2020高一数学新教材必修1教案学案 第二章 一元二次函数、方程与不等式总结与测试(解析版)
- 格式:pdf
- 大小:431.96 KB
- 文档页数:11
2.2基本不等式教材分析:“基本不等式" 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。
利用基本不等式求最值在实际问题中应用广泛。
同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标 【知识与技能】1。
学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2。
掌握基本不等式2a b +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣。
教学重难点 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b+≤的证明过程; 【教学难点】 12a b+≤等号成立条件; 22a b+≤求最大值、最小值。
教学过程 1。
课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a ,a ∈a ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a 〉0,b 〉0,我们用√a ,√a 分别代替上式中的a ,b ,可得√aa ≤a +a 2①当且仅当a =b 时,等号成立。
通常称不等式(1)为基本不等式(basic inequality )。
其中,a +a 2叫做正数a ,b 的算术平均数,√aa 叫做正数a ,b 的几何平均数。
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。
思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,(a>0,b>0)2a bab +≤2)2a bab +≤用分析法证明:要证 2a bab +≥(1) 只要证 a +b ≥(2) 要证(2),只要证 a +b - ≥0(3) 要证(3),只要证 ( — )2≥0 (4)显然,(4)是成立的。
2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
复习课(二) 一元二次函数、方程和不等式考点一 基本不等式利用基本不等式a +b ≥2ab (a >0,b >0)求最值,要抓住“一正,二定,三相等”的条件,三者缺一不可,和为定值积有最大值,积为定值和有最小值.【典例1】 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6 (2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2 D.54[解析] (1)因为x +3y =5xy ,1y +3x=5, 所以3x +4y =15(3x +4y )·⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3x y+12y x +135 ≥15×2×36+135=5. 当且仅当3x y =12y x ,即x =1,y =12时等号成立,所以3x +4y 的最小值是5. (2)由4x 2+9y 2+3xy =30,得2·2x ·3y +3xy ≤4x 2+9y 2+3xy =30,即15xy ≤30,xy ≤2,此时当且仅当⎩⎪⎨⎪⎧ 2x =3y 4x 2+9y 2+3xy =30,即x =3,y =233时取得最大值. 故答案选C.[答案] (1)C (2)C条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.[针对训练]1.若正实数x ,y 满足2x +y +6=xy ,则2x +y 的最小值是________.[解析] 解法一:∵x >0,y >0,∴xy =12·(2x )·y ≤12·⎝ ⎛⎭⎪⎫2x +y 22, ∴2x +y +6=(2x +y )+6≤18(2x +y )2, ∴(2x +y )2-8(2x +y )-48≥0,令2x +y =t ,t >0,则t 2-8t -48≥0,∴(t -12)(t +4)≥0,∴t ≥12,即2x +y ≥12.解法二:由x >0,y >0,2x +y +6=xy ,得 xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0, ∴(xy -32)·(xy +2)≥0,又∵xy >0,∴xy ≥32,即xy ≥18,∴xy 的最小值为18,∵2x +y =xy -6,∴2x +y 的最小值为12.[答案] 12 2.已知x >1,求函数y =x 2-2x +22x -2的最小值. [解] ∵x >1,∴y =x 2-2x +22x -2=(x -1)2+12(x -1)=12⎣⎢⎡⎦⎥⎤(x -1)+1x -1≥12×2 (x -1)·1x -1=1,当且仅当x -1=1x -1,即x =2时,取“=”, ∴当x =2时,函数y =x 2-2x +22x -2有最小值为1. 考点二 一元二次不等式的解法与三个“二次”之间的关系一元二次方程的根就是二次函数的零点,求二次不等式的解一般结合二次函数的图象写出不等式的解.【典例2】 (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x | -1<x <12B.⎩⎨⎧⎭⎬⎫x | x <-1或x >12 C .{x |-2<x <1}D .{x |x <-2或x >1}(2)若a 为实数,解关于x 的不等式ax 2+(a -2)x -2<0.[解析] (1)根据题意x =-1和x =2是方程ax 2+bx +2=0的两个根,于是 ⎩⎪⎨⎪⎧ a -b +2=04a +2b +2=0,解得⎩⎪⎨⎪⎧ a =-1b =1, 则2x 2+x -1<0的解集为⎩⎨⎧⎭⎬⎫x | -1<x <12. (2)当a =0时,不等式化为-2x -2<0,解得{x |x >-1};当a ≠0时,不等式化为(x +1)(ax -2)<0,若a >0,则不等式化为(x +1)⎝ ⎛⎭⎪⎫x -2a <0, 且-1<2a ,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |-1<x <2a ; 若a <0,则不等式化为(x +1)⎝ ⎛⎭⎪⎫x -2a >0, 当2a=-1,即a =-2时,不等式化为(x +1)2>0,解得{x |x ≠-1}; 当a <-2,即2a>-1时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x >2a 或x <-1; 当-2<a <0,即2a<-1时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x |x <2a 或x >-1. 综上,a =0时,不等式的解集为{x |x >-1},a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1<x <2a , -2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <2a 或x >-1, a =-2时,不等式的解集为{x |x ≠-1},a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x >2a 或x <-1. [答案] (1)A (2)见解析解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.[针对训练]3.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .[解] (1)由题意,知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根, ∴⎩⎪⎨⎪⎧ 1-a <0,41-a=-261-a =-3,解得a =3. ∴不等式2x 2+(2-a )x -a >0即为2x 2-x -3>0,解得x <-1或x >32. ∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0, ∴-6≤b ≤6.。
