人教版数学21.3实际问题与二次函数学案
- 格式:doc
- 大小:249.29 KB
- 文档页数:8
实际问题与二次函数一、学习目标·重点难点1、初步让学生学会用二次函数知识解决实际问题。
2、在问题转化,建摸的过程中,发展合情推理,体会数形结合的思想。
3、通过实际问题,体验数学在生活实际的广泛运用,发展数学思维,激发学生学习热情。
教学重点:用二次函数的知识解决实际问题。
教学难点:建立二次函数数学模型。
教学方法:引导、启发式教学,学生自主学习,合作探索。
二、直击考试·例题解析例1:我们班小红家开了一个商店,某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知该商品的进价为每件40元,如何定价才能使小红的爸爸获得利润最大?分析:1、如何确定函数关系式?2、每件的利润=售价—进价总利润=每件的利润×卖出的总件数3、变量x有范围要求吗?解:调整价格包括涨价和降价两种情况(1)设每件涨价x元,则每件的利润为(60+x-40)元,可卖的商品的件数为(300-10x),此时每星期商品的利润为y元,于是有y=(60+x-40)(300-10x)=-10x2+100x+6000=-10(x-5)2+6250 (其中0≤x≤30)∴当x=5时,y最大=6250元所以在涨价的情况下,每件涨5元即定价为65元/件时利润最大是6250元。
(2)设每件降价x元,则每件的利润为(60-x-40)元,可卖的商品件数为(300+20x),此时每星期商品的利润为y元,于是有y=(60-x-40)(300+20x)=-20x2+100x+6000=-20(x-2.5)2+6125 (其中0≤x≤20)∴当x=2.5时,y最大=6125元所以在降价的情况下,每件降价2.5元即定价为57.5元时,利润最大是6125元。
综合(1) (2)可知,商品的定价为65元时才能使小红的爸爸获得利润最大。
由此题可知,做生意也是有很大的学问。
21.3实际问题与一元二次方程(传播问题)学习目标1、会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题的实际意义,检验所得结果是否合理,进一步培养分析问题和解决问题的能力。
2、会运用方程模型解决传播问题。
3、全新投入,做最好的自己重点:一元二次方程在实际问题中的应用,列方程解应用题;难点:会用含未知数的代数式表示等量关系,能根据问题的实际意义,检验所得的结果是否合理。
学习过程:一、温故知新,自主预习:1、列方程解应用题的步骤是什么?2、完成课本探究1,并补充未完成的过程。
3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互了182件,如果全组有x名同学,那么根据题意列出的方程是()A.x(x+1)=182 B.x(x-1)=182C.2x(x+1)=182 D.x(1-x)=182二、学以致用1、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2、.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?3、.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有人.三、反馈检测:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?3.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.某渔船出海捕鱼,2017年平均每次捕鱼量为10吨,2019年平均每次捕鱼量为8.1吨,求2017年~2019年每年平均每次捕鱼量的年平均下降率.5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?。
21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.2.经历将实际问题抽象为数学问题的过程,体会一元二次方程是刻画现实世界的一个有效的数学模型.3.感受与“增长率、下降率”相关的数学模型中的数量关系,提高用数学模型解释现实问题的能力,培养分析问题和解决问题的能力.【重点难点】重点:掌握建立数学模型以解决平均变化率问题.难点:分析题意,建立正确的数学模型【新课导入】复习:用方程解决实际问题的步骤是什么?设计意图:梳理前一节课所学,体会建立数学模型解决实际问题的思想和方法,为本节课后续学习做好铺垫.【新课讲解】2019年,研究人员在某杂志发表论文说,他们分析了两颗卫星的观测数据,发现在2000年至2017年间全球绿化面积增加了5%.其中约四分之一来自中国,贡献比例居全球首位.研究人员认为原因是中国在植树造林和集约农业等方面有突出表现.经调查,2000年全球绿化面积大约是38亿公顷,则2017年全球绿化面积大约是多少亿公顷?如果保持此增长率继续增长,那么到2034年,全球绿化面积约能达到多少呢?如果增长率是6%,那么2017年和2034年的全球绿化面积又该怎么表示呢?如果增长率用x表示,那么2017年和2034年的全球绿化面积又该怎么表示呢?设计意图:(1)-(4)通过层层递进的问题,帮助学生理解“增长率”的含义:并自然生成关于连续增长的数量关系,形成数学模型,建立一元二次方程和平均变化率实际问题之间的联系.当增长率为多少时,2034年的全球绿化面积可以达到45亿公顷?(精确到1%)设计意图:在形成和熟悉增长率有关模型的前提下,建立方程,解决实际问题..在解决问题的过程中,在此巩固用方程解决实际问题的思想和流程.归纳小结:类似地,这种变化率的问题在实际生活普遍存在,例如人口增长率、成本下降率等.