端子(E ),屏蔽(或保护)端子(G)。
一、兆欧表工作原理手摇式兆欧表使用前的检查事项短路检查:短接L、E,缓慢摇动手柄,观察指针是否指“0”。
开路检查:摇动手柄达额定转速120r/min,观察指针是否指“∞”。
2、电子式兆欧表测试原理兆欧表接线端子:线路端子(L),接地端子(E),屏蔽(或保护)端子(G)。
二、绝缘电阻测量的值;当电容量特规程规定:测量60s时的绝缘电阻值,即R60S别大时,吸收现象特别明显,如大型发电机、电力电缆等,可以采。
电力变压器绝缘电阻、吸收比与极化指数一、工作目的电力变压器是发电厂、变电站和用电部门最主要的电力设备之一,是输变电能的电器。
测量绕组绝缘电阻、吸收比和极化指数,能有效地检查出变压器绝缘整体受潮,部件表面受潮脏污,以及贯穿性的集中行缺陷,如瓷瓶破裂、引线接壳、器身内有金属接地等缺陷。
二、工作对象SL7-1000/35型电力变压器三、知识准备见第三篇第XXX章XXXXXX标题四、工作器材准备10 放电棒1支11 接地线2根12 短路铜导线2根13 高压引线1根14 低压引线1根五、工作危险点分析见第一篇第二章通用危险点六、工作接线图上图为低压对高压及地的绝缘电阻,吸收比与极化指数测试的接线图:将非被试绕组短路接地;兆欧表的输出L端接被试品端,E端接地,G端接屏蔽测量顺序为:1)低压对高压及地(abco短路接兆欧表的输出L端)2)高压对低压及地(ABCO短路接兆欧表的输出L端)1)高压、低压对地(ABCO与abco短路接兆欧表的输出L端)七、工作步骤1)检查兆欧表,将其水平放稳。
2)高压线接“L”端子,低压线接“E”端子。
接通电源,电压设置为5000V。
用导线瞬时短接“L”和“E”端子,按“启动”按钮,其指示应为“0”。
按“停止”按钮。
关掉电源。
3)“L”和“E”端子开路时,接通电源,电压设置为5000V,按“启动”按钮,指示应指“∞”。
按“停止”按钮,关掉电源。
4)将兆欧表的接地端与被试品地线连接。
5)兆欧表的高压端上接屏蔽连接线,另一端悬空,再次接通电源,指示应无明显差异。
6)将高压侧A、B、C、O用短路铜导线短接起来,同理低压短接。
7)将非测试绕组接地;先接接地端,后接被试品端。
8)将兆欧表接地;先接接地端。
9)使用专用带屏蔽的绝缘护套线,一端接“L”,“G”接屏蔽,别一端接被试品的测量端。
10)接通电源,选择电压5000V,按“启动”键测试。
测试1min。
测试完毕后按“停止”键。
11)记录试验结果,若吸收比合格,则不需测极化指数。
用吸收比K判断绝缘状态有不确切性。
特别是对于大型变压器,因吸收时间常数T较大,往往不能取得大的吸收比。
由于绝缘结构的不同,使测试的吸收时间常数延长,吸收过程明显变长,稳态时一般可达10min或以上。
大量数据表明,10min绝缘电阻均大于1min绝缘电阻值,说明这些变压器的吸收电流确实衰减很慢。
因而出现绝缘电阻提高、吸收比小于1.3而绝缘并非受潮的情况。
若仍然按传统的吸收比来判断大型变压器的绝缘状况,已不能有效地加以判断。
为更好地发挥绝缘电阻项目的作用,根据目前我国广泛采用晶体管兆欧表测试的情况,在电力变压器绕组的测试中,用"极化指数PI"作为另一种判断绕组绝缘是否受潮的依据。
所以对吸收比小于1.3,一时又难以下结论的变压器,可以补充测量极化指数作为综合判断的依据。
预防性试验规程对变压器绝缘电阻的要求:1)绝缘电阻换算至同一温度下,与前一次测试结果相比应无显著变化,一般不低于上次值的70%2)35kV及以上变压器应测量吸收比,吸收比在常温下不低于1.3;吸收比偏低时可测量极化指数,应不低于1.53)绝缘电阻大于10000 MΩ时,吸收比不低于1.1或极化指数不低于1.3《国家电网山东电力集团公司2007版电力设备交接和预防性试验规程》对极化指数有如下规定:极化指数在常温下不低于1.5;当R60s大于10000MΩ时,极化指数可不作要求。
预试时可不测量极化指数;吸收比不合格时增加测量极化指数,二者之一满足要求即可。
《电气装置安装工程电气设备交接试验标准》(GB 50150-2006),7.0.9第4条,变压器电压等级为220kV及以上且容量为120MVA及以上时,宜用5000V兆欧表测量极化指数。
