2.1 二次函数 教学案(含答案)
- 格式:doc
- 大小:49.16 KB
- 文档页数:3
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
第二章二次函数2.1 二次函数学习目标:1.理解、掌握二次函数的概念和一般形式;(重点)2.会利用二次函数的概念解决问题;(重点)3.列二次函数表达式解决实际问题.(难点)一、复习回顾1.下列函数中哪些是一次函数?为什么?(x 是自变量)(4) y = kx + 1;(5) y2 = x;(6) y = 2x + 1.一、要点探究知识点一:二次函数的定义问题1 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些树,以提高产量.但是树种多了,那么树之间的距离和每棵树接收的阳光就会减少.根据经验,估计每多种一棵树,平均每棵树就会少结5个橙子.(1) 问题中有那些变量?其中哪些是自变量?哪些是因变量?(2) 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3) 如果果园橙子的总产量为y 个,那么请你写出y 与x之间的关系式.做一做银行的储蓄利率是随时间变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100 元,那么请你写出两年后的本息和y (元)的表达式.想一想(1) 两数的和是20,设其中一个数是x,你能写出这两数之积y 的表达式吗?(2) 已知矩形的周长为40 cm,它的面积可能是100 cm2吗? 可能是75 cm2吗? 还可能是多少? 你能表示这个矩形的面积与其一边长的关系吗?自主学习合作探究合作探究问题1~3 中函数关系式有什么共同点?同学们,以小组的形式讨论,并由每组代表总结.知识要点二次函数的定义:一般地,若两个自变量x,y 之间的对应关系可以表示成y = ax²+ bx + c( a,b,c 是常数,a≠0)的形式,则称y 是x 的二次函数.a为二次项系数,ax2叫做二次项;b为一次项系数,bx 叫做一次项;c为常数项.同学们,可以自己举出具体的二次函数吗?典例精析例1 下列函数中哪些是二次函数? 为什么? (x 是自变量)① y = (x + 3)² − x²;① y = 3 − 2x²;① y = x2;① y = 1x2;① y = x² + x³ + 25;① y = ax2 + bx + c.方法总结判断一个函数是否为二次函数的步骤:合作探究链接中考1.(西湖区月考) 已知( m 为常数),根据下列条件求m 的值:(1) y 是x 的一次函数;(2) y 是x 的二次函数;知识点二:二次函数的自变量取值范围问题:上述问题中的三个函数的自变量的取值范围是什么?① y = -5x² + 100x + 60000 ② y = 100x2 + 200x + 100③y = -x2 + 20x总结:二次函数的自变量的取值范围是所有实数,但在实际问题中,它的自变量的取值范围会有一些限制.知识点三:列二次函数关系式例3 一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x + 1) cm的小长方形.剩余部分的面积为y cm2. 写出y与x之间的函数关系式,并指出y 是x 的什么函数?二、课堂小结1. (武汉)下列函数中,是二次函数的是( )2. 已知函数y = 3x2m-1-5① 当m =__时,y 是关于x 的一次函数;① 当m =__时,y 是关于x 的二次函数.3. 矩形的周长为16 cm,它的一边长为x cm,面积为y cm2.求(1) y 与x 之间的函数解析式及自变量x 的取值范围;(2) 当x = 3 时矩形的面积.参考答案一、创设情境,导入新知1.答案:(1) 是;(2)不是,是反比例函数;(3)不是,x 最高次数是二次;(4)不一定是,缺少k ≠0 的条件;(5) 不是,函数是每个唯一的x 都有唯一对应的y 值;(6)是.二、小组合作,探究概念和性质知识点一:二次函数的定义问题1:答案:(2) 果园共有(100 + x)棵树,平均每棵树结(600 - 5x)个橙子.y = (100 + x)(600 - 5x)= -5x² + 100x + 60000.当堂检测做一做答:y = 100x2 + 200x + 100.想一想(1) y = x(20 - x) = -x2 + 20x(2) 设矩形的其中一边长为x,面积为S.S = x(20 - x) = -x2 + 20x当S = 100 时,-x2 + 20x = 100. 解得x = 10.当S = 75 时,-x2 + 20x = 75. 解得x1 = 5,x2 = 15.典例精析答案:①不是,y = 6x + 9 ;②是;③是;④不是,等式右边是分式;⑤不是,x 的最高次数是 3 ;⑥不一定是,缺少a ≠0 的条件.链接中考1.解:(1) 由题意得∴m = 1.(2)y 是x 的二次函数,只须m2- m≠0.① m≠1 且m≠0.例3解:由题意得y=122-2x(x+1),又①x+1<2x≤12,①1<x≤6,即y=-2x2-2x+144(1<x≤6),① y 是x 的二次函数.当堂检测1.A2.① 1 ②3 23.解:(1) y=(8-x)x=-x2+8x (0<x<8);(2) 当x=3 时,y=-32+8×3=15 (cm2 ).。
