高中数学选修1-1公式概念总结
- 格式:doc
- 大小:2.22 MB
- 文档页数:12
数学选修1-1知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ 二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln xf x a a '=6 若()x f x e =,则()x f x e '=7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( ) 319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是()A.30°B.45°C.60°D.90° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用 1.函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.求单调性的步骤:① 确定函数)(x f y =的定义域(不可或缺,否则易致错);② 解不等式'()0'()0f x f x ><或;③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能用“”连结。
第1讲命题及其关系、充分条件与必要条件1.了解“p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫真命题,的语句叫假命题.2.四种命题及其关系(1)四种命题(2)四种命题间的关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;②两个命题互为逆命题或互为否命题,它们的真假性[思考探究]一个命题的“否命题”与“否定”是同一个命题吗?提示:不是.命题的否命题既否定命题的条件又否定命题的结论,而命题的否定仅是否定命题的结论.3.充分条件与必要条件(1)如果p⇒q,则p是q的,q是p的;(2)如果p⇒q,q⇒p,则p是q的.1.命题真假的判定对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.2.四种命题的关系的应用掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断它的真假不易进行时,可以转而判断其逆否命题的真假.[特别警示]当一个命题有大前提而写出其他三种命题时,必须保留大前提,大前提不动.※ 分别写出下列命题的逆命题、否命题、逆否命题、命题的否定,并判断它们的真假: (1)若q ≤1,则方程x 2+2x +q =0有实根;(2)若x 、y 都是奇数,则x +y 是偶数;(3)若xy =0,则x =0或y =0;(4)若x 2+y 2=0,则x 、y 全为0.1.利用定义判断(1)若p ⇒q ,则p 是q 的充分条件; (2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q p ,则p 是q 的充分不必要条件; (5)若p q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p q 且q p ,则p 是q 的既不充分也不必要条件. 2.利用集合判断记条件p 、q 对应的集合分别为A 、B ,则: 若A ⊆B ,则p 是q 的充分条件; 若A B ,则p 是q 的充分不必要条件; 若A ⊇B ,则p 是q 的必要条件; 若A B ,则p 是q 的必要不充分条件; 若A =B ,则p 是q 的充要条件;若A ⊈ B ,且A ⊉ B ,则p 是q 的既不充分也不必要条件.[特别警示] 从集合的角度理解,小范围可以推出大范围,大范围不能推出小范围. ※ 指出下列各组命题中,p 是q 的什么条件?(1) p :a +b =2,q :直线x +y =0与圆(x -a )2+(y -b )2=2相切; (2) p :|x |=x ,q :x 2+x ≥0;(3) 设l ,m 均为直线,α为平面,其中l ⊄α,m ⊂α,p :l ∥α,q :l ∥m ; (4) 设α∈)2,2(ππ-,β∈)2,2(ππ-,p :α<β,q :tan α<tan β.1.条件已知证明结论成立是充分性.结论已知推出条件成立是必要性;2.证明分为两个环节,一是充分性;二是必要性.证明时,不要认为它是推理过程的“双向书写”,而应该进行由条件到结论,由结论到条件的两次证明;3.证明时易出现必要性与充分性混淆的情形,这就要分清哪是条件,哪是结论.※求证:关于x的方程x2 +mx +1=0有两个负实根的充要条件是m≥2.若关于x的方程x2 +mx +1=0有两个正实根,求m的取值范围?第2讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确地对含有一个量词的命题进行否定.1.命题p∧p2.全称量词3.1.判断含有逻辑联结词的命题真假的关键是对逻辑联结词“或”、“且”、“非”含义的理解. 数学中的逻辑联结词“或”与日常生活中的“或”意义不同,日常生活中的“或”带有不能同时具备之意.数学中的逻辑联结词“且”与日常生活中的“且”意义基本一致,表示而且的意思. 数学中的逻辑联结词“非”与日常生活中的“非”意义基本一致,表示否定的意思.2.解决该类问题基本步骤为:(1)弄清构成它的命题p 、q 的真假; (2)弄清它的结构形式;(3)根据真值表判断构成新命题的真假.