常见的几种平面变换反射变换与旋转变换
- 格式:ppt
- 大小:602.06 KB
- 文档页数:19
2.2几种常见的平面变换反射变换三维目标1.知识与技能掌握反射变换的矩阵表示与几何意义从几何上理解二阶矩阵对应的几何变换是线性变换,并证明二阶非零矩阵对应的变换把直线变成直线,即证明M (λ1α+λ2β)=λ1M α+λ2M β.2.过程与方法通过实例,借助几何图形来研究平面图形的几何变换,让学生感到生动. 3.情感、态度与价值观将新旧知识结合起来,体现知识的螺旋上升。
教学重点 反射变换 教学难点证明M (λ1α+λ2β)=λ1M α+λ2M β 教学过程一、情境设置已知在平面直角坐标系的第一象限有一张汽车图片F ,将它做关于x 轴、y 轴和坐标原点对称的变换,分别得到图片F 1,F 2,F 3.这些变换能用矩阵来表示吗?二、学生活动在图片F 上任取一个P(x,y),假设三个变换分别为T 1,T 2,T 3,对应的矩阵分别记为M 1,M 2,M 3,则有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡1001,:''1M y x y x y x T , ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡1001,:''1M y x y x y x T⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡1001,:''1M y x y x y x T 三、建构数学1.反射变换 像⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1001,1001,1001这样将一个平面图形F 变为关于定直线或定点对称的平面图形的变换矩阵,我们称之为反射变换矩阵,对应的变换叫做反射变换.相应地,前者叫做轴反射,后者称为中心反射,其中的定直线称为反射轴,定点称做反射点.探究已知格子纸上有一面小旗(如图),请在格纸上画出它关于x 轴、关于y 轴和关于原点对称的图形.四、数学应用例 求直线y =4x 在矩阵⎥⎦⎤⎢⎣⎡0110作用下变换所得的图形. 解:设P(x 0,y 0)为直线y =4x 上的任一点,它在矩阵⎥⎦⎤⎢⎣⎡0110作用下变换变为点 P ′(x 0′,y 0′),则有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡0000'0'00110x y y x y x 故⎪⎩⎪⎨⎧=='0'00y x x y '0'0004,4y x x y =∴= 从而直线y =4x 在矩阵⎥⎦⎤⎢⎣⎡0110作用下变成直线.41x y =例 求曲线y 2=4x 在矩阵⎥⎦⎤⎢⎣⎡0110作用下变换所得的图形. 解:设P(x 0,y 0)为曲线y 2=4x 上的任一点,它在矩阵⎥⎦⎤⎢⎣⎡0110作用下变换变为点 P ′(x 0′,y 0′),则有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡0000'0'00110x y y x y x ,故⎪⎩⎪⎨⎧=='00'00y x x y '02'00204,4y x x y =∴= 从而曲线y 2=4x 在矩阵⎥⎦⎤⎢⎣⎡0110作用下变成曲线y x 42= 例 二阶非零矩阵对应的变换把直线变成直线. 证明:假设矩阵M =⎥⎦⎤⎢⎣⎡d cb a(a,b,c,d 不全为零)对应的变换把平面上的点P 1(x 1,y 1),P 2(x 2,y 2)变成平面上的点P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),令α=,11⎥⎦⎤⎢⎣⎡y x β=⎥⎦⎤⎢⎣⎡22y x ,M α=⎥⎥⎦⎤⎢⎢⎣⎡'1'1y x ,M β=⎥⎥⎦⎤⎢⎢⎣⎡'2'2y x ,故说明:⑴把直线变为直线的变换,通常叫做线性变换(平面上的线性变换都可以用矩阵来表示,但二阶矩阵不能刻画所有平面图形的线性变换).⑵当a =b =c =d =0时,⎥⎦⎤⎢⎣⎡0000把平面上的所有点都变换到坐标原点(0,0),此时为线性变换的退化情况,因此在研究平面上的多边形或直线在矩阵的变换作用后形成的图形时,只需考察顶(端)点的变化结果即可.想一想:曲线y =f(x)在矩阵⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1001,1001,1001作用下变换所得图形的方程分别是什么?)()(1001x f y x f y -=−−−−→−=⎥⎦⎤⎢⎣⎡-)()(1001x f y x f y -=−−−−→−=⎥⎦⎤⎢⎣⎡- )()(1001x f y x f y --=−−−−→−=⎥⎦⎤⎢⎣⎡--五、回顾反思1.知识点:反射变换,线性变换2.思想方法:数形结合,类比 六、作业 见数学教学案 教学后记。