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质 (1)第一课时不等关系与比较大小 (1)第二课时等式性质与不等式性质 (8)2.2基本不等式 (14)第一课时基本不等式 (14)第二课时基本不等式的应用(习题课) (22)2.3二次函数与一元二次方程、不等式 (28)第一课时二次函数与一元二次方程、不等式 (28)第二课时二次函数与一元二次方程、不等式的应用(习题课) (35)2.1等式性质与不等式性质新课程标准解读核心素养梳理等式的性质,理解不等式的概念,掌握不等式的逻辑推理性质第一课时不等关系与比较大小(1)如图,某城市的高楼有高、有矮,有的高度相同.(2)任意两个实数之间有三种关系:a>b,a=b,a<b.(3)同号两数的积为正值.[问题]通过以上三例我们可以发现在客观世界中,量与量之间的关系有哪些?知识点一不等关系与不等式1.不等式的概念用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.不等式中文字语言与符号语言之间的转换文字语言大于,高于,超过小于,低于,少于大于或等于,至少,不低于小于或等于,至多,不多于,不超过符号语言><≥≤不等式a≥b读作“a大于或等于b”,其含义是指“a>b或a=b”,等价于“a不小于b”,即a>b或a=b中有一个正确,则a≥b正确.1.某路段竖立的的警示牌,是指示司机通过该路段时,车速v km/h应满足的关系式为()A.v<60B.v>60C.v≤60 D.v≥36答案:C2.一个两位数,个位数字为x,十位数字为y,且这个两位数大于70,用不等式表示为________.答案:10y+x>70知识点二实数大小比较的基本事实1.文字叙述如果a-b是正数,那么a>b;如果a-b等于0,那么a=b;如果a-b是负数,那么a<b,反过来也对.2.符号表示a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.1.在比较两实数a,b大小的依据中,a,b两数是任意实数吗?提示:是.2.p⇔q的含义是什么?提示:p⇔q的含义是:p可以推出q,q也可以推出p,即p与q可以互推.1.设m =2a 2+2a +1,n =(a +1)2,则m ,n 的大小关系是________. 答案:m ≥n2.若实数a >b ,则a 2-ab ________ba -b 2.(填“>”或“<”) 答案:>[例408个,最初三天中,每天加工24个,则以后平均每天至少需加工多少个,才能在规定的时间内超额完成任务?列出解决此问题需要构建的不等关系式;(2)用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于110 m 2,靠墙的一边长为x m .试用不等式表示其中的不等关系.[解] (1)设该车工3天后平均每天需加工x 个零件,加工(15-3)天共加工12x 个零件,15天里共加工(3×24+12x )个零件,则3×24+12x >408.故不等关系表示为72+12x >408.(2)由于矩形菜园靠墙的一边长为x m ,而墙长为18 m , 所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝ ⎛⎭⎪⎫15-x 2(m). 因此菜园面积S =x ⎝ ⎛⎭⎪⎫15-x 2,依题意有S ≥110,即x ⎝ ⎛⎭⎪⎫15-x 2≥110,故该题中的不等关系可用不等式表示为⎩⎪⎨⎪⎧0<x ≤18,x ⎝ ⎛⎭⎪⎫15-x 2≥110.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量; (2)用适当的不等号连接; (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[跟踪训练]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.某汽车公司因发展需要,需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式(组).解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *.[例2] (2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1) =(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34.∵x <1,∴x -1<0.又⎝ ⎛⎭⎪⎫x -122+34>0,∴(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34<0.即x 3-1<2x 2-2x .(2)∵a -1a =a 2-1a =(a -1)(a +1)a ,又∵a >0,∴当a >1时,(a -1)(a +1)a >0,有a >1a ;当a=1时,(a-1)(a+1)a=0,有a=1a;当0<a<1时,(a-1)(a+1)a<0,有a<1a.综上,当a>1时,a>1a;当a=1时,a=1a;当0<a<1时,a<1a.作差法比较大小的步骤[注意]上述步骤可概括为“三步一结论”,这里的“判断符号”是目的,“变形”是关键.其中变形的技巧较多,常见的有因式分解法、配方法、有理化法等.[跟踪训练]1.设a=3x2-x+1,b=2x2+x,则()A.a>b B.a<bC.a≥b D.a≤b解析:选C a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,所以a≥b.2.已知x>y>0,试比较x3-2y3与xy2-2x2y的大小.解:由题意,知(x3-2y3)-(xy2-2x2y)=x3-xy2+2x2y-2y3=x(x2-y2)+2y(x2-y2)=(x2-y2)·(x+2y)=(x-y)(x+y)(x+2y),∵x>y>0,∴x-y>0,x+y>0,x+2y>0,∴(x3-2y3)-(xy2-2x2y)>0,即x3-2y3>xy2-2x2y.题型三不等关系的实际应用[例3]“如果领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠.”这两车队的原价、车型都是一样的,试根据单位的人数,比较两车队的收费哪家更优惠.[解] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车队的车需花y 1元,坐乙车队的车需花y 2元.由题意,得y 1=x +34x ·(n -1)=14x +34nx ,y 2=45nx . 因为y 1-y 2=14x +34nx -45nx =14x -120nx =14x ⎝ ⎛⎭⎪⎫1-n 5, 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.所以,当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.现实生活中的许多问题都能够用不等式解决,其解题思路是将解决的问题转化成不等关系,利用作差法比较大小,进而解决实际问题.[跟踪训练]某公司有20名技术人员,计划开发A ,B 两类共50件电子器件,每类每件所需人员和预计产值如下:今制订计划欲使总产值最高,则A 类电子器件应开发________件,最高产值为________万元.解析:设应开发A 类电子器件x 件,则开发B 类电子器件(50-x )件.