本节讨论的是两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型,设平均变化率为x,则有下列关系:变化前数量×( 1±x )²=变化后数量.设计意图:通过小结,归纳变化率问题的共同特征,并在一元二次方程和连续增长两次的问题之间建立知识联系,帮助学生形成解决同类问题的策略,并适时补充下降率的有关知识.【课堂小结】用一元二次方程解决实际问题的基本步骤阅读分析题意,建立模型,列出一元二次方程,将实际问题转化为数学问题.选择合适的方法求解一元二次方程.经过检验,找到符合题意的答案,解决实际问题.设计意图:一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.【布置作业】1.有一人患了流感,经过两轮传染后共有100人患了流感,则每轮传染中,平均一个人传染的人数为(C)A.11人B.10人C.9人D.8人2.两个相邻正整数的平方和比这两个数中较小的数的2倍大51,则这两个数是5,6.3.某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向9个人发送短信.【板书设计】21.3实际问题与一元二次方程第3课时用一元二次方程解决几何图形问题图形的面积(或体积)建立模型【教学反思】一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.。
同样,我们可以发现(30)s l l=--和x轴的两个交点为(0,0)和(30,0),所以当15l=时,2153015225s=-+⨯=为最大值。
10min 应用新知问题3 了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m 的栅栏围住(如下图).设绿化带的BC 边长为x m,绿化带的面积为y m 2.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 为何值时,满足条件的绿化带的面积最大?对于此问题,我们也通过画图来分析。
x绿化带一边靠墙,三边总长为40,所以,另两边长相等为402x-。
这样面积为40()2xy x-=,同时我们要考虑x的取值xyO范围,0254002x x <≤⎧⎪⎨->⎪⎩得到025x <≤,整理得2120(025)2y x x x =-+<≤在这个问题中,2020122()2b x a --===⨯-满足025x <≤,所以当20x =时,22420200144()2ac b y a --===⨯-。
当 x 是 20 m 时,场地的面积 y 最大.同样,我们可以发现()401()4022x y x x x -==--和x 轴的两个交点为(0,0)和(40,0),所以当040202x +==时,212020202002y =-⨯+⨯=为最大值。
问题3变式 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25 m )的空地上修建一个矩形绿化带 ABCD ,绿化带一边靠墙, 另三边用总长为 60 m 的栅栏围住 (如下图).设绿化带的 BC 边长为 x m ,绿化带的面积为 y m 2. (1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.(2)当 x 为何值时,满足条件的绿化带的面积最大?xyO如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长; (2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由. 解答:设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5. 当x 1=3时,BC =24-3×3>10,不合题意,舍去; 当x 2=5时,BC =24-3×5=9,符合题意. 故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃. 由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 32462。
22.3 实际问题与二次函数第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:最大面积问题 【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x 2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30. (2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程. 【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标;(2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y =-16x 2+2x . (3)设OB =m 米,则点A 的坐标为(m ,-16m 2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.第2课时商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x-1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示.(1)求y 2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.