※ 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. 其中正确的是 ( )A. ②③B. ①②④C. ①③④D. ①②③④1.要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证p (x )成立.2.要判断一个全称命题是假命题,只要能举出集合M 中的一个x =x 0,使p (x 0)不成立即可.3.要判断一个特称命题是真命题,只要在限定的集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.※ 判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假. (1)有一个实数α,sin 2α+cos 2α≠1;(2)任何一条直线都存在斜率;(3)所有的实数a ,b ,方程ax +b =0有唯一解; (4)存在实数x ,使得2112=+-x x 。
描述:例题:高中数学选修1-1(人教A版)知识点总结含同步练习题及答案第三章 导数及其应用 3.3 导数在研究函数中的应用一、学习任务1. 了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求不超过三次的多项式函数的单调区间.2. 了解函数的极大(小)值、最大(小)与导数的关系;会求函数的极大(小)值,以及在指定区间上函数的最大(小)值.二、知识清单导数与函数的图象 利用导数研究函数的单调性 利用导数求函数的极值利用导数求函数的最值三、知识讲解1.导数与函数的图象(1)导数 表示函数 在点 处的切线斜率.当切线斜率为正值时,切线的倾斜角小于 ,函数曲线呈上升状态;当切线的斜率为负值时,切线的倾斜角大于 且小于 ,函数曲线呈下降状态.(2)如果在区间 内恒有 ,那么函数 在区间 内是常函数.()f ′x 0y =f (x )(,f ()x 0x 090∘90∘180∘(a ,b )(x )=0f′y =f (x )(a ,b ) 是函数 的导函数, 的图象如图所示,则 的图象最有可能是下列选项中的( )解:C导函数的图象在 轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在 轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由 时导函数图象在 轴的上方,表示在此区间上,原函数图象呈上升趋势,可排除 B、D 选项;由 时导函数图象在 轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除 A 选项.(x )f ′f (x )y =(x )f ′f (x )x x x ∈(−∞,0)x x ∈(0,1)xy=f(x)已知函数 的图象如图所示,则导函数f(x)(a,b)则函数 在开区间答案:解析:3. 已知函数 , 的导函数的图象如下图,那么 , 的图象可能是.A.B .C .D .D 和 都是单调递增的,但 增长的越来越慢, 增长的越来越快,并且在 处, 的切线的斜率应该相等.y =f (x )y =g (x )y =f (x )y =g (x )()f (x )g (x )f (x )g (x )x 0f (x ),g (x)高考不提分,赔付1万元,关注快乐学了解详情。
第一章:逻辑语 1.四种命题的形式原命题:若 p 则 q 逆命题:若 q 则 p 否命题:若 ¬p 则 ¬q 逆否命题:若¬q 则¬p 结论:互为逆否的两个命题是等价的(1)原命题与逆否命题同真假(2)原命题的逆命题与否命题同真假 2.充分条件与必要条件:若 ,则称p 是q 的充分条件,q 是p 的必要条件 3. 充要条件:(3)若 且 ,则称p 是q 的必要不充分条件。
判别步骤:①找出p 和q ② 考察 p 能否推出q 和 q 能否推出 p 判别技巧:推不出的一定能举反例 4.含逻辑联结词“且”“或”的命题真假的判断:确定形式→判断真假①判断p 且q 的真假:一假必假 ②判断p 或q 的真假:一真必真 ③p 与﹁q 的真假相反 5.全称命题 的否定是 特称命题 的否定是 第二章:圆锥曲线方程(一)、椭圆(1)定义:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).(2) 焦点的位置的判定依据是 22,y x 项中哪个分母大,焦点就在哪一条轴上。
焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长=2a 短轴的长=2b焦点()1,0F c -、()2,0F c()10,F c -、()20,F cp q ⇒q p ⇒p q ⇒q p ⇒q p ⇒(1)若 且 ,则称p 是q 的充分必要条件,简称充要条件。
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