根据题意,得x 2+50-x3≤20,解得x ≤20.由题意,得总产值y =7.5x +6(50-x )=300+1.5x ≤330,当且仅当x =20时,y 取最大值330.所以欲使总产量最高,A 类电子器件应开发20件,最高产值为330万元.答案:20 330随堂检测1.下列说法正确的是( ) A .x 为非正数可表示为“x ≥0”B .小华的实际年龄n 不足18岁,表示为“n ≤18”C .两数x ,y 的平方和不小于2,表示为“x 2+y 2≥2”D .甲数a 比乙数b 大,表示为“a ≥b ” 答案:C2.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( )A.⎩⎨⎧x ≥95,y ≥380,z >45B.⎩⎨⎧x ≥95,y >380,z ≥45C.⎩⎨⎧x >95,y >380,z >45D.⎩⎨⎧x ≥95,y >380,z >45解析:选D “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45.3.不等式a 2+4≥4a 中,等号成立的条件为________. 解析:令a 2+4=4a ,则a 2-4a +4=0, 即(a -2)2=0,∴a =2. 答案:a =24.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小.解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .第二课时 等式性质与不等式性质在日常生活中,糖水中加些糖后就会变的更甜,也可以用不等式来表示这一现象.[问题] 你能利用这一事实表示出糖水浓度不等式吗?知识点一 等式的性质性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0那么a c =b c .运用等式的基本性质3时,等式两边要同时加上(或减去)同一个数(或代数式),才能保证所得结果仍是等式,否则就会破坏相等关系.知识点二 不等式的性质性质 别名 性质内容 注意 (1) 对称性 a >b ⇔b <a 可逆 (2)传递性a >b ,b >c ⇒a >c不可逆。
第二章等式与不等式本章小结学习目标能够从函数的观点认识方程和不等式,感悟函数和方程、不等式之间的联系,认识函数的重要性.掌握等式与不等式的性质.重点提升数学抽象、逻辑推理和数学运算素养.自主预习{等式式与不等关系实数大小的比较依据——次不等式及其解法{{课堂探究任务一:不等式的基本性质的应用例1下列结论中正确的是()①a>b>0,d>c>0⇒ac>bd;②a>b,c>d⇒a-c>b-d;③ac2>bc2⇒a>b;④a>b⇒a n>b n(n∈N,n>1).A.①②③B.①③C.②③④D.①③④任务二:一元二次不等式的解法及其应用例2解下列不等式:(1)x-1x≥2;(2)2x3+x2-5x+2>0.例3解关于x的不等式(x-2)(ax-2)>0.解一元二次不等式的步骤:任务三:二次函数、一元二次方程、一元二次不等式之间的关系例4当实数m取何范围的值时,方程x2+(m-3)x+m=0的两根满足:(1)都是正根;(2)都在(0,2)内?思考:根的分布问题应该从哪几个方面考虑?例5已知一元二次不等式ax2+bx+1>0的解集为{x|-2<x<1},则a= ,b= .任务四:基本不等式的应用例6已知3a2+2b2=5,试求y=(2a2+1)(b2+2)的最大值.例7如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.课堂练习1.若a ∈R 且a ≠0,比较a 与1a 的大小.2.求函数y=x 4+3x 2+3x 2+1的最小值.核心素养专练对任意x ∈[1,2],不等式1-mx ≤√1+x≤1-nx 恒成立,试求n 的最大值与m 的最小值.参考答案自主预习略 课堂探究例1 思路分析:判断不等关系的真假,要紧扣不等式的性质,应注意条件与结论之间的联系. 【解析】∵d>c>0⇒1c >1d>0,又a>b>0,∴a c >bd,∴①对;∵a>b ,-c<-d 不同向,不等式不可加,∴②错; ∵ac 2>bc 2,c 2>0,∴a>b ,∴③对;只有当a>b>0时,才有a n >b n ,∴④错,故选B .答案:B例2 【思路分析】对于(1),要先移项、通分化为f(x)g(x)≥0(或f(x)g(x)≤0)的形式,再化为整式不等式,转化必须保持等价;对于(2),要因式分解后借助穿根法处理.【解】(1)原不等式可化为x -1x -2≥0,∴-x -1x>0,∴{x(x +1)≤0,x ≠0,∴-1≤x<0.∴原不等式的解集为{x|-1≤x<0}.(2)原不等式可化为(x-1)(x+2)(2x-1)>0. 利用数轴标根法或穿根法(如图所示),∴-2<x<12或x>1.∴不等式的解集为{x |-2<x <12或x >1}.例3 【思路分析】不等式中含有参数a ,因此需要先判断参数a 对方程(x-2)(ax-2)=0的解的影响,然后求解.【解】(1)当a=0时,原不等式化为x-2<0,∴x<2,∴原不等式的解集为{x|x<2}.(2)当a<0时,原不等式化为(x-2)(x -2a )<0.方程(x-2)(x -2a )=0的两根为2,2a ,又2>2a,∴原不等式的解集为{x |2a<x <2}.(3)当a>0时,原不等式化为(x-2)(x -2a )>0.方程(x-2)(x -2a )=0的两根为2,2a .当0<a<1时,2a >2,原不等式的解集为{x |x >2a 或x <2}. 当a=1时,原不等式化为(x-2)2>0,解集为{x ∈R |x ≠2}. 当a>1时,2>2a >0,原不等式的解集为{x |x >2或x <2a }. 综上所述,不等式解集为当a=0时,{x ∈R |x<2};当a=1时,{x ∈R |x ≠2};当a<0时,{x |2a<x <2};当0<a<1时,{x |x >2a 或x <2};当a>1时,{x |x >2或x <2a }.解一元二次不等式的步骤: 1.若能因式分解,则用数轴穿根法; 2.若不能因式分解,则用配方法. 配方法的步骤:(1)把一元二次不等式的二次项系数化为1;(2)一元二次不等式通过配方变为(x-h )2>k 或(x-h )2<k 的形式; (3)根据k 值情况确定不等式的解集.例4 【思路分析】对于(1),可利用判别式及根与系数的关系求解;对于(2),可构造二次函数,结合二次函数的图像求解.【解】(1)设方程的两根为x 1,x 2.则由题意可得{Δ=m 2-10m +9≥0,x 1+x 2=3-m >0,x 1x 2=m >0.解得m 的取值范围是(0,1]. (2)(由对应的函数几何意义求解) 设f (x )=x 2+(m-3)x+m ,由题意得{Δ=m 2-10m +9≥0,f(0)=m >0,0<3-m2<2,f(2)=3m -2>0.解得23<m ≤1. 思考:根的分布问题应该从哪几个方面考虑? 1.开口方向; 2.判别式Δ; 3.对称轴;4.区间端点函数值的正负.例5 【思路分析】由于一元二次不等式解集的分界点是相应一元二次方程的两根,所以解答就从这个关系入手.【解析】由于ax 2+bx+1>0的解集为{x|-2<x<1},所以-2和1是方程ax 2+bx+1=0(a ≠0)的两根. 由根与系数的关系,得 {-2+1=-ba ,-2×1=1a ,解得a=b=-12. 答案:-12-12例6 【思路分析】要求积的最大值,关键是结合条件配凑出和为定值,然后利用基本不等式求解. 【解】∵2a 2+1>0,b 2+2>0,y=(2a 2+1)(b 2+2),∴√12y =√3(2a 2+1)·4(b 2+2)≤6a 2+3+4b 2+82.∵3a 2+2b 2=5,∴6a 2+4b 2=10. ∴√12y ≤212,可得√y ≤7√34.∴y 的最大值为14716.例7 【思路分析】对于(1),首先建立矩形AMPN 的面积y 与DN 的长x 的函数关系式,然后利用不等式求解;对于(2),根据(1)中建立的函数关系式结合基本不等式求解.