初中数学二次函数教案初中数学二次函数教案导语:在数学中,二次函数最高次必须为二次,二次函数表示形式为y=ax2+bx+c(a≠0)的多项式函数。
二次函数的图像是一条对称轴平行于y轴的抛物线。
以下是品才网小编整理的初中数学二次函数教案,欢迎阅读参考。
初中数学二次函数教案一、教学目的1.使学生理解自变量的取值范围和函数值的意义。
2.使学生理解求自变量的取值范围的两个依据。
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。
4.通过求函数中自变量的取值范围使学生进一步理解函数概念。
二、教学重点、难点重点:函数自变量取值的求法。
难点:函灵敏处变量取值的确定。
三、教学过程复习提问1.函数的定义是什么?函数概念包含哪三个方面的内容?2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。
)3.什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。
)4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。
新课1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。
并指出,函数表示法除了解析法外,还有图象法和列表法。
2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。
(2)自变量取值范围要使实际问题有意义。
3.讲解P93中例2。
并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。
推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的形式.3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4、会用待定系数法求二次函数的解析式. 教学重点:二次函数的概念和解析式教学难点:本节“合作学习"涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式.2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨. (1)y =πx 2 (2)y = 2000(1+x )2 = 20000x 2+40000x+20000 (3) y = (60—x —4)(x —2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。
二次函数的性质教学案一、引言二次函数是高中数学学科中的重要内容之一。
掌握二次函数的性质对于学生理解和应用二次函数具有重要意义。
本教学案以二次函数的性质为主题,旨在帮助学生深入理解和掌握二次函数的各种性质,进一步拓展他们的数学思维和解题能力。
二、目标1. 学生能够准确地表述二次函数的定义和一般形式;2. 学生能够掌握二次函数图像的几何性质;3. 学生能够应用二次函数的性质解决相关问题。
三、教学内容与方法1. 二次函数的定义和一般形式二次函数是以自变量的平方为最高次幂数的函数。
一般形式为:f(x) = ax^2 + bx + c。
方法:引导学生通过寻找二次函数举例,理解二次函数的定义和一般形式,并与一次函数进行对比分析。
2. 二次函数图像的几何性质(1) 求顶点坐标方法:通过解二次方程组,将二次函数转化为标准形式,从而求得顶点坐标。
(2) 函数的对称性方法:引导学生观察二次函数的图像,说明二次函数关于顶点对称。
(3) 函数的增减性方法:通过计算二次函数的一阶导数,讨论在定义域内函数的增减性。
3. 应用二次函数解决相关问题(1) 极值问题方法:引导学生将极值问题转化为求解二次函数的最值问题,并通过求导和解方程求得。
(2) 零点问题方法:引导学生将零点问题转化为求解二次方程的根,并通过因式分解、配方法或求根公式进行求解。
四、教学步骤1. 引入和导入通过一个实际问题引入二次函数的性质,并与学生共同思考如何解决该问题。
2. 二次函数的定义和一般形式帮助学生理解二次函数的定义和一般形式,并通过实例分析二次函数的特点。
3. 二次函数图像的几何性质依次介绍二次函数图像的顶点坐标、对称性和增减性,以图示和简单例题进行讲解。
4. 应用二次函数解决相关问题通过实际问题引导学生应用二次函数的性质,包括极值问题和零点问题,进行问题拓展和解答。
五、教学资源1. 教材:选取适合年级的数学教材,提供相关的二次函数知识点和例题。
2. PowerPoint或白板:用于展示二次函数的定义、图像和相关性质。
《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
数学《二次函数》优秀教案教案:二次函数教学目标:1. 了解二次函数的定义和特征。
2. 掌握二次函数的图像特点、形状和性质。
3. 学会求解二次函数的零点、顶点和最值。
4. 能够应用二次函数解决实际问题。
教学重点:1. 二次函数的图像特点和性质。
2. 二次函数的零点、顶点和最值的求解方法。
教学难点:1. 如何确定二次函数的图像的形状和性质。
2. 如何求解二次函数的零点、顶点和最值。