测得值与产品出厂值相比应无明显差别,在常温下不小于1.3;当R60s大于10000MΩ时,极化指数可不做考核要求。
表1摘自美国《变压器维护指南》,可作为根据极化指数判断绝缘状况的参考。
配电变压器绝缘电阻、吸收比、极化指数的测量及合格标准变压送电保安全,测量绝缘查隐患。
测量使用兆欧表,根据电压把表选,三五以上两千五,十千以下用一千。
仪表E端应接地,污染严重加G端。
未测绕组和元件,可靠接地保安全。
手摇转速一百二,测后放电再拆线。
若要计算吸收比,十五、六十记两点;极化指数时更长,一分、十分记两点。
绝缘电阻应多高,经验数值供参考。
电压不同标不同,温度下降标升高。
温度七十基值算,每减十度增一半。
十千伏级为四十,三五千伏五十算;电压更高标更高,前级数值翻一翻。
1. 测量绝缘电阻的作用为了电力变压器能正常安全地运行,要经常对其进行监视和维护。
其中一项主要的任务是测量绕组和相关电器元件(引接线和绝缘套管等)的绝缘电阻。
并根据测量结果判断它们的绝缘状态和运行情况,及时发现隐患并给与排除,以避免较大事故的发生。
2. 测量仪表的选用原则测量绝缘电阻的仪器叫绝缘电阻表,习惯称为兆欧表或高阻计,对用手摇发电的传统式兆欧表,又习惯称为“摇表”,兆欧表的规格是用其发出的额定电压值来规定的,例如1000V的兆欧表所发出的电压额定值即为1000V。
测量变压器的绝缘电阻时,应根据被测变压器的电压等级来选择兆欧表的规格。
对于10kV及以下的变压器,应使用规格为1000V的兆欧表;对于35kV及以上的变压器,应使用规格为2500V的兆欧表。
口诀“三五以上两千五,十千以下用一千”中的“三五”和“十千”指变压器的电压等级为“35kV及以上”和“10kV及以下”;“两千五”和“一千”即指应选用兆欧表的规格(电压等级)分别为2.5kV 和1kV。
3. 测量接线、读数和有关要求(见图1)图1 测量变压器绕组的绝缘电阻、吸收比和极化指数测量时,应停电并将各绕组与电网断开,兆欧表的L端接变压器的一侧绕组(例如低压绕组),E端接外壳,外壳应接地,其他绕组和有关器件与外壳连接,例如测量低压绕组时,高压绕组、中压绕组和油箱等应与外壳连接。
绝缘电阻测量及吸收比的实验方案一.实验前准备(了解的知识点)1 绝缘电阻是电气设备绝缘层在直流电压作用下呈现的电阻值。
测量电气设备的绝缘电阻,是检查电气设备绝缘状态最简便和最基本的方法。
在现场普遍用兆欧表测量绝缘电阻。
绝缘电阻值的大小常能灵敏地反应绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
2 吸收比K1为60s 绝缘电阻值(R60s)与15s 绝缘电阻值(R15s)对于大容量和吸收过程较长的变压器、发电机、电缆等,有时R60s/R15s 吸收比值尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即 10min(R10min)和R1min(R1min)时绝缘电阻的比值K ,称作绝缘的极化指数在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机或油浸变压器绝缘的受潮程度。
绝缘受潮后吸收比值(或极化指数)降低(如图1),因此它是判断绝缘是否受潮的一个重要指标。
应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比值仍然很好。
吸收比不能用来发现受潮、脏污以外的其他局部绝缘缺陷。
K R R 1=60s 15s K R R 2=10min1min3 绝缘电阻表(兆欧表)按电源型式通常可分为发电机型和整流电源型两大类。
发电机型一般为手摇(或电动)直流发电机或交流发电机经倍压整流后输出直流电压作为电源的机型。
整流电源型由低压50Hz交流电经整流稳压(或直接采用电池电源) 经晶体管振荡器升压和倍压整流后输出直流电压作为电源的机型4 如何选择绝缘电阻表的电压和量程测量绝缘电阻一般使用绝缘电阻表,绝缘电阻表的输出电压通常有250V、500V、1000V、2500V、5000V和10000V等多种。
也有可连续改变输出电压的。
对水内冷发电机采用专用兆欧表测量绝缘电阻。
应按照《电气设备预防性试验规程》的有关规定选用适当的电压。