【解】(1)设DN 的长为x (x>0)米,则AN 的长为(x+2)米,如图所示.∵DN AN =DC AM ,∴AM=3(x+2)x.∴矩形花坛AMPN 的面积y=AN ·AM=3(x+2)2x.由y>32,得3(x+2)2x>32.∵x>0,∴3x 2-20x+12>0.解得0<x<23或x>6,即DN 长的取值范围是(0,23)∪(6,+∞). (2)由(1)知矩形花坛AMPN 的面积为y=3(x+2)2x=3x 2+12x+12x=3x+12x +12≥2√3x ·12x +12=24.当且仅当3x=12x,即x=2时,矩形花坛AMPN 的面积取得最小值24平方米.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 课堂练习1.【思路分析】可以利用作差比较法比较两个代数式的大小. 【解】a-1a =(a -1)(a+1)a.当a=±1时,(a -1)(a+1)a=0,则a=1a ;当-1<a<0或a>1时,(a -1)(a+1)a>0,则a>1a . 当a<-1或0<a<1时,(a -1)(a+1)a<0,则a<1a .2.【思路分析】从函数解析式结构上看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,怎么办呢?事实上,我们可以把分母视为一个整体,用它来表示分子,原式即可展开.【解】令t=x 2+1,则t ≥1,且x 2=t-1.∴y=x 4+3x 2+3x 2+1=(t -1)2+3(t -1)+3t =t 2+t+1t=t+1t +1.∵t ≥1,∴t+1t ≥2√t ·1t =2,当且仅当t=1t ,即t=1时,等号成立.∴当x=0时,函数取得最小值3.核心素养专练【思路分析】对任意x ∈[1,2],不等式恒成立,且m 与n 都是一次的,因此可考虑分离参数m 和n. 【解】∵1-mx ≤√1+x≤1-nx 恒成立,∴-mx ≤√1+x -1≤-nx ,∴-mx ≤√1+x√1+x ≤-nx ,∴-mx ≤√1+x(1+√1+x)≤-nx.又∵x ∈[1,2],∴n ≤(√1+x)2+√1+x≤m 恒成立. 设y=(√1+x)2+√1+x,x ∈[1,2],令√1+x =t ,则t ∈[√2,√3],y=1t 2+t . 可求得y min =3-√36,y max =2-√22,∴m=2-√22,n=3-√36.故所求n 的最大值为3-√36,m 的最小值为2-√22.学习目标1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,通过类比理解等式与不等式的共性与差异;2.会解常见的方程和不等式及不等式组,如一元二次方程、一元二次不等式、绝对值不等式、二元及三元方程组等;3.掌握基本不等式,结合具体实例,能用基本不等式解决简单的最大值和最小值问题. 本章重点:绝对值不等式的解法、一元二次不等式的解法、均值不等式的应用.本章难点:均值不等式的灵活应用及不等式的证明.重点提升数学抽象、逻辑推理和数学运算素养.培养学生类比思想、分类讨论思想和数形结合的数学思想等.知识点梳理课堂探究●不等式性质的应用例1(1)(多选)下列命题正确的有()A.若a>1,则1a<1B.若a+c>b,则1a <1 bC.对任意实数a,都有a2≥aD.若ac2>bc2,则a>b(2)已知2<a<3,-2<b<-1,求ab,b2a的取值范围.◎跟踪训练1(多选)已知a,b,c∈R,那么下列命题中错误的是() A.若a>b,则ac2>bc2B.若ac >bc,则a>bC.若a3>b3且ab<0,则1a >1 bD .若a 2>b 2且ab>0,则1a <1b●不等式组的解法 例21.解不等式组:{5x-1<3(x +1),2x-13-1≤5x +12.2.已知关于x 的不等式组{x +a ≤0,3+2x >5的整数解只有3个,求a 的取值范围.3.解下列关于x 的不等式. (1)-1<x 2+2x-1≤2; (2)m 2x 2+2mx-3<0.◎跟踪训练2 解下列不等式. (1)x -1x+2≤0; (2)-3x 2-2x+8≥0; (3)ax 2-(a+1)x+1<0.●绝对值不等式的解法 例3 解下列不等式. (1)|2x-5|>3; (2)|2x-1|+|2x+1|≤6.◎跟踪训练3解下列不等式.(1)|2x+1|-2|x-1|>0;(2)|x+3|-|2x-1|<x2+1.●均值不等式例4若x>0,y>0,且x+2y=5,求9x +2y的最小值,并求出取得最小值时x,y的值.◎跟踪训练41.函数y=x(3-2x)(0≤x≤1)的最大值是.2.当x>1时,不等式x+1x-1≥a恒成立,当x= 时等号成立,实数a的取值范围是.●等式与不等式的应用例5某单位用2 160万元购得一块空地,计划在该空上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积.课堂练习1.已知集合M={x|-4≤x ≤7},N={x|x 2-x-12>0},则M ∩N=( ) A.{x|-4≤x<-3或4<x ≤7} B.{x|-4<x ≤-3或4≤x<7} C.{x|x ≤-3或x>4} D.{x|x<-3或x ≥4}2.(多选)已知a>b>0,下列不等式不成立的是( ) A.a+1b >b+1aB.a+1a ≥b+1bC.b a >b+1a+1D.b-1b>a-1a3.不等式|x+1|-|x-2|≥1的解集是 .4.已知x>0,y>0,且满足8x +1y=1,xy= 时,x+2y 的最小值为 .核心素养专练[A 基础达标]1.(多选)如果a ,b ,c 满足c<b<a ,且ac<0,那么下列不等式中一定成立的是( ) A .ab>ac B .c (b-a )>0 C .cb 2<ab 2 D .ac (a-c )<02.若a>0,b>0,且a 2+3b 2=6,则ab 的最大值为( ) A .1B .√2C .√3D .23.设m>1,P=m+4m -1,Q=5,则P ,Q 的大小关系为( ) A .P<QB .P=QC .P ≥QD .P ≤Q4.不等式1+x>11-x 的解集为( ) A .{x|x>0} B .{x|x ≥1} C .{x|x>1} D .{x|x>1或x=0} 5.设a ,b 是不相等的正数,x=√a+√b2,y=√a+b 2,则x ,y 的大小关系是 (用“>”“<”或“=”连接).6.设m+n>0,则关于x 的不等式(m-x )(n+x )>0的解集是 .7.已知0<x<12,则y=12x (1-2x )的最大值为 ,此时x= . 8.解下列不等式: (1)0<|x-2|≤|4x+2|; (2)2x+1x -5≥-1.9.已知x ,y 都是正数.(1)若3x+2y=12,求xy 的最大值;(2)若x+2y=3,求1x +1y 的最小值.[B 能力提升]10.不等式4x -2≤x-2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)11.已知实数x ,y ,若x ≥0,y ≥0且x+y=3,则x+1x+2+y y+1的最大值为 ,此时xy= . 12.解不等式3x -7x 2+2x -3≥2.13.解关于x 的不等式ax 2+(1-a )x-1>0(a<0).14.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE=CE ,AB>AD ,矩形的周长为8 cm .(1)设AB=x cm,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽?参考答案课堂探究例1 (1)AD (2)-6<ab<-213<b 2a <2跟踪训练1 ABD例2 1.解集为[-1,2) 2.(-5,-4]3.解:(1){x 2+2x -1≤2,x 2+2x -1>-1⇒{x 2+2x -3≤0,x 2+2x >0⇒{-3≤x ≤1,x >0或x <-2,不等式的解集为{x|-3≤x<-2或0<x ≤1}.