DEAE离子交换层析分离血清蛋白质
- 格式:pdf
- 大小:141.68 KB
- 文档页数:5
英文名称:DEAE cellulose DE-23CAS号:9000-11-7功能团:二乙氨乙基正常PH范围:2~9.5小离子电量:0.88~1.08meg/dg(dg=dry gram,千克重)蛋白容积:425mg/dg(蛋白体积是指0.01M ph8.5磷酸缓冲液—牛血清白蛋白)蛋白容积/柱体积:60mg/ml每升所需的离子交换剂㎏柱床体积:0.19(离子交换剂重量的数字考虑到溶胀,容易去除及使用过程中离子离子交换剩余颗粒)填料密度:0.15dg/ml(填料密度的状态为0.05M PH7.5磷酸缓冲液)性状:干燥纤维状层析技术是以离子交换纤维素或以离子交换葡聚糖凝胶为固定相,以蛋白质等样品为移动相,分离和提纯蛋白质、核酸、酶、激素、多糖等的一项技术。
在纤维素与葡聚糖分子上结合有一定的离子基团,当结合阳离子基团时,可换出阴离子,则称为阴离子交换剂。
如二乙氨乙基(Dicthylaminoethyl,DEAE)纤维素。
在纤维素上结合了DEAE,含有带正电荷的阳离子纤维素—O—C6 H14N+H,它的反离子为阴离子(如Cl-等),可与带负电荷的蛋白质阴离子进行交换。
当结合阴离子基团时,可置换阳离子,称为阳离子交换剂,如羧甲基(Carboxymethy,CM)纤维素。
纤维素分子上带有负电荷的阴离子(纤维素-O-CH2-COO一),其反离子为阳离子(如Na+等),可与带正电荷蛋白质阳离子进行交换。
溶液的pH值与蛋白质等电点相同时,静电荷为0,当溶液pH值大于蛋白质等电点时,则羧基游离,蛋白质带负电荷。
反之,溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷。
溶液的pH值距蛋白质等电点越远,蛋白质的电荷越多。
反之则越少。
血清蛋白质均带负电荷,但各种蛋白质带负电荷的程度有所差异,以白蛋白为最多,依次为球蛋白,球蛋白和球蛋白。
在适当的盐浓度下,溶液的pH值高于等电点时,蛋白质被阴离子交换剂所吸附;当溶液的pH值低于等电点时,蛋白质被阳离子交换剂所吸附。
离子交换层析实验原理及步骤离子交换层析实验方法阴离子交换剂与阳离子交换剂的装柱和层析过程基本相同。
交联葡聚糖的预处理只需充分溶胀和平衡,不需要除去细粒碎片和酸碱处理。
其他步骤也基本同离子交换纤维素。
1. 剂型的选择根据蛋白质在所用缓冲液pH值下带电荷的种类选择,如pH高于蛋白质等电点,应选阴离子交换剂,反之应选阳离子交换剂。
一般情况下,DEAE-纤维素用于分离酸性蛋白,而CM纤维素用于分离碱性蛋白质。
下面以DEAE-纤维素操作为例,介绍试验方法2. 膨胀活化此步的目的在于除去杂质,暴露DEAE-纤维素上的极性基团。
DEAE-纤维素的用量则根据柱容积的大小和所需过柱样品的量来决定。
一般是1.0g DEAE-纤维素相当于6ml~8ml柱床体积。
表1-4 分离的血清与所需DEAE—纤维素量及其他条件的大致关系血清样品量(ml)DEAE需用量(g)选层析柱规格(cm)选脱液量(ml)1~221×25100~150552×12200~30010102×20300~40020202×37400~800称取所需的量,撒于0.5Mol/L NaOH溶液中(1g DEAE—纤维素干粉约需15倍NaOH液),浸泡1h左右,不时搅拌。
抽滤(以布氏漏斗加两层滤纸或尼龙纱布抽滤),以蒸馏水洗涤,再抽滤,直至滤液近中性为止,再将纤维素浸泡于0.5Mol/L HCl中1h,同样抽滤液至近中性。
再将纤维素浸于0.5Mol/L NaOH液中,同样处理,洗至中性。
3. 平衡将DEAE—纤维素放入0.0lMol/L pH 7. 4 PB液中(即起始缓冲液),静止1h,不时搅拌,待纤维素下沉后,倾去上清液或抽滤除去洗液,如此反复几次至倾出液体的pH值与加入的PB液的pH值相近时为止。
4. 装柱层析柱的选择要大小、长度适当。
一般而言,柱长和柱直径之比为10∶1~20∶1,柱的内径上下要均匀一致。
用前将层析柱在清洁液内浸泡处理24h,然后依次用常水、蒸馏水、起始缓冲液充分洗涤。
实验三DEAE—纤维素梯度层析实验1、实验目的与要求:通过DEAE-纤维素阴离子交换剂,采用一条线型离子强度和恒定pH洗提曲线,对鸡蛋白蛋白(CEA)样品进行分级分离,以了解梯度洗提的层析方法。
2、实验原理:DEAE-纤维素是以纤维素为母体接有二乙基氨基乙基(DEAE)活性基团的弱碱性阴离C2H5∣子交换剂(纤维素-O-CH2-CH2-NH )。
它在离子交换层析中可用于蛋白质、核酸、激素、∣C2H5酶等大分子的分离与纯化。
对于某些组分比较复杂或性质比较相近的蛋白质样品。
在采用一般的恒溶剂系统进行离子交换柱层析时,往往不容易分离,这时可采用梯度洗提(装置见图1-2)。
即利用一定的样品离子在不同的离子强度(或pH)溶液中对一定的离子交换剂的平衡常数不同,在洗提过程中,通过不断改变洗提的离子强度(pH不变)[根据实验的具体情况,也可同时改变离子强度和pH],以逐步改变样品中各组分与离子交换剂的交换能力,最后得到分离,这种层析方式即称为梯度洗提层析。
洗提剂的梯度产生如图所示,当A1=A2时,产生线形梯度;当A1>A2时,产生凹型梯度;当A1<A2时,产生凸型梯度(见图1)。
不同的样品,应根据实验情形,选择合适的梯度洗提曲线。
