数学第二章函数2.1.1函数的概念和图像1学案无答案苏教版必修1
- 格式:doc
- 大小:117.00 KB
- 文档页数:3
2.1 函数的概念2.1.1 函数的概念和图象第1课时函数的概念1.在集合对应的基础上理解函数的概念,并能应用函数的有关概念解题.(重点、难点) 2.会求几种简单函数的定义域、值域.(重点)[基础·初探]教材整理1 函数的定义阅读教材P23至P25“例1”,完成下列问题.1.函数的定义一般地,设A,B是两个非空的数集,如果按某种对应法则f ,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为:y=f (x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f (x)的定义域.2.函数的三要素指函数的定义域、对应关系和值域.判断(正确的打“√” ,错误的打“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)已知定义域和对应法则就可以确定一个函数.( )(3)根据函数的定义,定义域中的每一个x可以对应着不同的y.( )【答案】(1)×(2)√(3)×教材整理2 函数的定义域阅读教材P25“例2”,完成下列问题.1.定义域的意义定义域实质上是使函数表达式有意义的自变量的取值范围.2.求定义域的常用方法已知函数y =f (x ),(1)若f (x )为整式,则定义域为R ;(2)若f (x )为分式,则定义域是使分母不等于零的实数的集合;(3)若f (x )是偶次根式,那么函数的定义域是被开方数不小于零的实数的集合; (4)若f (x )是x 0的形式,则f (x )的定义域为{x |x ≠0};(5)若f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各式子均有意义的实数的集合(即使每个部分有意义的实数的集合的交集);(6)若f (x )是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.(1)函数f (x )=x -10的定义域为________. (2)函数f (x )=1x -2的定义域为________.(3)函数f (x )=49-x (x ∈N )的定义域为________. 【解析】 (1)x -10≥0,∴x ≥10,即{x |x ≥10}. (2)x -2>0,∴x >2,即{x |x >2}.(3)⎩⎪⎨⎪⎧9-x ≥0,x ∈N ⇒⎩⎪⎨⎪⎧x ≤9,x ∈N ,∴x 的取值为0,1,2,3,4,5,6,7,8,9,即{0,1,2,3,4,5,6,7,8,9}.【答案】 (1){x |x ≥10} (2){x |x >2} (3){0,1,2,3,4,5,6,7,8,9} 教材整理3 函数的值域阅读教材P 25例2后一段~例3,完成下列问题.若A 是函数y =f (x )的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应,我们将所有输出值y 组成的集合称为函数的值域.1.若f (x )=x 2-3x +2,则f (1)=________. 【解析】 f (1)=12-3×1+2=0. 【答案】 02.若f (x )=x -3,x ∈{0,1,2,3},则f (x )的值域为________. 【解析】 f (0)=-3,f (1)=-2,f (2)=-1,f (3)=0.【答案】{-3,-2,-1,0}|[小组合作型]函数的概念判断下列对应f 是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N,对于任意的x∈A,x→|x-2|;(3)A=R,B={正实数},对任意x∈A,x→1x2;(4)A={1,2,3},B=R,f (1)=f (2)=3,f (3)=4;(5)A=[-1,1],B={0},对于任意的x∈A,x→0.【精彩点拨】求解本题的关键是判断在对应法则f 的作用下,集合A中的任意一个元素在集合B中是否都有唯一的元素与之对应.【自主解答】(1)对于A中的元素,如x=9,y的值为y=±9=±3,即在对应法则f 之下,B中有两个元素±3与之对应,不符合函数的定义,故不能构成函数.(2)对于A中的元素x=22,在f 作用下,|22-2|∉B,故不能构成函数.(3)A中元素x=0在B中没有对应元素,故(3)不能构成函数.(4)依题意,f (1)=f (2)=3,f (3)=4,即A中的每一个元素在对应法则f 之下,在B中都有唯一元素与之对应,依函数的定义,能构成函数.(5)对于集合A中任意一个实数x,按照对应法则在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A,B必须是非空数集;A中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.2.函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.[再练一题]1.下列对应或关系式中是A到B的函数的有________.(填序号)①A=B=[-1,1],x∈A,y∈B且x2+y2=1;②A={1,2,3,4},B={0,1},对应关系如图211;图211③A=R,B=R,f :x→y=1x-2;④A=Z,B=Z,f :x→y=2x-1.【解析】对于①项,x2+y2=1可化为y=±1-x2,显然对任意x∈A,y值可能不唯一,故不符合.对于②项,符合函数的定义.对于③项,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于④项,-1∈A,但在集合B中找不到与之相对应的数,故不符合.【答案】②求函数的定义域求下列函数的定义域.(1)f (x)=3x-83x-2;(2)f (x)=x+1+12-x;(3)f (x )=x +4+x 0+1x +2; (4)f (x )=x +12x +1.【精彩点拨】 根据使式子在实数范围内有意义的条件列不等式(组),求出x 的范围,就是所求函数的定义域.【自主解答】 (1)要使f (x )有意义,则有3x -2>0, ∴x >23,即f (x )的定义域为⎝ ⎛⎭⎪⎫23,+∞. (2)要使f (x )有意义,则⎩⎪⎨⎪⎧x +1≥0,2-x ≠0⇒x ≥-1且x ≠2,即f (x )的定义域为[-1,2)∪(2,+∞).