控制系统的状态空间描述
- 格式:ppt
- 大小:1.28 MB
- 文档页数:110
控制系统状态空间法控制系统状态空间法是现代控制理论中常用的一种方法,它描述了控制系统的动态行为,并通过状态变量来表示系统的内部状态。
在这篇文章中,我们将详细介绍控制系统状态空间法的基本概念、理论原理以及应用。
一、控制系统状态空间法的基本概念状态空间法是一种描述动态系统的方法,通过一组一阶微分方程来表示系统的动态行为。
在这个方法中,我们将控制系统看作是一个黑盒子,输入和输出之间的关系可以用状态方程和输出方程来描述。
1. 状态方程状态方程描述了系统的内部状态随时间的演化规律。
它是一个一阶微分方程组,通常用向量形式表示:ẋ(t) = Ax(t) + Bu(t)其中,x(t)表示系统的状态向量,A是状态转移矩阵,B是输入矩阵,u(t)是输入向量。
2. 输出方程输出方程描述了系统的输出与内部状态之间的关系。
它通常用线性方程表示:y(t) = Cx(t) + Du(t)其中,y(t)表示系统的输出向量,C是输出矩阵,D是直接传递矩阵。
3. 状态空间表示将状态方程和输出方程合并,可以得到系统的状态空间表示:ẋ(t) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)在状态空间表示中,状态向量x(t)包含了系统的所有内部状态信息,它决定了系统的行为和性能。
二、控制系统状态空间法的理论原理控制系统状态空间法基于线性时不变系统理论,通过分析系统的状态方程和输出方程,可以得到系统的稳定性、可控性和可观测性等性质。
1. 系统稳定性系统稳定性是判断系统是否能够在有限时间内达到稳定状态的重要指标。
对于线性时不变系统,当且仅当系统的所有状态变量都是稳定的,系统才是稳定的。
通过分析状态方程的特征值,可以判断系统的稳定性。
2. 系统可控性系统可控性表示是否可以通过选择合适的输入来控制系统的状态。
一个系统是可控的,当且仅当存在一组输入矩阵B的列向量线性组合可以使得系统的状态从任意初始条件变为目标状态。
通过分析状态转移矩阵的秩,可以判断系统的可控性。
第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。
图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。
也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。
这里采样机理分析法。
设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。
1图P2.2解 这是一个物理系统,采用机理分析法求状态空间表达式会更为方便。
令()f t 为输入量,即u f =,1M ,2M 的位移量1y ,2y 为输出量, 选择状态变量1x =1y ,2x = 2y ,3x =1dy dt,24dyx dt =。
控制系统中的状态空间与传输函数在控制系统中,状态空间和传输函数是两个重要的概念,它们在系统建模、分析和设计中起着关键的作用。
本文将从理论和实际应用两个方面来探讨这两个概念的含义和用途。
一、状态空间状态空间是一种描述系统动态行为的数学模型。
它包含了系统的状态变量、输入和输出,并通过一组微分方程来描述它们之间的关系。
状态变量是系统中能够完全描述系统状态的变量,通常用向量表示。
输入是系统的外部激励,输出是系统对外部激励的响应。
状态空间模型的形式可以写为:dx(t)/dt = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是状态向量,A、B、C、D是系统的参数矩阵,u(t)是输入向量,y(t)是输出向量。
这个模型可以用来描述连续时间系统,对于离散时间系统,微分方程变为差分方程。
状态空间模型具有直观、灵活和通用的特点,可以适用于线性和非线性系统,并可以进行各种分析和设计。
通过状态空间模型,我们可以计算系统的稳定性、响应特性、控制器设计等。
二、传输函数传输函数是一种描述系统输入输出关系的数学模型。
它是输出变量对输入变量的比例关系,通常用分子多项式和分母多项式的比值表示。
传输函数可以通过拉普拉斯变换或者Z变换从状态空间模型中导出。
传输函数的形式可以写为:G(s) = Y(s)/U(s)其中,G(s)是传输函数,Y(s)是输出变量的拉普拉斯变换,U(s)是输入变量的拉普拉斯变换。
传输函数模型具有简洁、直观和方便计算的特点,适用于线性系统的频域分析和设计。
通过传输函数模型,我们可以计算系统的频率响应、稳定边界、控制器设计等。
三、状态空间与传输函数之间的关系状态空间模型和传输函数模型是等价的,它们可以相互转换。
对于一个给定的系统,我们可以从状态空间模型导出传输函数模型,也可以从传输函数模型导出状态空间模型。
状态空间模型到传输函数模型的转换可以通过拉普拉斯变换或者Z变换来实现。
对于连续时间系统,可以使用拉普拉斯变换,对于离散时间系统,可以使用Z变换。
第八章 控制系统的状态空间分析一、状态空间的基本概念1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。
2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻这组变量的值())()()(00201t x t x t x n 和0t t ≥时输入的时间函数)(t u ,则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。
3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。
4. 状态空间 以状态变量())()()(21t x t x t x n 为坐标的n 维空间。
系统在某时刻的状态,可用状态空间上的点来表示。
5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。
6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。
二、状态空间描述(状态空间表达式)1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状态空间描述一般用矩阵形式表示,对于线性定常连续系统有⎩⎨⎧+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1)对于线性定常离散系统有⎩⎨⎧+=+=+)()()()()()1(k Du k Cx k y k Hu k Gx k x (8-2)2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。
3. 状态空间描述的线性变换及规范化(标准型)系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。
利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。
三、传递函数矩阵及其实现1. 传递矩阵)(s G :多输入多输出系统的输出向量的拉氏变换与输入向量的拉氏变换之间的传递关系,称为传递矩阵)(s G ,即)()()(s U s Y s G =(8-3) 式中:)(s U ——系统的输入向量 )(s Y ——系统的输出向量传递函数矩阵与多输入多输出系统状态空间描述的关系是:D B A I C G +-=-1)()(s s (8-4)上式中的A ,B ,C ,D 即为状态空间描述{}D C,B,A,中的矩阵A,B,C,D 。
§3.3 Matlab 实验
1. 状态空间模型脉冲响应、阶跃响应和任意输入响
应
(1) [y,x,t]=impulse(a,b,c,d)
(2) [y,x,t]=step(a,b,c,d),其中y、x 和t 是输出、
状态向量和仿真时间。
(3) [y,x]=lsim(a,b,c,d,u,t,x0)。
例求管亠[0* x c£,为
u(t) =sint的状态输出值。
解程序和结果如下
-0.2
-0.4
2. 离散系统的脉冲响应、阶跃响应、任意输入响应
⑴[y, x]=dimpulse(sys);
(2) [y, x] = dstep( nu m,de n);
(3) [y, x]=dlsim(sys,u); 47y、x 和u 分别为输出、
状态和输入,sys可以是num,den或a,b,c,d,不绘图,当无y, x时直接绘图。
3 •连续和离散状态模型的零输入响应(只对初态x0 响应)
(1) [y,x,t]=i nitial(a,b,c,d,xO)
⑵[y,x,t]=dinitial(a,b,c,d,x0) ,y 为输出,x 为状态,
t为指定输出时间。
当不带y、x和t时,直接绘图。
4 •连续系统离散化
(1) [da,db,dc,dd]=c2dm(a,b,c,d,Ts)
⑵[dnum,dden]=c2d(num,den,Ts) , Ts 是采样周期。
5.矩阵指数
expm(a*t),其中t可为符号变量,也可为实值。
0 1
例如设A = 0',则求e At的命令和结果如下:
||-4 -4。