(2)当m=0时,-3<0恒成立,解集为R .当m ≠0时,二次项系数m 2>0,Δ=16m 2>0.不等式化为(mx+3)(mx-1)<0.当m>0时,解集为{x |-3m <x <1m }; 当m<0时,解集为{x |1m <x <-3m }.跟踪训练2 (1)(-2,1](2)[-2,43] (3)解:当a=0时,x>1,解集为(1,+∞);当a ≠0时,方程化简为(ax-1)(x-1)<0.当a<0时,方程整理为(x -1a )(x-1)>0,(1a <0), ∴x>1或x<1a ,解集为(-∞,1a )∪(1,+∞);当a>0时,方程整理为(x -1a )(x-1)<0,(1a>0), 当0<a<1时,1a >1,∴1<x<1a ,解集为(1,1a); 当a=1时,1a =1,∴方程无解,解集为空集;当a>1时,1a <1,∴1a <x<1,解集为(1a ,1). 例3 (1)(-∞,-1)∪(4,+∞)(2)[-32,32]跟踪训练3(1)不等式的解集为{x |x >14}.(2)不等式的解集为{x |x <-25或x >2}.例4 解:因为x>0,y>0,且x+2y=5, 所以9x +2y =15(x+2y )(9x +2y ) =15(13+18y x +2x y ) ≥15(13+2√18y x ·2x y )=5,当且仅当{x +2y =5,18y x =2x y,即{x =3,y =1时等号成立. 所以9x +2y 的最小值为5,此时x=3,y=1. 跟踪训练41.982.2 a ≤3例5 解:设将楼房建为x 层,平均综合费用设为y 元. 则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y=560+48x+10 800x =560+48(x +225x ). 当x+225x取最小值时,y 有最小值. ∵x>0,∴x+225x ≥2√x ·225x =30. 当且仅当x=225x ,即x=15时,上式等号成立.∴当x=15时,y 有最小值2 000元.因此该楼房建为15层时,每平方米的平均综合费用最少. 课堂练习1.A2.BCD3.[1,+∞)4.36 18 核心素养专练A 基础达标1.ABD2.C3.C4.C5.x<y6.(-n ,m )7.116 148.(1){x |x ≤-43或x ≥0且x ≠2} (2){x |x >5或x ≤43}9.(1)6 (2)1+23√2B 能力提升10.B11.43 212.(-3,1)13.当-1<a<0时,解集为{x |1<x <-1a } 当a=-1时,解集为⌀ 当a<-1时,解集为{x |-1a <x <1} 14.解: (1)设DE=y cm,则AE=CE=(x-y )cm, 由矩形周长为8 cm,可得AD=(4-x )cm . 在三角形ADE 中,由勾股定理可得(4-x )2+y 2=(x-y )2, 整理得y=4-8x ,由AB>AD 可得x>2,由周长为8可得x<4, 综上DE 长度为(4-8x )cm,2<x<4. (2)S=12(4-x )×y ,由y=4-8x 可得S=12(4-x )·(4-8x )=2(4-x )(1-2x )=2(6-x -8x), 由2<x<4可得x+8x ≥2√8=4√2,当且仅当x=2√2时取到等号, 因此S max =2(6-4√2)=12-8√2,此时队徽的长为2√2 cm,宽为(4-2√2)cm .。
2.3 二次函数与一元二次方程、不等式(教师独具内容)课程标准:1.理解一元二次不等式和一元二次不等式的解集的概念.2.理解一元二次方程、一元二次不等式与一元二次函数的关系.3.熟练掌握一元二次不等式的两种解法.4.能从实际情境中抽象出一元二次不等式,并通过解一元二次不等式解决实际问题.教学重点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.一元二次不等式的解法.3.利用一元二次不等式解决实际问题.教学难点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.从实际问题中抽象出一元二次不等式模型.【知识导学】知识点一一元二次不等式的概念01一个未知数,并且未知数的□02最高次数是2的不等式,称为一一般地,我们把只含有□元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a,b,c均为常数,a≠0)的不等式都是一元二次不等式.知识点二二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的□01零点.知识点三一元二次不等式的解集的概念02解使一元二次不等式成立的所有未知数的值组成的□01集合叫做这个一元二次不等式的□集.知识点四二次函数与一元二次方程、不等式的解的对应关系知识点五利用不等式解决实际问题的一般步骤(1)选取合适的□01字母表示题中的□02未知数;(2)由题中给出的不等关系,列出□03关于未知数的不等式(组);04求解所列出的不等式(组);(3)□(4)结合题目的□05实际意义确定答案.【新知拓展】1.解一元二次不等式的方法与步骤(1)解一元二次不等式的常用方法①图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:(ⅰ)化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);(ⅱ)求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c的图象简图;(ⅲ)由图象得出不等式的解集.②代数法:将所给不等式化为一般式后借助分解因式或配方法求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.有口诀如下:大于取两边,小于取中间.(2)含有参数的一元二次型的不等式在解含有参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:①关于不等式类型的讨论:二次项系数a>0,a<0,a=0.②关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).③关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.2.利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论.1.判一判(正确的打“√”,错误的打“×”)(1)一元二次方程的根就是相应函数的图象与x轴的交点.( )(2)(x+a)(x+a+1)<0是一元二次不等式.( )(3)设二次方程ax2+bx+c=0的两解为x1,x2(x1<x2),则一元二次不等式ax2+bx+c>0的解集不可能为{x|x1<x<x2}.( )(4)用不等式解决实际问题最后要结合题目的实际意义确定答案.( )答案(1)×(2)√(3)×(4)√2.做一做(请把正确的答案写在横线上)(1)不等式x2-2x+3>0的解集为________.(2)不等式-x2-3x+4>0的解集为________.(3)当a>0时,若ax2+bx+c>0的解集为R,则Δ应满足的条件为________.(4)已知不等式ax 2-bx +2<0的解集为{x |1<x <2},则a +b =________.(5)有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的纯农药液不超过容积的28%,则桶的容积的取值范围是________.答案 (1)R (2){x |-4<x <1} (3)Δ<0 (4)4 (5)大于8小于等于403题型一 不含参数的一元二次不等式的解法 例1 求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0; (3)x 2-4x -5≤0;(4)-4x 2+18x -814≥0;(5)-12x 2+3x -5>0;(6)-2x 2+3x -2<0.