第3课时 拱桥问题和运动中的抛物线1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.2.利用二次函数解决拱桥及运动中的有关问题.3.能运用二次函数的图象与性质进行决策.一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点一:建立二次函数模型【类型一】运动轨迹问题某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入解析式,得左边=右边,即点C 在抛物线上,所以此球一定能投中.(2)将x =1代入解析式,得y =3.因为3.1>3,所以盖帽能获得成功.【类型二】拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.解析:如图,建立直角坐标系,设这条抛物线为y =ax 2,把点(2,-2)代入,得-2=a ×22,a =-12,∴y =-12x 2,当y =-3时,-12x 2=-3,x =± 6.故答案为2 6.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M(12,0)和抛物线顶点P(6,6);已知顶点坐标,可设二次函数关系式为y=a(x-6)2+6,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长AD+DC+CB二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题.解:(1)根据题意,分别求出M(12,0),最大高度为6米,点P的纵坐标为6,底部宽度为12米,所以点P的横坐标为6,即P(6,6).(2)设此函数关系式为y=a(x-6)2+6.因为函数y=a(x-6)2+6经过点(0,3),所以3=a(0-6)2+6,即a=-112.所以此函数关系式为y=-112(x-6)2+6=-112x2+x+3.(3)设A(m,0),则B(12-m,0),C(12-m,-112m2+m+3),D(m,-112m2+m+3).即“支撑架”总长AD+DC+CB=(-112m2+m+3)+(12-2m)+(-112m2+m+3)=-16m2+18.因为此二次函数的图象开口向下.所以当m=0时,AD+DC+CB有最大值为18.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.。
第3课时实际问题与二次函数(3)【知识与技能】能根据实际问题构建二次函数模型,并利用函数性质来解决实际问题.【过程与方法】再次经历利用二次函数解决实际问题的过程,进一步体验数学建模思想,培养学生解决实际问题的能力.【情感态度】进一步体会数学知识的应用价值,感受数学来自于生活又服务于生活,激发学习数学的兴趣.【教学重点】用函数知识解决实际问题,感受数学建模思想.【教学难点】根据抛物线型实际问题,建立恰当的平面直角坐标系,建立二次函数模型.一、情境导入,初步认识问题1 如图所示,交通运输业的不断发展使得人们的日常生活越来越便利,隧道的开凿也让许多天堑变通途.一般情况下,隧道都有一定高度,超过高度的车辆无法通过,因此,在隧道入口处常常会设有提醒司机的限高标志.同学们,这个隧道的外形轮廓是不是很像我们学过的二次函数图形?如果已知一辆车的高度和隧道设计的相关数据,你能判断出该车是否能安全通过隧道吗?问题2如图所示,我想班上很多同学都喜欢篮球这项运动,都希望有天能像林书豪和姚明那样在NBA的赛场上驰骋吧?其实篮球运动中很多问题也涉及到了我们现在所学的二次函数.【教学说明】教师演示一些图片:拱桥,喷泉,投篮等,创设一些学生熟悉的情境,提高学生的学习兴趣,引入新知.二、思考探究,获取新知【设计说明】要解决上述问题,我们往往要通过建立合理的平面直角坐标系后,建立二次函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应,将实际语言转化为数学语言.问题(教材第51页探究3)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,水面下降1m,水面宽度增加多少?【教学说明】教学时,为了便于学生探究,教师可设置如下问题予以引导:①对于抛物线形拱桥,要是能知道此抛物线表达式就好了.你能确定这条抛物线的表达式吗?(设置疑问,激发学生的求知欲望.)②你能先在图中建立一个恰当的平面直角坐标系,使抛物线形拱桥转化为坐标系中的抛物线吗?不妨试试看,并尝试着求出此时抛物线的表达式.(同学间可相互交流,教师巡视,及时予以指导,鼓励学生用多种方法建立平面直角坐标系,并尝试求出相应抛物线表达式.在这一过程中应让学生体验到恰当的尝试过程中体验探究发现的快乐,体会数学的最优化思想.)在学生完成上述探究后,结合相应的图象,师生一同完成本题的解答.三、运用新知,深化理解1.一自动喷灌设备的喷流情况如右图所示,设水管AB在高出地面1.5米的B处有一自动旋转的喷水头,其喷出的水流成抛物线形.喷头B与水流最高点C的连线与水管AB之间夹角为135°(即∠ABC=135°),且水流最高点C比喷头B高2米.试求水流落点D与A点的距离.(精确到0.1米)2.如图,一位篮球运动员在离篮筐水平距离4m处跳起投篮,球沿一条抛物线运行,球的出手高度为1.8m.当球运行的水平距离为2.5m时,达到最大高度,然后准确落入篮筐内.已知篮筐中心离地面的距离为3.05m,你能求出球所能达到的最大高度约是多少吗?(精确到0.01m)【教学说明】这个环节的教学自主性很强,可以让学生在小组内完成,也可以采用分组的方法进行.教师巡视,对优胜者给予鼓励,让他们体验成功的快乐;对尚有困难的学生应给予指导,鼓励他们探究下去.