矩阵 第二讲几种常见平面变换的解题技巧(下)(人教A版选修4-2)
- 格式:pptx
- 大小:479.88 KB
- 文档页数:26
导入新课除了我们已学过的一些矩阵的性质之外还有其他性质么?知识回顾矩阵乘法的运算性质结合律(ab)c=a(bc)交换律ab=ba消去律设a≠0,若ab=a,则b=c;若ba=ca,则b=c.类比实数的乘法运算中有一条重要的运算性质:.aa a a ,a 1=1•=•10则如果 ≠把恒等变换I 和单位矩阵E 作为数1的类比对象知识与能力掌握逆矩阵的概念和简单性质过程与方法●通过线性变换理解逆矩阵的性质情感态度与价值观●培养学生提出问题,解决问题的能力重点:●逆矩阵的概念与简单性质.●逆矩阵的概念;●用线性变换的角度理解逆矩阵的简单性质.难点:探究1对于一个线性变换ρ,是否存在一个线性变换σ,使得σ·ρ=ρ·σ= I ?对于一个二阶矩阵A,是否存在一个二阶矩阵B,使得AB=BA=E?Oyx30°R -30°R 30°αα′例1 旋转变换R 30°:.y x y ,y x x 23+21=′2123=′-R -30°:.y x y ,y x x 23+21=′21+23=′-对于直角坐标系xOy 内的任意一个向量α由图可得:α′ αα有:(R 30°· R -30°)= R 30°(R -30°)= α α α同理可得:R -30°· R 30°=I∴R 30°· R -30°= I23212123-23212123-对于二阶矩阵,存在二阶矩阵,使得23212123-23212123-23212123-23212123-==E 2思考一般的旋转变换Rψ,也有相似的结论么?探究2对于切变变换、伸缩变换、反射变换等线性变换,能否找到一个线性变换,使得它们的复合变换是恒等变换I?同学们:我会了哦!你们会了么?类比书本看看答对了么?定义设ρ是一个线性变换,若存在线性变换σ,使得σρ=ρσ= I,则称变换ρ可逆,并称σ是ρ的逆矩阵.用矩阵的语言表述:设A是一个二阶矩阵,若存在二阶矩阵B,使得AB=BA=E2,则称矩阵A可逆,或A是可逆矩阵,并称B是A的逆矩阵.设A是一个二阶可逆矩阵,对于对应的线性变换为ρ,由矩阵和变换的对应关系,得到A的逆矩阵就是ρ逆变换对应的矩阵.思考是否每一个二阶矩阵都可逆?若能,请说明理由;若不能,请举例说明.答案:不是.如A =0012探究31.若一个线性变换是可逆的,则它的逆变换是唯一的么?2.若一个二阶矩阵是可逆的,则它的逆矩阵是唯一的么?以例1中的两个旋转变换为例反证法证明:假设不唯一,则存在变换R 30°的任意一个逆变换σ,使得σ R 30°= R 30°σ= I .∴对平面上任意一个向量有,α()()()()()().R I R R R R R R R I α=α=ασ•=ασ=ασ=ασ=ασ°30°30°30°30°30°30°30°30 -----)(.=σ°30假设不成立-,R ∴∴逆变换是唯一的.性质1设A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.证明:设B,B2都是A的逆矩阵,则1B1A=AB1=E2,B2A=AB2=E2.∴B=E2B1=(B2A)B1=B2(AB1)1=B2E2=B2.即:B=B2.1探究4两个可逆变换的复合变换仍可逆么?yy ,x x 2=′=′伸缩变换ρ:yx y ,y x x 23+21=′2123=′-旋转变换R 30°:它们的逆矩阵分别为:y y ,x x 21=′=′:-ρ1yx y ,y x x 23+21=′21+23=′-R -30°:任意一个平面向量: = .αy x 先经ρ·R 30°的复合变换,再经R -30°·ρ-1,最终仍得到α如图:ρOyxαR °30-R °30ρ1-()()().RR R R .I R R I R R 1°301°3011°30°30°301°30°30°301ρ=ρ=ρ•,ρ•=ρ•ρ•=ρ••ρ---------且可逆即:变换)(类似:;)(∴性质2设A , B是二阶矩阵,若A,B都可逆,则AB 也可逆,且(AB)-1=B-1A-1.证明:∵(AB)(B-1A-1)=A(BB-1)A-1=AE2A-1=AA-1=E2,(B-1A-1) (AB)= B-1( AA-1)B= B-1E2B= B-1B=E2,即:(AB)(B-1A-1)=(B-1A-1)(AB)=E2∴AB可逆,且(AB)-1 = B-1A-1.课堂小结1. A是一个二阶矩阵,若存在二阶矩阵B,使,则称矩阵A可逆.得AB=BA=E22.A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.3.A, B是二阶矩阵,若A,B都可逆,则AB也可逆,且(AB)-1=B-1A-1.教材习题答案:)伸缩变换(ρ11.:其逆变换为可逆σ,kyy ,x x =′=′yky ,x x 1=′=′:轴的反射变换)关于(ρ2x 可逆,yy ,x x -=′=′.y y ,x x -=′=′:其逆变换为ρ1201-1201)(12.其逆矩阵为可逆,10021021)(2其逆矩阵为可逆,1000)(3不可逆θθθθcos sin sin cos -θθθθcos sin sin cos -)(4其逆矩阵为可逆,()()..I I .I ,I ,.逆变换是唯一的则矩阵都是它的逆,是可逆的,设线性变换∴∴σ=σ•=σ•ρ•σ=σ•ρ•σ=•σ=σ=ρ•σ=σ•ρ=ρ•σ=σ•ρσσρ322212*********().A AA .E A A A A ,E A A A A ,A .=====41111111-------可逆且即:则可逆设二阶矩阵∴()()()()()().A A A .E A A EA A A A A A A A ,E A A A AE A AAA A A .E A A A A ,A .211221111221111121211===========5--------------也可逆且则可逆设二阶矩阵∴∴∴。
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
2.逆变换与逆矩阵-湘教版选修4-2矩阵与变换教案一、逆变换在矩阵与变换中,逆变换是一种重要的变换。