[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12,又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不等实根x 1=4-13,x 2=4+13,又二次函数y =-x 2+8x -3的图象开口向下,所以原不等式的解集为{x |4-13<x <4+13}.(3)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}.(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94. (5)原不等式可化为x 2-6x +10<0,因为Δ=62-40=-4<0,所以原不等式的解集为∅. (6)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以原不等式的解集为R .金版点睛解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.[跟踪训练1] 求下列不等式的解集: (1)x 2-3x +1≤0;(2)3x 2+5x -2>0; (3)-9x 2+6x -1<0;(4)x 2-4x +5>0; (5)2x 2+x +1<0.解 (1)因为Δ=9-4=5>0,所以方程x 2-3x +1=0有两个不等实数根x 1=3-52,x 2=3+52,所以原不等式的解集为{|x 3-52≤x ≤3+52. (2)原不等式可化为(3x -1)(x +2)>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13或x <-2. (3)原不等式可化为(3x -1)2>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠13,x ∈R .(4)因为Δ=(-4)2-4×5=-4<0,所以原不等式的解集为R . (5)因为Δ=12-4×2=-7<0,所以原不等式的解集为∅. 题型二 含参数的一元二次不等式的解法 例2 解关于x 的不等式(a ∈R ): (1)2x 2+ax +2>0; (2)ax 2-(a +1)x +1<0.[解] (1)Δ=a 2-16,下面分情况讨论:①当Δ<0,即-4<a <4时,方程2x 2+ax +2=0无实根,所以原不等式的解集为R . ②当Δ≥0,即a ≥4或a ≤-4时,方程2x 2+ax +2=0的两个根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1};当a >4或a <-4时,原不等式的解集为{|x x <14(-a -a 2-16)或x >14(-a +a 2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1}. (2)若a =0,原不等式为-x +1<0,解得x >1;若a <0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)<0,(*)其解的情况应由1a与1的大小关系决定,故①当a =1时,由(*)式可得x ∈∅;②当a >1时,由(*)式可得1a<x <1;③当0<a <1时,由(*)式可得1<x <1a.综上所述,当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ;当a =1时,解集为∅;当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1. 金版点睛解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[跟踪训练2] 解关于x 的不等式x 2-(a +a 2)x +a 3>0. 解 原不等式可化为(x -a )(x -a 2)>0.方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2. 由a 2-a =a (a -1)可知: ①当a <0或a >1时,a 2>a . 解原不等式得x >a 2或x <a . ②当0<a <1时,a 2<a , 解原不等式得x >a 或x <a 2.③当a =0时,原不等式为x 2>0,∴x ≠0. ④当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}. 题型三 “三个二次”之间的转化关系例3 若不等式ax 2+bx +c >0的解集为{x |-3<x <4},求不等式bx 2+2ax -c -3b <0的解集.[解] 因为ax 2+bx +c >0的解集为{x |-3<x <4},所以a <0且-3和4是方程ax 2+bx +c=0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-ba ,-3×4=c a,即⎩⎪⎨⎪⎧b =-a ,c =-12a .所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15<0, 故所求的不等式的解集为{x |-3<x <5}.[条件探究] 本例中把{x |-3<x <4}改为{x |x <-3或x >4},其他条件不变,则不等式的解集又如何?解 因为ax 2+bx +c >0的解集为{x |x <-3或x >4},所以a >0且-3和4是方程ax 2+bx +c =0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-b a ,-3×4=c a,即⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15>0,解得x <-3或x >5,故所求不等式的解集为{x |x <-3或x >5}. 金版点睛三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:[跟踪训练3] (1)已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-2或x >-12,则ax 2-bx +c >0的解集为________;(2)已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.答案 (1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1解析 (1)由题意-2,-12是方程ax 2+bx +c =0的两根,且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a ,(-2)×⎝ ⎛⎭⎪⎫-12=c a ,解得a =c ,b =52c ,所以不等式ax 2-bx +c >0即为2x 2-5x +2<0,解得12<x <2.(2)∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得⎩⎪⎨⎪⎧-12+2=-b a ,-12×2=2a ,∴a =-2,b =3,ax 2+bx -1>0可变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1.题型四 利用一元二次不等式判断车速例4 某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:s =120x +1180x 2.在一次交通事故中,测得这种车的刹车距离大于39.5 m ,那么这辆汽车刹车前的车速至少为多少?(精确到0.01 km/h ,28521≈168.88)[解] 设这辆汽车刹车前的车速为x km/h , 根据题意,得120x +1180x 2>39.5.移项整理,得x 2+9x -7110>0.