3、实验器材与装置:3-1、实验仪器:(1)、电脑及装置(2)、紫外检测仪(3)、恒流泵(4)、磁力搅拌器(5)、混合器(5)、梯度混合仪(6)、离心机3-2、实验器材:(1)、层析柱(20×1.0cm)(2)、自动取液器(3)、烧杯100 ml(4)、量筒(5)、玻棒3-3、实验装置图(1)、 图1: 梯度洗脱示意图(2)、图2:DEAE —层析实验装置图4、试剂与配制:4-1.实验试剂:(1)、DEAE-52(2)、鸡蛋白蛋白(CEA )(3)、三羧甲基氨基甲烷(Tris)(4)、盐酸(5)、氯化钠4-2.试剂配制:(1)、Buffer A(20mM pH8.0 Tris-HCl )的配制:取Tris g,溶于ml蒸馏水中,用ml HCl调至pH8.0 (2)、Buffer B的配制:Buffer A加1.0M NaCl(3):CEA样液的配制:20.0mg CEA+1ml Buffer A5、方法与步骤:(1)、DEAE-纤维素处理:本实验采用20 mMol/L ,pH8.0 Tris-HCl平衡好的DEAE-纤维素。
生物化学实验报告姓名:学号:专业年级:组别:生物化学与分子生物学实验教学中心【实验报告第一部分(预习报告内容):①实验原理、②实验材料(包括实验样品、主要试剂、主要仪器与器材)、③实验步骤(包括实验流程、操作步骤和注意事项);评分(满分30分):XX】实验目的:1、掌握盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法分离蛋白质的原理和基本方法3、掌握离子交换层析法分离蛋白质的原理和基本方法4、掌握醋酸纤维素薄膜电泳法的原理和基本方法5、了解柱层析技术实验原理:1、蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。
2、不同蛋白质的分子量、溶解度及等电点等都有所不同。
利用这些性质的差别,可分离纯化各种蛋白质。
3、盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。
蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。
中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。
4、离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。
5、醋酸纤维素薄膜电泳原理:血清中各种蛋白质的等电点不同,一般都低于pH7.4。
它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。
由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。
因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。
实验材料:人混合血清葡聚糖凝胶(G-25)层析柱DEAE纤维离子交换层析柱饱和硫酸铵溶液醋酸铵缓冲溶液 20%磺基水杨酸1%BaCl溶液氨基黑染色液2漂洗液 pH8.6巴比妥缓冲溶液电泳仪、电泳槽实验流程:盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定)实验步骤:(一)盐析+凝胶柱层析除盐:(二)离子交换层析(纯化):(三)醋酸纤维素薄膜电泳:1、点样(如下图):-点样线尽量点得细窄而均匀,宁少勿多2、电泳:①薄膜粗面向下②点样端置阴极端③两端紧贴在滤纸盐桥上,膜应轻轻拉平电压:110V时间:50min3、染色和漂洗:电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。
deae纤维素离子交换层析原理DEAE纤维素离子交换层析原理离子交换层析是一种利用离子保持在流动相中的静电相互作用分离混合物的技术。
这种层析技术通常用于对分子进行分离和纯化,是许多分子生物学和生物工艺学实验的关键步骤之一。
DEAE纤维素层析是一种离子交换层析技术,其原理是根据大分子带电荷的相互作用进行分离。
DEAE(二乙氨基乙基)代表了这种离子对相互作用,它们是氨基乙醇与二甲基氨基乙醇的混合物,呈弱碱性。
DEAE纤维素层析分离过程中,混合物被加入含有DEAE纤维素的纯化介质中,通常是由一个固相列和一个移动相组成的。
由于DEAE纤维素有静电吸附性,分子会被吸附到纤维素表面,并与它们的相反电荷互相吸引,形成了一个复杂的矩阵。
随着固相列的流动,分子会以不同的速度被吸附到DEAE纤维素表面,并对带电荷的分子进行分离。
DEAE纤维素层析技术通常用于分离电荷分布不均匀的大分子,例如蛋白质或DNA。
在这种情况下,蛋白质或DNA会在不同程度上与DEAE纤维素相互作用,其中带正电荷的分子会强烈地吸附到DEAE纤维素表面,而带负电荷的分子则会逐渐流过固相列。
DEAE纤维素层析可以用于分离具有不同电荷的蛋白质或DNA分子。
DEAE纤维素层析可用于从复杂混合物中纯化蛋白质甚至核酸。
根据DEAE纤维素层析的原理,我们可以预测分子的行为并更好地优化层析条件。
增加NaCl浓度或者pH值可以瞬间影响DEAE纤维素对分子的亲和力,不同的DEAE纤维素介质或动态增加离子浓度都会影响分子的结合和释放。
DEAE纤维素层析技术非常适合分离带电荷的大分子,因为它利用的是分子之间电荷间的相互作用进行分离。
该技术是分子生物学,生物化学和生物工艺学中广泛使用的分离技术之一,具有广泛的应用前景。
DEAE纤维素层析技术是生化分离技术中最常用的一种技术之一,可以高效地纯化目标大分子,如蛋白质和DNA。
DEAE纤维素层析技术具有操作简单、高分离效率、生物活性好、适用范围广等优点,被广泛应用于制药、食品、环保、农业等领域。