第一部分立体几何1、常见基本函数的导数(1)常函数:0)()(='⇒=x f C x f (2)幂函数:1)()(-='⇒=αααx x f x x f (3)正弦函数:x x f x x f cos )(sin )(='⇒= (4)余弦函数:x x f x x f sin )(cos )(-='⇒= (5)指数函数1:a a x f a x f x x ln )()(='⇒= (6)指数函数2:x x e x f e x f ='⇒=)()( (7)对数函数1:ax x f x x f a ln 1)(log )(='⇒= (8)对数函数2:xx f x x f 1)(ln )(='⇒= 2、导数运算公式:(1)和的导数:)()(])()([x g x f x g x f '±'⇒'±(2)积的导数:)()()()(])()([x g x f x g x f x g x f '+'⇒'(3)商的导数:)()()()()(])()([2x g x g x f x g x f x g x f '-'⇒' 3、导数的意义:(1)导数值就是曲线在该点的斜率:)(0x f k '=; (2)位移的导数就是瞬时速度:)(t s v '=瞬 (3)速度的导数就是瞬时加速度:)(t v a '=瞬4、曲线的切线方程:))((000x x x f y y -'=-5、导数与单调性:(1)增区间x I x f ⇒⎩⎨⎧>'0)(范围; (2)减区间x I x f ⇒⎩⎨⎧<'0)(范围; 求单调区间步骤:求定义域→求导函数→分类求交集;6、利用单调性求参数范围 (1)求定义域: (2)求导函数:(3)由函数的单调性写出导函数的符号;①若)(x f 在区间D 上是单调递增函数0)(≥'⇒x f 在D 上恒成立; ②若)(x f 在区间D 上是单调递减函数0)(≤'⇒x f 在D 上恒成立; (4)分离参数①max )()(x a x a ϕϕ≥⇒≥; ②min )()(x a x a ϕϕ≤⇒≤; 例、已知函数xx a x x f 2ln )(2++=在[)+∞,1单调递增函数,求实数a 的取值范围。
3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。
选修1-1数学公式概念第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。
其中p 叫做命题的条件,q 叫做命题的结论。
1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。
其中一个命题叫做原命题,另一个叫做原命题的逆命题。
如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。
如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。
原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。
如果“若p ,则q 为假命题”,那么由p 推不出q ,此时我们就说p 不是q 的充分条件,q 不是p 的必要条件。
1.2.2 充要条件2、一般地,如果既有p q ⇒,又有q p ⇒,就记作p q ⇔.此时,我们说,p 是q 的充分必要条件,简称充要条件。
1.2内容总结条件p 与结论q 的关系结论用集合表示p :A ,q :Bp q ⇒ p 是q 的充分条件 A B ⊆ q p ⇒p 是q 的必要条件 B A ⊆p q ⇒且q p ⇒ p 是q 的充分不必要条件 A ÜBp q ⇒且q p ⇒p 是q 的必要不充分条件 B ÜAp q ⇔p 是q 的充要条件A B =p q ⇒且q p ⇒p 是q 的既不充分也不必要条件A B ⊆且B A ⊆1.3 简单的逻辑联结构1.3.1 且(and )1、p 且q 定义:一般地,用关联词“且”把命题p 和命题q 连接起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.与集合{AB x x A =∈且}x B ∈相关。
2、p 且q 的真假:当p ,q 都是真命题时,p q ∧是真命题;当p ,q 两个命题中有一个命题是假命题时,p q ∧是假命题。
简记为:一假则假,同真则真。
1.3.2 或(or )3、p 或q 定义:一般地,用关联词“或”把命题p 和命题q 连接起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.与集合{AB x x A =∈或}x B ∈相关。
4、p 或q 的真假:当p ,q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p ,q 两个命题都是假命题时,p q ∨是假命题。
简记为:一真则真,同假则假。
1.3.3 非(not )5、p 非q 定义:一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定”.与集合{U A x x U =∈ð且}x A ∉选修1-1 数学 36、p 非q 的真假:若p 是真命题,p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题。
简记为:与p 真假性相反。
1.4 全称量词与存在量词1.4.1 全称量词1、定义:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示。
含有全程量词的命题,叫做全称命题。
2、表述形式:对M 中任意一个x ,有()p x 成立。
符号简记为x M ∀∈,()p x .1.4.2 存在量词3、定义:短语“存在一个”“至有少一个”在逻辑中通常叫做存在量词,并用符号“∃”表示。
含有存在量词的命题,叫做特称命题。
4、表述形式:存在M 中的一个0x ,是()0p x 成立。
符号简记为0x M ∃∈,()0p x .1.4.3 含有一个量词的命题的否定5、全称命题的否定:一般地,对于含有一个量词的全程命题的否定,有下面的结论: 全称命题p :x M ∀∈,()p x ,它的否定p ⌝:0x M ∃∈,()0p x ⌝.全称命题的否定是特称命题。