教学准备:1. 教师准备PPT、教科书、黑板、彩色粉笔等教学工具。
2. 学生准备笔记本、铅笔、直尺等学习用具。
教学过程:一、导入新知识(5分钟)1. 展示一张二次函数的图像。
2. 引导学生观察图像特征,让学生猜测图像所表示的函数类型。
二、引入新知识(10分钟)1. 教师介绍二次函数的定义和特征,并解释二次函数与线性函数的区别。
2. 教师讲解二次函数的一般形式f(x) = ax^2 + bx + c,并解释每个参数的含义。
三、学习新知识(30分钟)1. 教师讲解二次函数的图像特点和性质,如开口方向、开口位置、对称轴、顶点等。
2. 教师通过实例演示,解释如何通过参数a、b和c来确定二次函数的图像形状和性质。
四、巩固练习(15分钟)1. 让学生自主完成一组题目,求解二次函数的零点、顶点和最值。
2. 教师抽查学生的答案,进行讲解和纠正。
五、运用知识(10分钟)1. 教师提供一些实际问题,要求学生运用二次函数解决问题。
2. 学生分组讨论并呈现解决过程和结果。
六、归纳总结(5分钟)1. 教师总结本节课的重点和难点,并与学生共同归纳要点。
2. 学生自主完成本节课的学习笔记,做好知识回顾和巩固。
七、作业布置(5分钟)1. 布置完成一定数量的二次函数求解题目。
2. 要求学生总结本节课所学的图像特点和性质。
教学反思:本节课主要通过讲解和实例演示,让学生了解二次函数的图像特点和性质,并掌握求解二次函数的零点、顶点和最值的方法。
通过实际问题的应用,培养学生运用二次函数解决问题的能力。
22.1 二次函数的图像和性质教学目标:1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y=ax2的性质和图象.3.掌握并灵活应用二次函数y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的性质及图象.4.掌握并灵活应用二次函数y=ax2+bx+c的性质及其图象.5.能根据条件运用适当的方法确定二次函数解析式.教学重难点:图形和性质的应用,及两种形式的转化,解析式求解知识点一:二次函数的概念例题.下列函数中,二次函数是()A.y=﹣4x+5B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y=变式1.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对变式2.下列函数中,y关于x的二次函数的是()A.y=x3+2x2+3B.y=﹣C.y=x2+x D.y=mx2+x+1知识点二:二次函数y=ax2的性质和图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.例题.下列图象中,是二次函数y=x2的图象的是()A.B.C.D.变式1.如图所示四个二次函数的图象中,分别对应的是①y=a1x2;①y=a2x2;①y=a3x2,则a1,a2,a3的大小关系是()A.a1>a2>a3B.a1>a3>a2C.a3>a2>a1D.a2>a1>a3变式2.下列图象中,当ab>0时,函数y=ax2与y=ax+b的图象是()A.B.C.D.知识点三:二次函数y=ax2+k的性质和图象例题.函数y=+1与y=的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状变式1.在直角坐标系中,函数y=3x与y=﹣x2+1的图象大致是()A.B.C.D.变式2.在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B.C.D.知识点四:二次函数y=a(x-h)2的性质及图象例题.与函数y=2(x﹣2)2形状相同的抛物线解析式是()变式1.在平面直角坐标系中,函数y=﹣x+1与y=﹣(x﹣1)2的图象大致是()A.B.C.D.变式2.同一坐标系中,抛物线y=(x﹣a)2与直线y=a+ax的图象可能是()A.B.C.D.变式3.函数y=a(x﹣1)2,y=ax+a的图象在同一坐标系的图象可能是()A.B.C.D.知识点五:二次函数y=a(x-h)2+k的性质及图象例题.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)变式2.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.知识点六:二次函数y =ax 2+bx +c 的性质及其图象个单位,再向上或向下平移||个单位得到的 例题.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x ﹣4)2﹣25C .y=(x+4)2+7D .y=(x+4)2﹣25变式1.将二次函数y=x 2+x ﹣1化为y=a (x+h )2+k 的形式是( )A .y=B .y=(x ﹣2)2﹣2C .y=(x+2)2﹣2D .y=(x ﹣2)2+2变式2.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A .有最大值 2,有最小值﹣2.5B .有最大值 2,有最小值 1.5C .有最大值1.5,有最小值﹣2.5D .有最大值 2,无最小值变式3.