逆变换的本质是将原变换的作用反转,即将输出值映射回原输入值。
在这个过程中,需要寻找一个新的变换,使得先作用原来的变换再作用新的变换后,得到的结果是原来的输入值。
考虑一个简单的例子:将一个点绕原点旋转α角度,在用一个向量β将其平移后得到新的点。
我们可以用一个组合变换来描述这个过程:T(x,y) = (x,y)Rα(β1,β2) = (x,y)(cosα, sinα, -sinα, cosα)(1,0,0,1)+ (β1,β2)其中,Rα(β1,β2)表示先将点绕原点旋转α角度,再将其平移β1单位水平方向,β2单位垂直方向。
现在,我们想要逆转这个变换,将终点坐标(x’,y’)反向还原回起始坐标(x,y),也就是满足下面的等式:(x', y') = (x,y)Rα(β1,β2)这个等式求解出来即可得到新的逆变换:(x,y) = (x', y')R-α(-β1,-β2) = (x', y')(cosα, -sinα, sinα, cosα)(-β1,-β2)其中,R-α(-β1,-β2)表示先将点绕原点旋转-α角度,将其平移β1单位水平方向,β2单位垂直方向,即反向执行原来的变换。
二、逆矩阵逆变换的本质是求解一个矩阵的逆矩阵。
对于任意一个可逆矩阵A,存在一个和A相乘等于单位矩阵的矩阵B,使得两个矩阵相乘的结果为单位矩阵:A ×B = B × A = I其中,A和B的乘积顺序并不影响结果,因此称A和B互为逆矩阵。
逆矩阵也满足以下性质:•对于任意可逆矩阵A和其逆矩阵B,A × B = B × A = I•对于任意可逆矩阵A,它的逆矩阵唯一对于一个2x2矩阵A = [a, b; c, d],其逆矩阵可以通过以下公式求解:B = 1/(ad - bc) × [d, -b; -c, a]如果一个矩阵不可逆,则其行列式等于0。
选修4—2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法考点新知掌握恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换等常见的线性变换的几何表示及其几何意义,并能应用这几种常见的线性变换解决简单问题.1. 求点A(3,6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1-1012对应的变换作用下得到的点的坐标. (-3,3) 2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.(m=2.k=-4)3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,∴⎩⎪⎨⎪⎧a =1b =2,∴T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.(x =y)5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011对应的变换作用下得到的图形.(点(0,5))1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x ′,y ′),则称T 为一个变换,简记为T :(x ,y)→(x ′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′.一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y 的矩阵形式,反之亦然(a ,b ,c ,d ∈R ).2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称. (4) 当M =⎣⎢⎡⎦⎥⎤cosθ-sinθsinθ cosθ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足变换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律.题型1 求变换前后的曲线方程例1 (2011·盐城三模)求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤11-11对应的变换作用下得到的曲线C 1的方程.解:设P(x 0,y 0)为曲线C 上任意一点,它在矩阵M 对应的变换下作用得到点Q(x ,y),由⎣⎢⎡⎦⎥⎤ 11-11⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x 0+y 0=x -x 0+y 0=y ,解得⎩⎨⎧x 0=x -y2y 0=x +y 2.因为P(x 0,y 0)为曲线C上一点,所以x 0y 0=1,所以x -y 2·x +y2=1,即x 2-y 2=4,所以曲线C 1的方程为x 2-y 2=4.备选变式(教师专享) 已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 001,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧ x =12x 0y =2y 0.所以⎩⎪⎨⎪⎧x 0=2x y 0=12y . 又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 (2011·南通三模)已知圆C :x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 00b (a>0,b>0)对应的变换作用下变为椭圆x 29+y 24=1,求a ,b 的值.解:设P(x ,y)为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=ax y ′=by .又因为点P ′(x ′,y ′)在椭圆x 29+y 24=1上,所以a 2x 29+b 2y 24=1.由已知条件可知,x 2+y 2=1,所以 a 2=9,b 2=4.因为 a>0,b>0,所以a =3,b =2. 