实验7 DEAE—离子交换剂纯化血清IgG(一)原理离子交换是指液相中的离子与固定相上可解离基团的可逆交换反应。
利用这个反应先将要分离的混合物在一定pH的溶液中解离,而后流经固定相,使之与固定相上的可解离基团进行离子交换,吸附于固定相上,凡不能进行交换吸附的成分,则流出层析柱外。
再根据交换吸附于固定相上的各组分解离度的差别,运用不同的pH值或不同盐浓度的溶液作流动相,流过层析柱将各组分分别再交换洗脱下来,这样混合物的各组分即被分开,达到分离的目的,此即为离子交换层析。
离子交换层析中的固定相称为离子交换剂。
它是由在不溶性高分子母体上引入不同的可解离基团所构成。
常用的不溶性高分子母体有纤维素、葡聚糖、琼脂糖及人工合成的树脂等。
引入于母体上的活性基团主要有酸性或碱性物质。
由于引入的酸性物质可解离出H+离子,能与液相中的阳离子交换,故这类离子交换剂称为阳离子交换剂;引入的碱性物质可解离出OH-离子,能与液相中的阴离子交换,故将这类离子交换剂称为阴离子交换剂。
由于引入的酸或碱的强弱不同,两类离子交换剂又分为不同的型。
酸类物质以磺酸基(-SO3H)最强,引入磺酸基的阳离子交换剂称为强酸型;引入磷酸基(-PO3H2)、亚磷酸基(-PO2H)的称中强酸型;引入羧基(-COOH)、酚羟基(-OH)的称为弱酸型。
碱类物质主要是引入胺碱。
引入季胺[ ―N+(CH3)3OH―]基的称为强碱型;引入叔胺[-N(CH3)2 ]、仲胺(-NHCH3)、伯胺(-NH2)基的称为弱碱型。
各型离子交换剂国内外都已定型生产,性能和规格均可查到,本书附录四中列举了一部分。
各型离子交换剂的使用,将由用以分离的物质特性及分离的目的而定。
分离蛋白质(包括酶)常用纤维离子交换剂。
由于蛋白质(酶)的分子量很大,在交换反应后要占有离子交换剂很大的空间位置,不溶性母体空间位置小的交换剂将无法与蛋白质交换容量很低。
纤维素作为不溶性母体是因为纤维素具有亲水性强,容易溶胀;溶胀后具有舒展的长链,表面积大,使大分子特质容易接触并容纳。
DEAE离子交换层析分离血清蛋白质【教学对象与学时】教学对象:临床医学五年制、七年制学生学时:8学时【预习要求】蛋白质的基本理化性质血清蛋白的组成及其理化性质【目的要求】教学目的:熟悉层析的基本原理与分类、掌握离子交换层析的原理及操作教学要求:利用离子交换层析对血清蛋白进行分离并对分离所得各组分性质进行比较、实验前预习,实验后写出实验报告。
【重点和难点】重点:离子交换层析分离蛋白质的实验原理。
难点:DEAE纤维素处理的原理与操作。
【教学过程设计】一、布置预习内容。
1、复习蛋白质的基本理化性质,重点是蛋白质的两性电解性质及由此引申出来的蛋白质表面电量与溶液PH值之间的关系。
2、蛋白质的紫外吸收性质。
3、血清蛋白的组成与分类。
二、课堂教学过程1.复习层析概念2.交待离子交换层析概念,并提出引导性问题。
3.进行实验操作第一个环节——DEAE纤维素的处理,在处理间歇期穿插实验理论的讲述。
3.1 膨润阶段讲述内容:3.1.1 离子交换层析的本质—化学反应平衡,引申出离子交换层析的分类与应用范围;3.1.2 复习蛋白质表面电量与溶液PH之间的关系,引申出PH值梯度洗脱的意义;3.1.3 讲解双电层理论,引申出离子强度梯度洗脱的意义;3.1.4 离子交换介质处理的理想状态,初步理解交换层析介质处理的要求;3.1.5 待分离蛋白质与交换剂的结合,引申出离子交换层析的分离范围概念。
3.2 转型阶段讲述内容:3.2.1 离子交换层析的分离理论,以及PH值梯度洗脱与离子强度梯度洗脱的不同意义;3.2.2 离子交换剂处理的原理及其对实验结果的影响3.2.3 仪器的连接与使用方法4.平衡阶段进行仪器的调试等上样前的准备5.上样6.梯度洗脱7.中午轮流休息8.实验结果与结果分析【实验报告要点】1.离子交换层析的原理2.实验操作步骤3.实验结果与结果分析【思考题】1.阴阳离子交换剂如何选择?2.离子强度梯度洗脱的意义?3.本实验中,判断依次被洗脱的蛋白质性质差异?【专业英语选读】The molecular details of a biochemical process cannot be fully elucidated until the reacting molecules have been isolated and characterized. Therefore, our understanding of biochemical principles has increased at about the same pace as the development of techniques for the separation and identification of biomolecules. Chromatography has been and will continue to be the most effective technique for isolating and purifying all types of biomolecules. In addition, it is widely used as an analytical tool to measure quantitative properties.A. INTRODUCTION TO CHROMATOGRAPHYAll types of chromatography are based on a very simple principle. The Sample to be examined (called the solute) is allowed to interact with