(3)要使f (x )有意义,则⎩⎪⎨⎪⎧x +4≥0,x ≠0,x +2≠0⇒x ≥-4且x ≠0,-2,即f (x )的定义域为[-4,-2)∪(-2,0)∪(0,+∞). (4)要使f (x )有意义,则x +1≠0,∴x ≠-1, 即f (x )的定义域为{x |x ≠-1}.1.求函数定义域时,不要化简所给解析式,而是直接从所给的解析式寻找使解析式有意义时自变量满足的条件.2.函数的定义域要用集合或区间形式表示,这一点初学者易忽视.[再练一题]2.求下列函数的定义域. (1)f (x )=11-3x +1x;(2)f (x )=3-x +1+x 且 x ∈Z .【解】 (1)要使函数有意义,只需⎩⎪⎨⎪⎧1-3x >0,x ≠0,所以x <13且x ≠0,所以函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13且x ≠0.(2)要使函数有意义,只需⎩⎪⎨⎪⎧3-x ≥0,1+x ≥0,所以-1≤x ≤3.又x ∈Z ,所以x =-1,0,1,2,3. 所以函数的定义域为{-1,0,1,2,3}.求函数的值域或函数值已知f (x )=x 2-4x +2.(1)求f (2),f (a ),f (a +1)的值; (2)求f (x )的值域;(3)若g (x )=x +1,求f (g (3))的值.【精彩点拨】 (1)将x =2,a ,a +1代入f (x )即可;(2)配方求值域;(3)先求g (3)再算f [g (3)].【自主解答】 (1)f (2)=22-4×2+2=-2,f (a )=a 2-4a +2,f (a +1)=(a +1)2-4(a +1)+2=a 2-2a -1.(2)f (x )=x 2-4x +2=(x -2)2-2≥-2, ∴f (x )的值域为[-2,+∞). (3)g (3)=3+1=4,∴f (g (3))=f (4)=42-4×4+2=2.1.函数值f (a )就是a 在对应法则f 下的对应值,因此由函数关系求函数值,只需将f (x )中的x 用对应的值(包括值在定义域内的代数式)代入即得.2.求f (g (a ))时,一般要遵循由里到外逐层计算的原则.3.配方法是一种常用的求值域的方法,主要解决“二次函数型”的函数求值域.[再练一题]3.上例(3)中,g (x )=x +1,求f (g (x )),g (f (x )).【解】 f (g (x ))=g (x )2-4g (x )+2=(x +1)2-4(x +1)+2=x 2-2x -1,g (f (x ))=f (x )+1=x 2-4x +2+1=x 2-4x +3.[探究共研型]抽象函数求定义域探究1 在y =f (x )中,f (x )的定义域指的是什么?x 是什么? 【提示】 f (x )的定义域指的是x 的范围,其中x 是函数的自变量. 探究2 在函数y =f (x +1)中,自变量是谁?而它的定义域指的是什么? 【提示】 y =f (x +1)中自变量为x ,其定义域指的是x 的范围. 探究3 如何将函数y =f (x )与y =f (x +1)中的自变量联系起来?【提示】 由于x ,x +1均为f 的作用对象,故二者均应在f (x )定义域之中,即y =f (x )中x 的范围与y =f (x +1)中x +1的范围一致.(1)已知函数y =f (x )的定义域为[1,4],则 f (x +2)的定义域为________.(2)已知函数y =f (x +2)的定义域为[1,4],则f (x )的定义域为________. (3)已知函数y =f (x +3)的定义域为[1,4],则f (2x )的定义域为________. 【精彩点拨】 找准每一个函数中的自变量,通过括号内范围相同来解决问题. 【自主解答】 (1)由题知对于f (x +2)有x +2∈[1,4],∴x ∈[-1,2], 故f (x +2)的定义域为[-1,2].(2)由题知x ∈[1,4],∴x +2∈[3,6],∴f (x )的定义域是[3,6].(3)由题知x ∈[1,4],∴x +3∈[4,7],对于f (2x )有2x ∈[4,7],∴x ∈⎣⎢⎡⎦⎥⎤2,72, 即f (2x )的定义域为⎣⎢⎡⎦⎥⎤2,72. 【答案】 (1)[-1,2] (2)[3,6] (3)⎣⎢⎡⎦⎥⎤2,72抽象函数的定义域1.已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值范围即为f (g (x ))的定义域.2.已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值范围,g (x )的取值范围即为f (x )的定义域.用较为口语化的语言可以将上述两类题型的解法合并成两句话: (1)定义域指自变量的取值范围.(告诉我们已知什么,求什么) (2)括号内范围相同.(告诉我们如何将条件与结论联系起来)[再练一题]4.已知函数y =f (x -1)的定义域为[-3,2],则f (x +1)的定义域为________. 【解析】 对于y =f (x -1)有x ∈[-3,2],∴x -1∈[-4,1],∴在f (x +1)中有x +1∈[-4,1],∴x ∈[-5,0].【答案】 [-5,0]1.下列图象表示函数图象的是________.(填序号)【解析】 根据函数定义知,对定义域内的任意变量x ,都有唯一的函数值y 和它对应,即作垂直x 轴的直线与图象至多有一个交点(有一个交点即x 是定义域内的一个变量,无交点即x 不是定义域内的变量).显然,只有答案(3)中图象符合.【答案】 (3) 2.函数y =x +1+12-x的定义域是________. 【解析】 要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解不等式得定义域为{x |x ≥-1且x ≠2}.【答案】 {x |x ≥-1且x ≠2}3.已知函数y =f (x )的定义域为(-1,3),则在同一坐标系中,函数f (x )的图象与直线x =2的交点个数为________.【解析】 在函数定义域内,任意实数x 对应唯一实数y ,所以直线x =2与函数图象交点为1个.【答案】 14.下列四组函数中,表示相等函数的一组是________.(填序号) (1)f (x )=|x |,g (x )=x 2;(2)f (x )=x 2,g (x )=(x )2;(3)f (x )=x 2-1x -1,g (x )=x +1;(4)f (x )=x +1·x -1,g (x )=x 2-1.【解析】 (1)中定义域,对应关系都相同,是同一函数;(2)中定义域不同;(3)中定义域不同;(4)中定义域不同.【答案】 (1) 5.求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3.【解】 (1)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}. (2)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)y =2x +1x -3=2x -3+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2,故函数的值域为(-∞,2)∪(2,+∞).。