变式训练(2011·南京一模)在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1ab 4对应的变换作用下得到直线m :x -y -4=0,求实数a ,b 的值.解:解法1:在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A ,B 在矩阵M 对应的变换作用下分别对应于点A ′,B ′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b , 所以A ′的坐标为(-2,-2b);⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B ′的坐标为(-2a ,-8);由题意A ′,B ′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0(-2a )-(-8)-4=0,解得a =2,b =3. 题型3 平面变换的综合应用例3 (2010·江苏)在平面直角坐标系xOy 中,已知点A(0,0),B(-2,0),C(-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 001,N =⎣⎢⎡⎦⎥⎤0110,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解:由题设得MN =⎣⎢⎡⎦⎥⎤k 001⎣⎢⎡⎦⎥⎤0110=⎣⎢⎡⎦⎥⎤0k 10, 由⎣⎢⎡⎦⎥⎤0k 10⎣⎢⎡⎦⎥⎤0-2-20 0 1=⎣⎢⎡⎦⎥⎤0 0 k 0-2-2,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k|,则由题设知:|k|=2×1=2.所以k 的值为2或-2.1. 设T 是以Ox 轴为轴的反射变换,求变换T 的矩阵.解:∵(x ′,y ′)=(x ,-y),而⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡⎦⎥⎤x y , ∴T =⎣⎢⎡⎦⎥⎤1 00-1.2. 求圆x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤2003对应的变换下,得到的曲线的方程.解:设圆x 2+y 2=1上任意一点P(x 1,y 1)在矩阵A 作用下变为Q(x ,y),则⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1=⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧x =2x 1y =3y 1,即⎩⎨⎧x 1=x2y 1=y 3.代入x 21 +y 21 =1可得到椭圆方程x 24+y 29=1.3. 在线性变换⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,⎩⎪⎨⎪⎧ x ′=x +y y ′=2x +2y ,而x +y =k ,⎩⎪⎨⎪⎧x ′=k y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k,2k).第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量考点新知①理解逆矩阵的意义,掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算. ②会求二阶矩阵的特征值和特征向量,会利用矩阵求解方程组.会利用特征值和特征向量进行矩阵运算.1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN .⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. (2010·宿迁期末)已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a ,b 的值.(a =5,b =3.)3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. 求矩阵A =⎣⎢⎡⎦⎥⎤-12 34的特征值.解:f(λ)=⎪⎪⎪⎪⎪⎪λ+1-2-3λ-4=(λ+1)(λ-4)-6=λ2-3λ-10=(λ+2)(λ-5).令f(λ)=0,则λ1=5,λ2=-2.5. 求矩阵⎣⎢⎡⎦⎥⎤1 00-1的属于特征值-1的一个特征向量.解:当λ1=-1时,由⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡⎦⎥⎤x y =(-1)×⎣⎢⎡⎦⎥⎤x y ,⎩⎪⎨⎪⎧2x =0-y =-y ,x =0,令y =1,所以A 的属于特征值-1的特征向量α1=⎣⎢⎡⎦⎥⎤01.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变 换成零向量.题型1 求逆矩阵与逆变换例1 将曲线y =2sin4x 经矩阵M 变换后的曲线方程为y =sinx ,求变换矩阵M 的逆矩阵.解:解法1:由条件知点(x ,y)在矩阵M 作用下变换为点⎝⎛⎭⎫4x ,y 2,即M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2,所以M =⎣⎢⎢⎡⎦⎥⎥⎤40012,设M -1=⎣⎢⎡⎦⎥⎤a b c d ,于是有MM -1=⎣⎢⎢⎡⎦⎥⎥⎤40012⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 所以⎩⎪⎨⎪⎧ 4a =14b =0c 2=0d 2=1,解得⎩⎪⎨⎪⎧a =14b =0c =0d =2,所以M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. 