two physically distinct entities-a mobile phase and a stationary phase. The mobile phase, which may be a gas or liquid, moves the sample through a region containing the solid or liquid stationary phase called the sorbent. The stationary phase will not be described in detail at this time, since it varies from one chromatographic method to another. However, it may be considered as having the ability to "bind" some types of solutes. The sample, which may contain one or many molecular components, comes into contact with the stationary phase. The components distribute themselves between the mobile and stationary phases. If some of the sample components are preferentially bound by the stationary phase, they spend more time in the stationary phase and, hence, are retarded in their movement through the chromatography system. Molecules that show weak affinity for the stationary phase spend more time with the mobile phase and are more rapidly removed or eluted from the system. The many interactions that occur between solute molecules and the stationary phase bring about a separation of molecules because of different affinities for the stationary phase. The general process of moving a solute mixture through a chromatographic system is called development.The mobile phase can be collected as a function of time at the end of the chromatographic system. The mobile phase, now called the effluent, contains the solute molecules. If the chromatographic process has been effective, fractions or “cuts” that are collected at different times will contain the different components of the original sample. In summary, molecules are separated because they differ in the extent to which they are distributed between the mobile phase and the stationary phase.Throughout this chapter and others, biochemical techniques will be designated as preparative or analytical, or both. A preparative procedure is one that can be applied to the purification of a relatively large amount of a biological material. The purpose of such an experiment would be to obtain purified material for further characterization and study. Analytical procedures are used most often to determine the purity of a biological sample; however, they may be used to evaluate any physical, chemical, or biological characteristic of a biomolecule or biological system.Partition versus Adsorption ChromatographyChromatographic methods are divided