二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中错误的是( )4ac −b 24ab 2aA.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小变式4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2变式5.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8B.﹣10C.﹣42D.﹣24知识点七:二次函数的系数与抛物线的特征之间的关系例题.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=0变式1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;①2a+b>0;①b2﹣4ac>0;①a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4变式2.已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;①ac+b+1=0;①abc>0;①a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个变式3.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;①2a﹣b<0;①b2>(a+c)2;①点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个变式4.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,①b2>4,①0<a+b+c<2,①0<b<1,①当x>﹣1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个变式5.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①b2﹣4ac>0;①4a﹣2b+c<0;①3b+2c<0;①m(am+b)<a﹣b(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个知识点八:用待定系数法确定二次函数的解析式例题.已知抛物线y=ax2+bx+c经过点A(1,0),B(﹣1,0),C(0,﹣2).求此抛物线的函数解析式和顶点坐标.变式1.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.变式2.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求①ABC的面积.变式3.二次函数y=2x2+bx+c的图象经过点(2,1),(0,1).(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P(3+a2,y1),Q(4+a2,y2)在抛物线上,试判断y1与y2的大小.(写出判断的理由)变式4.已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.变式5.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.拓展点一:二次函数的概念求字母系数的值例题.若函数y=(m+1)x是二次函数,求m的值.变式1.已知函数y=(m2+m)x.(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.变式2.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?拓展点二:二次函数的图像问题例题.画函数y=的图象.变式1.使用五点法画出二次函数y=x2﹣2x﹣3的图象.变式2.下表给出一个二次函数的一些取值情况:x…01234…y…30﹣103…(1)请在直角坐标系中画出这个二次函数的图象;(2)根据图象说明:当x取何值时,y的值大于0?变式3.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;①方程x2﹣2|x|=2有个实数根;①关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.拓展点三:二次函数的性质的应用例题.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小变式1.在平面直角坐标系中,已知抛物线与直线的图象如图所示,则下列说法:①当0<x<2时,y1>y2;①y1随x的增大而增大的取值范围是x<2;①使得y2大于4的x值不存在;①若y1=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个变式2.已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.变式3.(1)已知二次函数y1=﹣(x+1)2+4的图象如图所示,请在同一坐标系中画出二次函数y1=﹣(x﹣2)2+1的图象.(2)平行于x轴的直线y=k在抛物线y2=﹣(x﹣2)2+1上截得线段AB=4,求抛物线y2=﹣(x﹣2)2+1的顶点到线段AB的距离.