解法2:由于M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2=⎣⎢⎡⎦⎥⎤x ′y ′, ⎩⎪⎨⎪⎧4x =x ′y2=y ′,所以⎩⎪⎨⎪⎧x =x ′4y =2y ′,⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤14002⎣⎢⎡⎦⎥⎤x ′y ′, 即M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. 备选变式(教师专享) (2010·徐州市摸底)已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N.解:解法1:设X =⎣⎢⎡⎦⎥⎤x y z w ,按题意有⎣⎢⎡⎦⎥⎤ 2 -1-4 3⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4 -1-3 1,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =42y -w =-1-4x +3z =-3-4y +3w =1,解之得⎩⎪⎨⎪⎧x =92y =-1z =5w =-1.∴X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1 . 解法2:因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1.∴X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤32 12 2 1·⎣⎢⎡⎦⎥⎤4-1-3 1=⎣⎢⎢⎡⎦⎥⎥⎤92 -1 5 -1. 题型2 求特征值与特征向量 例2 (2011·南通三模)已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P(1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0, 得2-2a =-4 a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 2x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.变式训练(2010·宿迁模拟)求矩阵M =⎣⎢⎡⎦⎥⎤1 00-1的特征值和特征向量,并计算M 8⎣⎢⎡⎦⎥⎤23的值. 解:矩阵M 的特征多项式f(λ)=(λ-1)(λ+1),令f(λ)=0,得到矩阵M 的特征值为λ1=1或λ2=-1,矩阵M 的属于特征值λ1=1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤10,矩阵M 的属于特征值λ2=-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤01.又⎣⎢⎡⎦⎥⎤23=2α1+3α2.所以M ⎣⎢⎡⎦⎥⎤23=M (2α1+3α2)=2(Mα1)+3(Mα2)=2(λ1α1)+3(λ2α2),M 8⎣⎢⎡⎦⎥⎤23=M 8(2α1+3α2)=2(M 8α1)+3(M 8α2)=2·18⎣⎢⎡⎦⎥⎤10+3·(-1)8⎣⎢⎡⎦⎥⎤01=⎣⎢⎡⎦⎥⎤23. 题型3 根据特征值或特征向量求矩阵 例3 (2011·南通泰州二模)已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .解:由特征值、特征向量定义可知,Aα1=λ1α1, 即⎣⎢⎡⎦⎥⎤a b c d⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =123c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2321.备选变式(教师专享)(2010·徐州市第三次调研)已知矩阵A =⎣⎢⎡⎦⎥⎤a b cd ,若矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤ 1-1,求矩阵A .解:由矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,可得⎣⎢⎡⎦⎥⎤a b cd ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11,即⎩⎪⎨⎪⎧a +b =3c +d =3 . 由矩阵A 属于特征值2的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1,可得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=(-1)⎣⎢⎡⎦⎥⎤ 1-1, 即⎩⎪⎨⎪⎧a -b =-1c -d =1,解得⎩⎪⎨⎪⎧a =1b =2c =2d =1 ,即矩阵A =⎣⎢⎡⎦⎥⎤1221.1. 求矩阵A =⎣⎢⎡⎦⎥⎤3221的逆矩阵.A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 2 2-3.2. 若N ⎣⎢⎡⎦⎥⎤4231=⎣⎢⎡⎦⎥⎤-3 2 2-1,求矩阵N .⎣⎢⎡⎦⎥⎤ 92-7-524. 3. (2011·徐州一模)已知矩阵M =⎣⎢⎡⎦⎥⎤122x的一个特征值为3,求另一个特征值及其对应的一个特征向量.矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1.4. 已知矩阵A =⎣⎢⎡⎦⎥⎤ 1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21,求矩阵A .解:∵Aα1=λα1,∴⎣⎢⎡⎦⎥⎤ 1a -1b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,∴⎩⎪⎨⎪⎧2+a =4-2+b =2⎩⎪⎨⎪⎧a =2b =4.所以A =⎣⎢⎡⎦⎥⎤12-14. 5. 求矩阵⎣⎢⎡⎦⎥⎤2 11 2的特征值及对应的特征向量.矩阵⎣⎢⎡⎦⎥⎤2 112有两个特征值λ1=1,λ2=3;属于λ1=1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于λ2=3的一个特征向量为⎣⎢⎡⎦⎥⎤11.。