显然Δ>0,x 2+9x -7110=0有两个实数根, 即x 1≈-88.94,x 2≈79.94.然后,根据二次函数y =x 2+9x -7110的图象, 得不等式的解集为{x |x <-88.94或x >79.94}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速至少为79.94 km/h. 金版点睛一元二次不等式的应用题常以二次函数为模型,解题时要审清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.[跟踪训练4] 汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速40 km/h 以内的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了,事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)与车速x (km/h)之间有如下关系:s 甲=0.1x +0.01x 2,s乙=0.05x +0.005x 2.问:超速行驶应负主要责任的是谁?解 由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0, 解得x >30或x <-40(不符合实际意义,舍去),这表明甲车的车速超过30 km/h.但根据题意刹车距离略超过12 m ,由此估计甲车车速不会超过限速40 km/h.对于乙车,有0.05x +0.005x 2>10,即x 2+10x -2000>0, 解得x >40或x <-50(不符合实际意义,舍去), 这表明乙车的车速超过40 km/h ,即超过规定限速, 所以乙应负主要责任.题型五 利用一元二次不等式解决利润问题例5 某摩托车生产企业,上年度生产摩托车投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .设年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内? [解] (1)依题意,得y =[1.2(1+0.75x )-(1+x )]×1000×(1+0.6x )=1000(-0.06x 2+0.02x +0.2).∴所求关系式为y =1000(-0.06x 2+0.02x +0.2)(0<x <1). (2)依题意,得1000(-0.06x 2+0.02x +0.2)>(1.2-1)×1000. 化简,得3x 2-x <0.解得0<x <13.∴投入成本增加的比例x 的范围是0<x <13.金版点睛解不等式应用题,一般可按四步进行:①审题,找出关键量和不等关系;②引进数学符号,用不等式表示不等关系(或表示成函数关系);③解不等式(或求函数最值);④回归到实际问题.[跟踪训练5] 将进货单价为40元的商品按50元售出时,能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.问为了使赚得的利润不少于8000元,售价应定在多少范围?这时应进货又在什么范围?解 如果按单价50元售出,每个利润是10元,卖出500个,只能赚得5000元.为了使赚得的利润不少于8000元,只能涨价,但要适度,否则销售量就少得太多.设该商品涨价x 元,则该商品销售时的单价是(50+x )元,每个商品的利润是[(50+x )-40]元,销售量是(500-10x )个.由题意可列不等式为[(50+x )-40](500-10x )≥8000.整理,得x 2-40x +300≤0.解这个一元二次不等式,得10≤x ≤30.故该商品销售时的单价应定在大于等于60小于等于80之间. 因为销售量和该商品涨价x 元之间是一次函数关系,且当该商品销售时的单价为60元时,其销售量是500-10×10=400(个); 当该商品销售时的单价为80元时,其销售量是500-10×30=200(个). 故这时应进货的范围为大于等于200小于等于400.1.在下列不等式中,解集是∅的是( ) A .x 2-3x +5>0 B .x 2+4x +4≤0 C .4-4x -x 2<0 D .-2+3x -2x 2>0 答案 D解析 A 的解集为R ;B 的解集是{x |x =-2};C 的解集为{x |x >-2+22或x <-2-22},用排除法应选D.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .0<x <2B .-2<x <1C .x <-2或x >1D .-1<x <2答案 B解析 ∵x ⊙(x -2)=x (x -2)+2x +x -2<0, ∴x 2+x -2<0即(x -1)(x +2)<0, 解得-2<x <1.∴选B.3.若t >2,则关于x 的不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1t<x <t B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1t或x <t- 11 - C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <1t 或x >t D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ t <x <1t 答案 A解析 ∵t >2,∴t >1t, ∴(x -t )⎝ ⎛⎭⎪⎫x -1t <0,解得1t<x <t . 4.在一幅长60 cm ,宽40 cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积不大于2816 cm 2,设金色纸边的宽为x cm ,那么x 满足的不等式是( )A .(60+2x )(40+2x )≤2816B .(60+x )(40+x )≥2816C .(60+2x )(40+x )>2816D .(60+x )(40+2x )<2816答案 A解析 “不大于”就是“≤”,所以根据题意可列出不等式为(60+2x )(40+2x )≤2816.5.某小型服装厂生产一种风衣,日销售量x 件与单价p 元/件之间的关系为p =160-2x ,生产x 件这种风衣所需成本为c =500+30x 元,假设所生产的这种风衣能够全部售出,问:该厂日产量多大时,可使该厂日获利不少于1300元?解 设该厂日产量为x 件时,日获利为y 元,则y =(160-2x )x -(500+30x )=-2x 2+130x -500,由题意可得-2x 2+130x -500≥1300.解得20≤x ≤45.∴当该厂日产量x 满足20≤x ≤45时,可使该厂日获利不少于1300元.。
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质第1课时不等关系与不等式[目标] 1.了解现实世界和日常生活中的不等关系;2。
理解不等号的意义和不等式的概念,会用不等式和不等式组表示各种不等关系;3.理解实数大小与实数运算的关系,会用作差比较法比较两个实数的大小.[重点]会用作差比较法比较两个实数的大小.[难点] 用不等式或不等式组表示各种不等关系.知识点一不等式与不等关系[填一填]1.不等式的定义所含的两个要点:(1)不等符号〈,≤,〉,≥或≠。
(2)所表示的关系是不等关系.2.不等式中的文字语言与符号语言之间的转换[答一答]1.不等关系通过什么样的形式表现出来?提示:通过不等式来表现不等关系.2.在日常生活中,我们经常看到下列标志:(1)你知道各图中的标志有何作用?其含义是什么吗?(2)你能用一个数学式子表示上述关系吗?如何表示?提示:(1)①最低限速:限制行驶时速v不得低于50公里;②限制质量:装载总质量G不得超过10 t;③限制高度:装载高度h不得超过3.5米;④限制宽度:装载宽度a不得超过3米;⑤时间范围:t∈{t|7。