平面向量的正交变换和相似矩阵平面向量具有很多重要的性质和应用,其中正交变换和相似矩阵是两个重要的概念。
本文将介绍平面向量的正交变换和相似矩阵,并讨论它们在几何和代数中的应用。
一、平面向量的正交变换平面向量的正交变换是指将一个向量通过某种变换操作,使得变换后的向量与原向量垂直。
常见的平面向量的正交变换有旋转和反射两种。
1. 旋转变换旋转变换是指将一个向量按照一定的角度绕着一个点或者某个轴进行旋转,并保持向量的长度不变。
旋转变换可以用复数的乘法来表示,假设有向量v,要将它绕着原点逆时针旋转θ角度,变换后的向量可以表示为v' = v * exp(iθ),其中exp(iθ)表示复数e的iθ次幂。
2. 反射变换反射变换是指将一个向量关于某个轴进行镜像翻转,也就是改变向量的方向而保持其长度不变。
例如,将向量v绕着直线L进行反射变换,变换后的向量v'可以表示为v' = v - 2proj_L(v),其中proj_L(v)表示向量v在直线L上的投影向量。
二、相似矩阵与平面向量的正交变换相似矩阵是线性代数中一个重要的概念,它与平面向量的正交变换有密切的联系。
相似矩阵指的是具有相同特征值的矩阵,而特征值对应着线性变换后的向量的缩放倍数。
对于平面向量的正交变换,可以用一个相似矩阵将变换前的向量表示为变换后的向量。
设A是一个平面向量的正交变换矩阵,v是一个向量,则有v' = A * v。
其中,向量v'是变换后的向量,矩阵A与v的相乘即实现了向量的正交变换。
三、平面向量的正交变换与应用平面向量的正交变换在几何和代数中有广泛的应用。
1. 几何应用在几何中,平面向量的正交变换可以用来解决关于旋转和反射的几何问题。
例如,通过旋转变换可以实现平面图形的旋转、定位和对称等操作,而通过反射变换可以实现平面上点的镜像和对称等操作。
2. 代数应用在代数中,平面向量的正交变换与相似矩阵有密切的联系。
高一数学三角变换的知识点三角变换是高中数学中一个重要的知识点,它在几何推理、求解复杂三角形问题以及解决实际应用问题中起到关键作用。
本文将介绍三角变换的相关概念、公式和应用。
一、平面向量的三角变换在平面几何中,平面向量的三角变换是指对平面内的向量进行平移、旋转、翻转等操作,常用的变换有平移变换、旋转变换和翻转变换。
1. 平移变换平移变换是将平面内的向量沿着某一方向平行移动一定的距离,其变换规律为:如果向量a(x,y)经过平移变换得到向量b(x',y'),则有x'=x+m,y'=y+n,其中m和n分别表示平移的横向和纵向距离。
2. 旋转变换旋转变换是将平面内的向量绕某一点旋转一定的角度,顺时针旋转为正,逆时针旋转为负。
设向量a(x,y)经过顺时针旋转θ度得到向量b(x',y'),则有:x' = xcosθ - ysinθy' = xsinθ + ycosθ3. 翻转变换翻转变换是将平面内的向量绕某一轴线对称翻转,有关于x轴翻转、y轴翻转和原点对称翻转三种情况,其变换规律为:关于x轴翻转:(x,y) → (x,-y)关于y轴翻转:(x,y) → (-x,y)关于原点翻转:(x,y) → (-x,-y)二、三角函数的三角变换三角函数的三角变换是指对三角函数进行移动、伸缩、反转等操作,常用的变换有平移变换、伸缩变换和反射变换。
1. 平移变换由f(x)=sinx和g(x)=sin(x+a)对比可以发现,f(x)经过平移变换得到g(x),平移的距离为a。
通过平移变换,可以将一个角度范围内的函数图像向左或向右平移。
2. 伸缩变换由f(x)=sinx和g(x)=a*sinx对比可以发现,f(x)经过伸缩变换得到g(x),伸缩比例为a。
通过伸缩变换,可以改变函数图像的振幅和频率。
3. 反射变换由f(x)=sinx和g(x)=-sinx对比可以发现,f(x)经过反射变换得到g(x)。
平面向量的复合变换平面向量是代数中的重要概念,它们具有方向和大小。
在数学中,我们经常需要对平面向量进行变换以便进行分析和计算。
平面向量的复合变换是指将一个平面向量进行一系列的变换操作,得到新的向量。
一、平面向量的平移变换平移变换是指将一个向量沿着指定的方向和距离进行平移。
假设有向量AB,在平移变换中,将向量AB沿着指定的方向进行平移,得到新的向量A'B'。
平移变换可以用向量运算表示为:A'B' = AB + CD,其中CD为平移向量。
二、平面向量的旋转变换旋转变换是指将一个向量绕某一点或者某一直线进行旋转。