(3)当﹣1<x<2时,利用函数图象比较y1与y2的大小.拓展点四:二次函数图像的平移问题例题.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度变式1.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3变式2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3变式3.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.拓展点五:确定二次函数的解析式例题.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度变式1.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3变式2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3变式3.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.易错点一:用配方法求抛物线的顶点坐标时易与用配方法解一元二次方程混淆例题.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25变式1.将二次函数y=x2+x﹣1化为y=a(x+h)2+k的形式是()A.y=B.y=(x﹣2)2﹣2C.y=(x+2)2﹣2D.y=(x﹣2)2+2变式2.解方程:(1)x2﹣2x﹣4=0(2)用配方法解方程:2x2+1=3x。
二次函数的引入教学案一、引言二次函数是高中数学中的重点内容之一,它在实际生活中有着广泛的应用。
本篇教学案将重点介绍二次函数的引入方法及相关概念,旨在帮助学生深入理解和掌握二次函数的概念与性质。
二、引入二次函数的实际问题为了引入二次函数,我们可以从一个实际问题入手,例如:某学校的操场长度为100米,宽度为60米,现在打算在操场四周修建一条宽度为x的道路。
请问,这条道路的长度可以如何表示?通过这个问题,我们可以引导学生进行思考,让他们尝试用代数方式来表示道路的长度。
首先,我们可以将操场的长度和宽度表示为已知的数值,即L =100m,W = 60m。
然后,我们可以通过画图等方式帮助学生理解问题,并引导他们定义新的变量,例如道路的宽度x。
根据图示,我们可以看出道路的长度等于操场长、宽各自增加2x,再减去四个角的面积。
所以,道路的长度可以表示为:L' = (100 + 2x) + (60 + 2x) - 4x将上述式子化简后可得:L' = 160 + 4x - 4xL' = 160通过这个实际问题的引入,我们可以让学生逐步了解和理解二次函数的概念,为后续学习奠定基础。
三、二次函数的定义与性质在引入了二次函数的概念后,我们需要对其进行详细的定义和性质介绍,以便学生能够全面理解。
1. 二次函数的定义二次函数是指函数y = ax^2 + bx + c,其中a、b和c是实数且a ≠ 0。
通过这个定义,我们可以看出二次函数是一个关于x的二次多项式函数。
其中,a决定了抛物线的开口方向,正数表示开口向上,负数表示开口向下;b决定了抛物线在x轴上的平移;c则表示抛物线在y轴上的平移。
2. 二次函数的图像为了让学生直观地理解二次函数的图像特征,我们可以引入图像绘制的方法。
通过绘制不同参数a、b和c的二次函数图像,让学生观察和分析抛物线的形状、开口方向以及对称轴等特征。
同时,我们可以提供一些常用的函数图像,如y = x^2、y = -x^2、y = x^2 + 2x、y = x^2 - 3等,让学生根据这些基础图像来推测其他二次函数图像的形状变化。
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
Prevention is the best way to solve a crisis.精品模板助您成功!(页眉可删)二次函数教案(通用3篇)二次函数教案1一、教材分析1、教材的地位及作用函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。
本节内容的教学,在函数的教学中有着承上启下的作用。
它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。
2、教学目标(1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
(2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。
(3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学的重、难点重点:二次函数的概念和解析式。
难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
4、学情分析①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。
②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。