into two types according to how solute molecules bind to or interact with the stationary phase. Partition chromatography is the distribution of a solute between two liquid phases. This may involve direct extraction using two liquids, or it may use a liquid immobilized on a solid support as in the case of paper, thin-layer, and gas-liquid chromatography. For partition chromatography, the stationary phase in Figure consists of inert solid particles coated with liquid adsorbent. The distribution of solutes between the two phases is based primarily on solubility differences. The distribution may be quantified by using the partition coefficient, KD.Adsorption chromatography refers to the use of a stationary phase or support, such as an ion-exchange resin, that has a finite number of relatively specific binding sites for solute molecules. There is not a clear distinction between the processes of partition and adsorption. All chromatographic separations rely, to some extent, on adsorptive processes. However, in some methods (paper, thin-layer, and gas chromatography) these specific adsorptive effects are minimal and the separation is based primarily on nonspecific solubility factors. Adsorption chromatography relies on relatively specific interactions between the solute molecules and binding sites on the surface of the stationary phase. The attractive forces between solute and support may be ionic, hydrogen bonding, or hydrophobic interactions. Binding of solute is, of course, reversible.Because of the different interactions involved in partition and adsorption processes, they may be applied to different separation problems. Partition processes are the most effective for the separation of small molecules, especially those inhomologous series. Partition chromatography has been widely used for the separation and identification of amino acids, carbohydrates, and fatty acids. Adsorption techniques, represented by ion-exchange chromatography, are most effective when applied to the separation of macromolecules including proteins and nucleic acids.In the rest of the chapter, various chromatographic methods will be discussed. You should recognize that no single chromatographic technique relies solely on adsorption or partition effects. Therefore, little emphasis will be placed on a classification of the techniques; instead, theoretical and practical aspects will be discussed.。