假设有向量AB,在旋转变换中,将向量AB绕某一点O按照一定的角度进行旋转,得到新的向量A'B'。
旋转变换可以用向量运算表示为:A'B' =OA + OB - OB',其中OA为半径,OB为原向量在旋转前的位置向量,OB'为旋转后的目标向量。
三、平面向量的缩放变换缩放变换是指改变向量的大小而保持其方向不变。
假设有向量AB,在缩放变换中,将向量AB按照一定的比例进行放大或缩小,得到新的向量A'B'。
缩放变换可以用向量运算表示为:A'B' = k · AB,其中k为缩放因子,当k>1时表示放大,当0<k<1时表示缩小。
四、平面向量的反射变换反射变换是指将一个向量关于某一直线进行对称。
假设有向量AB,在反射变换中,将向量AB关于某一直线进行对称操作,得到新的向量A'B'。
反射变换可以用向量运算表示为:A'B' = 2 · ON - OA,其中ON为到直线的距离,OA为原向量的位置向量。
在实际应用中,平面向量的复合变换经常被用于图像处理和仿真领域。
通过对平面向量进行一系列的变换操作,可以实现图像的平移、旋转、缩放和翻转等效果。
对称变换:理解反射与旋转对称变换是数学中一种重要的概念,它在几何学、物理学以及计算机图形学中都有广泛的应用。
其中,反射与旋转是两种常见的对称变换方式。
本文将深入理解反射与旋转的概念及应用,以帮助读者更好地理解对称变换。
反射是一种在平面上进行的对称变换。
简而言之,反射就是将一个点、线段、图形等,沿着一条直线将其镜像对称到另一侧。
这条直线被称为镜面。
反射可以分为两种情况,分别为点关于镜面的对称和图形关于镜面的对称。
首先,我们来讨论点关于镜面的对称。
设点A的坐标为(x,y),镜面为直线y=0。
根据对称性质,点A关于镜面的对称点A'的坐标为(x,-y)。
这个过程可以表达为以下式子:(x,y)→(x,-y)。
接下来,我们来讨论图形关于镜面的对称。
以一个三角形ABC为例,其中点A的坐标为(x1,y1)、点B的坐标为(x2,y2)、点C的坐标为(x3,y3)。
若镜面为直线y=0,则通过点关于镜面的对称,得到三角形A'B'C',其坐标可表示为(x1,-y1)、(x2,-y2)、(x3,-y3)。
可以看出,图形关于镜面的对称是点关于镜面对称的一个推广。
旋转是另一种常见的对称变换方式。
它是以一个点为中心,按照一定的角度将图形或点逆时针或顺时针旋转。
在二维平面上,我们常见的旋转方式有绕原点旋转和绕某一点旋转。
首先,我们来讨论绕原点旋转。
设点A的坐标为(x,y),以原点为中心,角度为θ进行逆时针旋转。
根据旋转的基本公式,点A旋转后的新坐标为(x',y'),其中x' = x*cosθ - y*sinθ,y' = x*sinθ +y*cosθ。
可以看出,旋转是通过三角函数的运算而实现的。
接下来,我们来讨论绕某一点旋转。
同样以点A的坐标为(x,y),以点O(ox,oy)为中心,角度为θ进行逆时针旋转。
根据旋转的公式,点A旋转后的新坐标为(x',y'),其中x' = (x-ox)*cosθ - (y-oy)*sinθ + ox,y' = (x-ox)*sinθ + (y-oy)*cosθ + oy。
反射变换
1.反射变换
【知识点的知识】
把平面上任意一点P 对应到它关于直线l 的对称点P′的线性变换叫做关于直线l 的反射.变换的坐标公式和二阶矩阵为:
【解题方法点拨】
1.几种常见的线性变换
(1)恒等变换矩阵M=;
(2)旋转变换Rθ对应的矩阵是M=;
(3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M1=;若关于y 轴对称,则变换对应矩阵为M2=;若关于坐标原点对称,则变换对应矩阵M3=;
(4)伸压变换对应的二阶矩阵M=,表示将每个点的横坐标变为原来的k1 倍,纵坐标变为原来的k2 倍,k1,k2 均为非零常数;
(5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M=;
1/ 2
(6)切变变换要看沿什么方向平移,若沿x 轴平移|ky|个单位,则对应矩阵M=,若沿y 轴平移|kx|个单位,则对应矩阵M=.(其中k 为非零常数).
2.线性变换的基本性质
设向量α=,规定实数λ与向量α的乘积λα=;设向量α=,β=,规定向量α与β的和α+β=.
(1)设M是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M(λα)=λMα,②M
(α+β)=Mα+Mβ.
(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).
2/ 2。