③初三学生程度参差不齐,两极分化已形成。
二、教法学法分析1、教法(关键词:情境、探究、分层)基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。
让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。
教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。
同时考虑到学生的.个体差异,在教学的各个环节中进行分层施教。
2、学法(关键词:类比、自主、合作)根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。
⼆次函数教案范⽂3篇《⼆次函数》教案⼀、教学⽬标1.知识与技能⽬标。
(1)使学⽣理解并掌握⼆次例函数的概念。
(2)能判断⼀个给定的函数是否为⼆次例函数,并会⽤待定系数法求函数解析式。
(3)能根据实际问题中的条件确定⼆次例函数的解析式,体会函数的模型思想。
2.过程与⽅法⽬标。
通过“探究——感悟——练习”,采⽤探究、讨论等⽅法进⾏。
3.情感态度与价值观。
通过对⼏个特殊的⼆次函数的讲解,向学⽣进⾏⼀般与特殊的辩证唯物主义教育。
⼆、教学重、难点1.重点。
理解⼆次例函数的概念,能根据已知条件写出函数解析式。
2.难点:理解⼆次例函数的概念。
三、教具准备从⽹上及相关资料搜集与本节课有关的材料,远程资源。
四、教学过程1.新课导⼊。
(1)⼀元⼆次⽅程的⼀般形式是什么?(2)回忆⼀下什么是正⽐例函数、⼀次函数?它们的⼀般形式是怎样的?2.新课。
问题1,正⽅体的六个⾯是全等的正⽅形,如果正⽅形的棱长为x,表⾯积为y,那么y与x的关系可表⽰为?[y=6x2问题2,某⼯⼚⼀种产品现在的年产量是20件,计划今后两年增加产量。
如果每年都⽐上⼀年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值⽽定,y与x之间的关系怎样表⽰? y=20x2+40x+20观察以上三个问题所写出来的三个函数关系式有什么特点?经化简后都具有y=ax2+bx+c的形式,(a,b,c是常数, a≠0 )。
我们把形如y=ax2+bx+c(其中a,b, c是常数,a≠0)的函数叫做⼆次函数。
称,a为⼆次项系数,ax2叫做⼆次项;b为⼀次项系数,bx叫做⼀次项;c为常数项。
⼜例:y=x2+ 2x–33.巩固练习。
1.下列函数中,哪些是⼆次函数?(1)y=3x-1 (2)y=3x2+2 (3)y=3x3+2x2(4)y=2x2-2x+1(5)y=x2-x(1+x)(6)y=x-2+x(7)y=1/2(8)y=x(1-x)(9)(1)y=x22.做⼀做。
二次函数课件教案精选5篇二次函数课件教案。
为了更加顺当地进行教学,老师需要提前预备教案课件。
我们也要静下心来仔细写好教案课件。
同时,老师通过写好教案课件,也能更好地了解自己的教学状况。
那么,一个好的教案课件应当具备哪些特点呢?我查阅了相关资料“二次函数课件教案”,共享给大家参考。
二次函数课件教案(篇1)学习目标:1、能解释二次函数的图像的位置关系;2、体会本节中图形的变化与图形上的点的坐标变化之间的关系(转化),感受形数结合的数学思想等。
学习重点与难点:对二次函数的图像的位置关系解释和讨论问题的数学方法的感受是学习重点;难点是对数学问题讨论问题方法的感受和领悟。
学习过程:一、学问预备本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观看、思索和概括,请你留意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何讨论出来的。
你有何新的发觉呢?二、学习内容1.思索:二次函数的图象是个什么图形?是抛物线吗?为什么?(请你认真看课本P12-P13,作出合理的解释)x -3 -2 -10 1 2 3类似的:二次函数的图象与函数的图象有什么关系?它的对称轴、顶点、最值、增减性如何?2.想一想:二次函数的图象是抛物线吗?假如结合下表和看课本P13-P14你的解释是什么?x-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6类似的:二次函数的图象与二次函数的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢三、学问梳理1、二次函数图像的外形,位置的关系是:2、它们的性质是:四、达标测试⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是。
将函数y=-3x2+4的图象向平移个单位可得y=-3x2的图象;将y=2x2-7的图象向平移个单位得到可由 y=2x2的图象。
1【学习目标】1、经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验;2、能够表示简单变量之间的二次函数关系;3、能够利用尝试求值的方法解决实际问题。
【学习重点】表示简单变量之间的二次函数关系【学习难点】利用尝试求值的方法解决实际问题【学习过程】一、课前准备1、一次函数的表达式为 ,正比例函数的表达式为 , 反比例函数表达式为 。