6、特定命题的否定:一般地,对于含有一个量词的特称命题的否定,有下面的结论: 特称命题p :0x M ∃∈,()0p x ,它的否定p ⌝:x M ∀∈,()p x ⌝. 特称命题的否定是全称命题。
第二章 圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程1、椭圆的定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用集合语言表示:{}12122,2P M PF PF a a F F =+=>2、椭圆的满足条件:①当12122MF MF a F F +=>时,M 的轨迹为椭圆; ②当12122MF MF a F F +==时,M 的轨迹为1F ,2F 为端点的线段; ③当12122MF MF a F F +=<时,M 的轨迹不存在。
3、椭圆的标准方程:①焦点在x 轴上:()222210x y a b a b+=>>我们把这样的方程叫做椭圆的标准方程,两个焦点分别是()1,0F c -,()2,0F c ,这里222b a c =-.②焦点在y 轴上:()222210y x a b a b+=>>两个焦点分别为()10,F c -,()20,F c .③当焦点不确定可设为:()2210,0,mx ny m n m n +=>>≠2.1.2 椭圆的简单几何性质(设椭圆的标准方程为()222210x y a b a b+=>>)4、范围:由图可知,椭圆上点12A A 为长轴,横坐标的范围是a x a -≤≤(a 为长半轴长)。
12B B 为短轴,纵坐标的范围是b y b -≤≤(b 为短半轴长)。
5、对称轴:椭圆既是轴对称图形,又是中心对称图形。
6、顶点:椭圆与它的对称轴有四个焦点,这四个交点叫做椭圆的顶点。
线段12A A 的长等于2a ,线段12B B 的长等于2b .7、离心率:椭圆的焦距与长轴长的比ca叫做椭圆的离心率,常用e 表示,即ce a=,离心率的范围:01e <<.e 越接近于a ,从而22b a c =-越小,因此椭圆越扁;反之,当e 越接近0时,c 接近于0,从而b 越接近于a ,这时椭圆就越接近圆。
当且仅当a b =时,0c =,这时两个焦点重合,图形变为圆,它的方程为222x y a +=椭圆补充内容8、离心率公式推导:P 在y 轴上:2221cos c b e OF B a a==-=∠P 不在y 轴上:cossin 2sin sin cos 2e βγαβγβγ+==-+9、交点三角形面积公式:选修1-1 数学 5122212sin 1tan sin 1cos 22PF F P b Sb C y PF PF αααα====⋅+ 周长公式:()2C ac =+10、椭圆的第二定义:平面内,若动点(,)M x y 与定点(),0F c 的距离和它到定直线2:a l x c =的距离的比是常数ca()0a c >>,则M 的轨迹是一个椭圆。
注:①常数为离心率,定直线为椭圆的准线 ②F l ∉ 焦半径:设()00,P x y .当焦点在x 轴上时,1PF 左=0a ex +,2PF 右0a ex =-. 当焦点在x 轴上时,1PF 下=0a ey +,2PF 上0a ey =-. 11、直线与椭圆的位置关系位置关系的判定:联立()2222100x y a b a b Ax By C ⎧+=>>⎪⎨⎪++=⎩消去x 或消去y 解方程。
①当直线与椭圆有两个焦点时,直线与椭圆相交,即0∆>;②当直线与椭圆有一个焦点时,直线与椭圆相切,即0∆=;③当直线与椭圆无焦点时,直线与椭圆相离,即0∆<. 12、弦长公式设直线y kx b =+与椭圆相交于()11,A x y ,()22,B x y 两点,则弦长公式为:()222121212114AB x x k k x x x x =-+=+⋅+-()21212122211114AB y y y y y y k k =-+=+⋅+-13、中点弦长公式(P 点在弦AB 的中点) 焦点在x 轴上:22OP ABa k kb ⋅=-;焦点在y 轴上:22OP AB b k k a⋅=-.2.2 双曲线2.2.1 双曲线及其标准方程1、双曲线的定义:我们把平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线。
两个定点1F ,2F 叫做双曲线的焦点,两焦点的距离12F F 叫做双曲线的焦距。
用符号表示:121222PF PF a FFc -=<=.2、双曲线的轨迹:①当1202a F F <<时,1F ,2F 的轨迹为双曲线;②当2a =12F F 时,动点的轨迹以1F 或2F 为端点的射线;③当2a >12F F ,则动点轨迹不存在。
3、双曲线的标准方程:①焦点在x 轴上:()222210,0x y a b a b-=>>.我们把这样的方程叫做双曲线的标准方程,两个焦点分别是()1,0F c -,()2,0F c 的双曲线,这里222c a b =+.②焦点在y 轴上:()222210,0y x a b a b-=>>.两个焦点分别为()10,F c -,()20,F c .③当焦点不确定可设为:()2210,0,mx ny m n m n +=>>≠2.2.2 双曲线的简单几何性质(设双曲线的标准方程为()222210,0x y a b a b-=>>)4、范围:双曲线在不等式x a ≥与x a ≤-所表示的区域内,而在a x a -<<之间没有图像。