最后教师可展示优秀者作品,或在黑板上进行评析,尽量让学生能掌握这类建立坐标系的问题的解法.【答案】1.解:如图所示,以A为坐标原点,AD所在直线为x轴,AB所在直线为y轴建立平面直角坐标系.连BC,则∠ABC=135°,过C点作CE⊥x轴,垂足为E,又过B点作BF⊥CE,垂足为F.由题意易证四边形AEFB为矩形,∴∠ABF=90°,∴∠CBF=135°-90°=45°,∴∠BCF=45°,Rt△CBF为等腰直角三角形,又由题意易知AB=1.5米,CF=2米,∴BF=CF=2米,而CE=CF+EF=CF+AB=3.5米,则B(0,1.5),C(2,3.5).设该图象解析式为y=a(x-h)2+k,则y=a(x-2)2+3.5,将B(0,1.5)代入可求得a=-1 2 .∴y=-12(x-2)2+3.5.设D (m,0)代入,得m=7+2≈4.6.(负值已舍去)即DA=4.6米. 2.解:如图所示,以篮框所在直线为y 轴,地面所在直线为x 轴,其交点为坐标原点O.建立平面直角坐标系,设篮框中心点为A 点,运动员出手点为B 点,顶点为C 点,依题意可得A(0,3.05),B(-4,1.8),设C(-1.5,m ),设抛物线的解析式为y=ax 2+bx+c,将A 、B 代入可求得1.8=16a-4b+3.05①又由图象可知-2b a=-1.5,b=3a,将其代入①中,可求得a=-0.3125,则b=-0.9375. ∴y=-0.3125x 2-0.9375x+3.05.则m=244ac b a≈3.75(m ). 即球所能达到的最大高度约是3.75m.四、师生互动,课堂小结1.构建二次函数模型解决实际应用问题时,应关注自变量的取值范围并结合二次函数性质进行探讨;2.对具有抛物线形状的实际问题,应能根据图形的特征建立恰当的平面直角坐标系,这样能更快捷的解决问题,应注意体会.1.布置作业:从教材习题22.3中选取.2.完成练习册中本课时练习的“课后作业”部分.本课时教学与上一课时基本相同,所不同的是教学时应注意建立正确的直角坐标系,使类似于抛物线的实际问题转化为平面直角坐标系中的抛物线.教学时教师仍可采用分步设问的形式让学生回答并让学生相互交流.教师应鼓励学生用多种方法建立平面直角坐标系,并求出相应抛物线表达式,在这一过程中让学生体验探究发现的快乐,体会数学的最优化思考.良好的学习态度能够更好的提高学习能力。
实际问题与二次函数教学内容22.3 实际问题与二次函数(3). 教学目标1.根据不同条件建立合适的直角坐标系.2.能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 教学重点1.根据不同条件建立合适的直角坐标系. 2.将实际问题转化成二次函数问题. 教学难点将实际问题转化成二次函数问题. 教学过程 一、导入新课复习二次函数y =ax 2的性质和特点,导入新课的教学. 二、新课教学探究3 下图中是抛物线形拱桥,当拱顶离水面2m 时,水面宽4 m .水面下降1 m ,水面宽度增加多少?教师引导学生审题,然后根据条件建立直角坐标系.怎样建立直角坐标系呢?因为二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系. 教师可让学生自己建立直角坐标系,然后求出二次函数的解析式.设这条抛物线表示的二次函数为y =ax 2.由抛物线经过点(2,-2),可得这条抛物线表示的二次函数为y =-21x 2. 当水面下降1m 时,水面宽度就增加26-4 m .三、巩固练习一个涵洞成抛物线形,它的截面如右图所示,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ? 分析:根据已知条件,要求ED 的宽,只要求出FD 的长度.在如右图的直角坐标系中,即只要求出D 点的横坐标.因为点D 在涵洞所成的抛物线上,又由已知条件可得到点D 的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D 的横坐标. 2.让学生完成解答,教师巡视指导. 3.教师分析存在的问题,书写解答过程.解:以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x轴,建立直角坐标系.这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y 轴,开口向下,所以可设它的函数关系式为y =ax 2 (a <0) ①因为AB 与y 轴相交于C 点,所以CB =AB2=0.8(m ),又OC =2.4 m ,所以点B 的坐标是(0.8,-2.4).因为点B 在抛物线上,将它的坐标代人①,得-2.4=a ×0.82所以 a =-154因此,函数关系式是y =-154x 2 ②∵OC =2.4 m ,FC =1.5 m ,∴OF =2.4―1.5=0.9(m ). 将y =-0.9代入②式得 -0.9=-154x 2解得 x 1=56,x 2=―56. 涵洞宽ED =256≈0.98<1. 四、课堂小结今天你学习了什么?有什么收获? 五、布置作业习题22.3 第6、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB 、BC 、CA ,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
课题:实际问题与二次函数(一)教学目标1.知识与技能:使学生会根据题意将实际问题转化为二次函数的问题来解决,会根据题意列出二次函数表达式、会求出自变量的取值范围、会使用二次函数的性质解决问题。
2. 过程与方法:经历将实际问题转化成二次函数的问题的过程完成由感性理解到理性理解的转变,实现理解上的升华。