5 绝缘电阻表的容量绝缘电阻表的容量即最大输出电流值,一般可将绝缘电阻表(两端输出)经毫安表短路后测得,因此也称之为绝缘电阻表的输出短路电流值。
变压器绝缘电阻、吸收比、极化指数的检测绝缘电阻试验是对变压器主绝缘性能的试验,吸收比和极化指数能够反映变压器绝缘受潮问题,是变压器诊断受潮故障的重要手段。
标签:绝缘电阻;吸收比和极化指数绝缘电阻试验是对变压器主绝缘性能的试验,主要诊断变压器由于机械、电场、温度、化学等作用及潮湿污秽等因素影响程度,能灵敏反映变压器绝缘整体受潮、整体劣化和绝缘贯穿性缺陷,主变压器能否投运的主要参考数据之一。
一、变压器绝缘电阻试验类型电力变压器的绝缘电阻试验:中小型变压器一般采用测量一分钟的直流电阻值即可;大型变压器采用测量吸收比值即:R60 / R15来判断;对特大型变压器,则应采用极化指数(R600 / R60)的测定来判断变压器的绝缘。
吸收比的测量可以反映变压器是否受潮,但特大型变压器往往会出现绝缘电阻绝对值较大时,吸收比反而偏小。
采用极化指数的测量,有助于正确判断上述所遇到的问题。
为了比较不同温度下的绝缘电阻值,GB / T6451——1999国家标准夫定了不同温度t下测量的绝缘电阻值R60换算到标准温度(20℃)时的换算公式当t20℃R20 = A Rt式中A为换算系数,具体见下表绝缘电阻换算系数表温度差℃5 10 15 20 25 30 35 40 45 50 55 60系数 A 1.2 1.5 1.8 2.3 2.8 3.4 4.1 5.1 6.2 7.5 9.2 11.2DL / T596—1996规程规定吸收比(10~30℃)不低于1.3和极化指数不低于1.5,且对吸收比和极化指数不进行温度换算。
在判断时,新的预试规程规定:吸收比与极化指数中任一項,达到上述要求,均应为符合标准。
美国按极化指数判断变压器绝缘状况的参考标准如下:美国“变压器维护指南”推荐参考标准表变压器绝缘状态极化指数良好>2较好 1.25~2一般 1.1~1.25不良1~1.1危险<1二、变压器绝缘电阻的度验方法测量部位1、二绕组变压器,应分别测量:高压绕组对低压绕组及地;低压绕组对高压绕组及地;高、低绕组对地。
主变常见的高压试验:一、测量绕组连同套管的绝缘电阻、吸收比和(或)极化指数试验目的:对检查变压器整体的绝缘状况具有较高的灵敏度,能有效地检查出变压器绝缘整体受潮、部件表面受潮或脏污、以及贯穿性的集中性缺陷。
例如,各种贯穿性短路、瓷件破裂、引线接壳等现象。
吸收比、极化指数:变压器绝缘电阻取决于变压器纸和油的状况,还取决于结构尺寸,并随时间增加而增大,因此单纯的绝缘电阻值不是判别绝缘状况的理想指标。
实测表明,用吸收比和极化指数更能反映变压器的绝缘受潮情况。
吸收比K为60s绝缘电阻值与15s绝缘电阻值之比,吸收比在一定程度上反映了绝缘是否受潮。
极化指数PI为10min绝缘电阻值与1min绝缘电阻值之比随着变压器电压的提高、容量的增大,在吸收比测量中出现绝缘电阻高、吸收比反而不合格的不合理现象,这是因为变压器干燥工艺的提高,油纸绝缘材料的改善,变压器大型化,吸收过程明显变长,出现绝缘电阻提高、吸收比小于的情况,可以用极化指数来判断变压器绝缘是否受潮。
二、测量铁心的绝缘电阻试验目的:铁心的绝缘电阻反映铁心与地电位的金属件之间的绝缘情况,包括铁心与油箱、穿心螺栓、上下夹件、绑扎钢带、钢压板、磁屏蔽等之间的绝缘,从而判断铁心与这些部件之间的绝缘是否劣化或短路,反映出铁心是否存在多点接地现象。
如果铁心有两点或两点以上接地,则铁心中磁通变化时就会在接地回路中有感应出环流。
这些环流将引起空载损耗增大,铁心温度升高。
若两个接地点间包含的铁心片越多,短接的回路越大,环流也越大。
当环流足够大时,将烧毁接地片或铁心产生故障。
因此,铁心必须接地,且只能一点接地。
测得的绝缘电阻与历次测量数据相比无显着差别,则认为铁心对地绝缘良好。
若绝缘电阻下降较多,则说明铁心对地绝缘下降;若绝缘电阻为零,则说明存在铁心多点接地现象。
三、测量绕组连同套管的介质损耗及电容量油纸绝缘是有损耗的,在交流电压作用下有极化损耗和电导损耗,通常用tgδ来描述介质损耗的大小,且tgδ与绝缘材料的形状、尺寸无关,只决定于绝缘材料的绝缘性能,所以作为判断绝缘状态是否良好的重要手段之一。