5≤t≤10}.(2)①v≥50;②G≤10;③h≤3.5;④a≤3;⑤7.5≤t≤10.知识点二比较两实数a,b大小的依据[填一填][答一答]3.用作差法比较两个实数的大小时,对差式应如何变形?提示:一般地,对差式分解因式或配方.4.比较x2+3与3x的大小(其中x∈R).提示:因为(x2+3)-3x=x2-3x+3=[x2-3x+错误!2]+3-错误! 2=错误!2+错误!≥错误!〉0,所以x2+3〉3x。
类型一用不等式(组)表示不等关系[例1]已知甲、乙两种食物的维生素A,B含量如下表:食物甲乙维生素A/(单位/kg)600700维生素B/(单位/kg)800400设用甲、乙两种食物各x kg,y kg配成混合食物,并使混合食物内至少含有56 000单位维生素A和63 000单位维生素B.试用不等式组表示x,y所满足的不等关系.[分析]根据维生素A和B分别至少为56 000单位和63 000单位列不等式.[解]x kg甲种食物含有维生素A 600x单位,含有维生素B 800x单位,y kg乙种食物含有维生素A 700y单位,含有维生素B 400y单位,则x kg甲种食物与y kg乙种食物配成的混合食物总共含有维生素A(600x+700y)单位,含有维生素B(800x+400y)单位,则有错误!即错误!1.用不等式(组)表示不等关系的步骤:(1)审清题意,明确条件中的不等关系的个数;(2)适当设未知数表示变量;(3)用不等式表示每一个不等关系,并写成不等式组的形式.2.常见的文字语言与符号语言之间的转换[变式训练1]《铁路旅行常识》规定:一、随同成人旅行,身高在1。
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全) 单选题1、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,求出m,n的值,根据x+y,x−y的范围,即可求出答案.设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,所以{m−n=3m+n=−2,解得:{m=12n=−52,3x−2y=12(x+y)+52(x−y),,因为−1≤x+y≤1,1≤x−y≤5,所以3x−2y=12(x+y)+52(x−y)∈[2,13],故选:A.2、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.3、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.4、若不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,则a的最小值是()A.0B.−2C.−52D.−3答案:C解析:采用分离参数将问题转化为“a≥−(x+1x )对一切x∈(0,12]恒成立”,再利用基本不等式求解出x+1x的最小值,由此求解出a的取值范围.因为不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,所以a≥−(x+1x )对一切x∈(0,12]恒成立,所以a≥[−(x+1x )]max(x∈(0,12]),又因为f(x)=x+1x 在(0,12]上单调递减,所以f(x)min=f(12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法.5、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .6、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t1=sa ,t2=sb,v=2st1+t2=2s sa+sb=21a+1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b <2√ab=√ab ,故选:D. 多选题9、若a >0,b >0,a +b =2,则( )A .ab ≤1B .√a +√b ≤√2C .a 2+b 2≥2D .1a +1b ≥2 答案:ACD分析:根据基本不等式依次讨论各选项即可得答案.对于A ,由基本不等式得,2=a +b ≥2√ab 则ab ≤1,当且仅当a =b =1时等号成立,故A 正确; 对于B ,令a =32, b =12时,√a +√b =√6+√22>√2=√2+√22,故√a +√b ≤√2不成立,故B 错误;对于C ,由A 选项得ab ≤1,所以a 2+b 2=(a +b)2−2ab =4−2ab ≥2,当且仅当a =b =1时等号成立,故C 正确;对于D ,根据基本不等式的“1”的用法得(1a +1b )(a+b 2)=12(1a +1b )(a +b ) =12(1+1+b a +a b ) =1+12(b a +ab )≥1+12⋅2√1=2,当且仅当ba =ab ,即a =b =1时等号成立,故D 正确. 故选:ACD .10、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC .11、不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},则下列结论正确的是( ) A .a +b =0B .a +b +c >0 C .c >0D .b <0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可. 解:因为不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},所以a <0,且{−ba=−1+2=1>0c a =−2<0,所以{b >0,b =−a,c >0, 所以a +b =0,c >0,b >0,故AC 正确,D 错误.因为二次函数y =ax 2+bx +c 的两个零点为−1,2,且图像开口向下, 所以当x =1时,y =a +b +c >0,故B 正确. 故选:ABC . 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z=x+2y的最小值是32.所以答案是:32.14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2.所以答案是:6解答题15、已知一元二次函数f(x)=ax2+bx+c (a>0,c>0)的图像与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,c=12时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.答案:(1)(12,1);(2)(c,1a);(3)a∈(0, 18];(4)m≤−2 或 m=0 或m≥2.分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点, ∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1). (2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=c a ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴a =c 16+c2≤2√16c=18,故a ∈(0, 18].(4)∵f(c)=0,∴ac 2+bc +c =0,又∵c >0,∴ac +b +1=0, 要使m 2−2k m ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2; 当m <0时,m ≤(2k)min =−2;当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立. 从而实数m 的取值范围为m ≤−2 或 m =0 或m ≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。