3.情感态度与价值观:让学生体会数学与人类社会生活的密切联系,理解数学的应用价值;会建立二次函数的数学模型,进一步培养学生探索、创新、转化的水平。
(二).教学重点:根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。
(三).教学难点:准确的根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。
(四).教学方法:引导、分析、讨论、讲解、归纳(五).教学过程:一.创设问题情境,引入新课前面我们理解了二次函数,研究了它的图象与性质,今天将应用它去解决一些实际问题。
首先我们一起来作一个简要的回顾:1.二次函数y=a(x-h)2+k的图象与性质:①当a>0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.②当a<0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.2.二次函数y=ax2+bx+c的图象与性质:①当a>0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.②当a<0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.由此可知,确定了一个二次函数的解析式,我们就能够根据其性质求出相对应的函数的最大(小)值。
21.3实际问题与一元二次方程(第1课时)---- 倍数关系问题学习目标掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.重难点关键1.重点:用“倍数关系”建立数学模型2.难点与关键:用“倍数关系”建立数学模型学习过程一、新知准备1.列方程解应用题的步骤:① .② . ③ . ④ . ⑤ . ⑥ .2.据调查,初春是流感盛行的季节,(1)经研究流感在每轮传染中平均一个人传染10人,请问:一人患流感一轮传染后共有人患了流感;经过两轮传染后共有人患了流感。
(2)如果设流感在每轮传染中平均一个人传染x人,请问:一人患流感一轮传染后共有人患了流感;经过两轮传染后共有人患了流感。
二、探索新知探究1: 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析: 设每轮传染中平均一个人传染了x个人,则第一轮传染后共有人患了流感,第二轮传染后共有人患了流感.,列方程得:。
解方程,得。
检验:。
答: .三.巩固练习.1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,3.要组织一场篮球联赛, 每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?四、总结反思1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.列一元二次方程解一元二次方程的一般步骤(1)审(2)设(3)列(4)解(5)验——检验方程的解是否符合题意,将不符合题意的解舍去。
(6)答。
21.3实际问题与一元二次方程(第2课时)--------增长率问题学习目标:掌握增长率问题中的数量关系,会列出一元二次方程解决增长率问题重点:利用增长率问题中的数量关系,列出方程解决问题难点:理清增长率问题中的数量关系一、知识储备:1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:二月份总产量为吨;三月份总产量为吨。
(填具体数字)2、某厂今年1月份的总产量为500吨,设平均每月增长率是x ,则:二月份总产量为吨;三月份总产量为吨。
(填含有X的式子)3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。
(填具体数字)4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。
(填含有X的式子)二、与同学合作探究、小显身手5、(2010台州中考) 某种商品原价是100元,经过两次提价后的价格是120元,求平均每次降价的百分率。
设平均每次降价的百分率为x,下列所列方程中正确的是()A、100(1+x)2=120B、100(1-x)2=120C、120(1+x)2=100D、120(1-x)2=1006、(2010兰州中考)上海世博会的某种纪念品原价是168元,连续两次降价x%后售价为128元。
下列所列方程中正确的是()A 、168(1+x)2=128 B、168(1-x)2=128 C、128(1+ x%)2=168 D、128(1- x%)2=168三、与同学交流,归纳:平均增长率(或平均减少率)问题:原数(1 +平均增长率)n= 。
(n为相距时间)原数(1-平均减少率)n= 。
四、自主学习,理解教材课本P46探究2问题1:你是如何理解下降额与下降率的?他们之间的联系与区别是什么?试举例说明问题2:在该题中,若设甲种药品成本的平均下降率为x ,请填下表问题3:请解出方程①,得x1= ;x2= 。
问题4:对问题3的结果你还有什么见解吗?。
问题5:根据下表请求出乙种药品的年平均下降率,比较两种药品哪个的年平均下降率大。
乙种药品两年前1吨乙种药品成本一年后乙种药品成本两年后乙种药品成本根据题意列出一元二次方程②请解出②,得x1= ;x2= 。
问题6:经过这个问题的解决,你对下降额与下降率有了新的认识吗?归纳:关于量的变化率问题,不管是增加还是减少,都是变化前的数据为基础,每次按相同的百分数变化,若原始数据为a,设平均变化率为x,经第一次变化后数据为(1)a x±;经第二次变化后数据为2(1)a x±。