2、某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
请问种多少棵树才能达到30000个的总产量?你能解决这个问题吗? (请列出方程,不用计算)二、自主学习活动一1、某果园有100棵橙子树,每一棵树平均结600个橙子。
现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(2)如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式。
2、设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请你写出两年后的本息和y (元)的表达式(不考虑利息税)。
依题意,一年后的本息和是 ,此即为第二年的本金,则可得=y活动二1、一般地,形如 ( )的函数叫做x 的二次函数。
其中,x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数和常数项。
2、下列函数中,y 是x 的二次函数的是( )A 、B 、C 、D 、 x y 1=2321x y +-=12-x y =2532+-=x x y2 3、设正方体的棱长为x ,表面积为y ,则y 与x 之间的函数关系式y=4、设圆的半径为r ,面积为S ,则S 与r 之间的函数关系式S=三、课堂练习1、下列各式中,y 是x 的二次函数的是( ) A 、 B 、 C 、 D 、2、正方形的边长是2cm ,假设边长增加x cm 时,正方形的面积增加ycm 2,则y 与x 的函数关系式为3、已知x x a y 2)1(2+-=是二次函数,那么a 的取值范围是______________4、已知函数42)2(-m x m y -=是y 关于x 的二次函数,则m 的值是5、某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件。
数学《二次函数》优秀教案数学《二次函数》优秀教案(通用11篇)作为一名默默奉献的教育工作者,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么问题来了,教案应该怎么写?下面是小编精心整理的数学《二次函数》优秀教案,欢迎阅读与收藏。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、数学《二次函数》优秀教案篇2教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、数学《二次函数》优秀教案篇3一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.1二次函数
一、课前热身
1.我们已经学过了一次函数,它是怎么下定义的?你能用类比的方法给二次函数下定义吗?例举几种你认为形式不同的二次函数.
2.函数y=ax2+bx+c(a,b,c是常数),问当a,b,c满足什么条件时:
(1)它是二次函数;(2)它是一次函数;(3)它是正比例函数。
我达标
1. 在下列函数关系式中,不是二次函数的是()
A. y=-2x2
B. y=2(x-1)2+3
C. y=(x+3)2-x2
D. y=a(8-a)
2. 在一定条件下,若物体运动的路程s(m)与时间t(s)的关系式为s=5t2 +2t,则当t=4s时,该物体运动的路程为()
A. 28m
B. 48m
C.68m
D. 88m
3. 函数y=-(x-2)2+2化为y=ax2+bx+c的形式是.其中二次项系数是,一次项系数是, 常数项是.
4. 请写出一个y关于x的二次函数,使得函数的二次项系数为1,且当x=1时,y=2.
5. 有n
系式是.
6.
(1)二次函数y=ax2 +c中,当x=3时,y=26;当x=2时,y=11.
(2)二次函数y=ax2 +bx+c中,当x=0时,y=2;当x=1时,y=3;当x=-1时,y=-5.
7.若函数 m m
x m y --=2)1(2为二次函数,则m 的值为 . 8.观察下面的表格:
求a,b,c 的值,并在表格内的空格中填上正确的数.
9.如图,要建一个三面用木板围成的矩形仓库,已知矩形仓库一边靠墙(墙长16 m ),并在与墙平行的一边开一道1 m 宽的门,现在可围的材料为32 m 长的木板,若设与墙平行的一边长为x m ,仓库的面积为y m 2.
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(2)当x =4时,求y 的值.
10.如图,在正方形ABCD 中,AB =4,E 是BC 上一点,F 是CD 上一点,且AE =AF ,设
S △AEF =y ,EC =x .
(1)求y 与x 的函数关系式及自变量x 的取值范围;
(2)当△AEF 是正三角形时,求△AEF 的面积.
参考答案
1.C
2.D
3.y =-x 2+4x -2 -1 4 -2
4.如:y =x 2+1
5.m =
2
1n (n -1) 6.(1)y =3x 2-1 (2)y =-3x 2+4x +2 7.2 8.0 8 3 a =2,b =-3,c =4 9. (1)x x y 2
33212+-= 160≤<x (2) 58 10.(1)x x y 4212+-= 40≤<x (2)当x =434-时为正三角形,△AEF 的面积是48332-。