在依题意列出方程并解得x值后,还要依据01x<<的条件,做符合题意的解答。
五、达标测试1.某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是( )A、9%B、10%C、11%D、12%2.某商品连续两次降价,每次都降20﹪后的价格为m元,则原价是()(A)22.1m元(B)1.2m元(C)28.0m元(D)0.82m元3.一工厂计划2007年的成本比2005年的成本降低15%,如果每一年比上一年降低的百分率为x,那么求平均每一年比上一年降低的百分率的方程是( )A、(1-x)2=15%B、(1+x)2=1+15%C、(1-x)2=1+15%D、(1-x)2=1-15%4.某林场第一年造林200亩,第一年到第三年共造林728亩,若设每年增长率为x,则应列出的方程是________________________。
5.目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;2.24,(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据:1.12 3.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)总结反思:(1)为计算简便、直接求得,可以直接设增长的百分率为x.(2)认真审题,弄清基数,增长了,增长到、总共季度总和等词语的关系.(3)用直接开平方法做简单,不要将括号打开.21.3实际问题与一元二次方程(第3课时)----面积、体积问题学习目标:1.使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题.2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识学习重点:会用列一元二次方程的方法解有关面积、体积方面的应用题.学习难点:会用列一元二次方程的方法解有关面积、体积方面的应用题.一、导学求思1、列方程解应用题步骤2、填空:1).直角三角形的面积公式是 一般三角形的面积公式是2).正方形的面积公式是长方形的面积公式又是3).梯形的面积公式是4).菱形的面积公式是5).平行四边形的面积公式是6).圆的面积公式是二、探究交流如图,要设计一本书的封面,封面长27cm,宽21cm, 正中央是一个与整个封面长宽比例相同的矩形, 如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽, 应如何设计四周边衬的宽度(结果保留小数点后一位)?分析:(法一)这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7,设正中央的矩形两边分别为9xcm,7xcm,则上、下边衬为,左、右边衬为因为四周的彩色边衬所点面积是封面面积的四分之一,则中央矩形的面积是封面面积的四分之三,从而得方程。
或直接根据四周的彩色边衬所占面积是封面面积的四分之一得方程。
(此题展示于右上)分析:(法二)依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7, 由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm, 则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为()cm,宽为()cm.因为四周的彩色边衬所占面积是封面面积的四分之一,则中央矩形的面积是封面面积的四分之三.从而得方程。
或直接根据四周的彩色边衬所点面积是封面面积的四分之一得方程。
解:三、达标测试1 .现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?2721A BCD16米草坪第3题图2.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.求道路宽为多少米?3.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.21.3实际问题与一元二次方程(第4课时)----- 数字问题学习目标:1、使学生会用列一元二次方程的方法解有关数字方面的应用问题.2、培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识.学习重点:使学生会用列一元二次方程的方法解有关数字方面的应用问题 学习难点:设元的灵活性和解的讨论 一.自主学习1.已知两个数的差等于4,积等于45,求这两个数.2. 两个连续奇数的积是323, 求这两个数。
22米17米二.探究学习一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.思考:(1)一个两位数与它各个数位上的数字有何关系?也就是如何用各个数位上的数字表示两位数?(2)由题意知,十位上的数字都与个位上的数字有关,因此你可以设_____上的数字为______,那么______位上的数字为______,这个两位数可表示为_________ 。
解:三.练习1、有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.2.合肥白马旅行社为吸引市民组团去黄山风景区旅游,推出了如下收费标准:如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元如果人数不超过25人,人均旅游费用为1000元某单位组织员工去黄山风景区旅游,共支付给白马旅行社旅游费用27000元,请问该单位这次共有多少员工去白马风景区旅游?。