高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章函数2.1 函数的概念及性质素材苏教版必修1的全部内容。
2。
1 函数的概念及性质【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆>0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a ==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a ≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1。
2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f 对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么:f A B →叫做集合A 到B 的一个函数,记作.A x x f y ∈=),(②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1。
函数的概念和图象 学案重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解. 考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域:(1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( )A .(),()f x x g x ==B .2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D .()()f x g x == 2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( ) A .5[,)4+∞ B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( )A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)6.在对应法则,,,x y y x b x R y R →=+∈∈中,若25→,则2-→ ,→6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则)f = .8.规定记号“∆”表示一种运算,即a b a b a b R +∆=+∈,、. 若13k ∆=,则函数()f x k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121xf x x =-- (2)0(1)()x f x x x +=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,△ABM的面积为S.(1)求函数S=的解析式、定义域和值域;(2)求f[f(3)]的值.。
江苏省建湖县高中数学第二章函数2.1.1 函数的概念和图象(1)学案(无答案)苏教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省建湖县高中数学第二章函数2.1.1 函数的概念和图象(1)学案(无答案)苏教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省建湖县高中数学第二章函数2.1.1 函数的概念和图象(1)学案(无答案)苏教版必修1的全部内容。
函数的概念和图象(1)【学习目标】1. 通过现实生活中的实例体会函数是描述变量之间的依赖关系得重要模型,理解函数概念; 2. 了解构成函数的三要素:定义域、对应法则、值域,会求一些简单函数的定义域并能说出他们的值域 。
【课前导学】一、复习回顾下列函数你认识吗?1)21y x =+ 2)221y x x =++ 3)1y x= 初中时候函数的定义:_________________________________________思考: y=1(x ∈R )是函数吗?二、问题情境阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?(3)如何用集合的语言来阐述上面3个例子中的共同特点?【课堂活动】一、建构数学:一般地,设A .B 是两个_____的数集,如果按某种对应法则f ,对于集合A 中的______元素x ,在集合B 中都有_______的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数(function),通常记作__________,其中,______________定义域(domain ),对于A 中的每一个x ,都有一个输出值y 与之对应,我们将所有输出值y 组成的集合叫做函数的值域(range).定义域、值域、对应法则,称为函数的三个要素,缺一不可;(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)y=f (x )不一定是解析式,在不少问题中,对应法则f 可能不便使用或不能使用解析式,这时就必须采用其它方式,如数表和图象,在研究函数时,除用符号f (x)表示外,还常用g (x).F (x).G(x)等符号来表示;(4)对应是建立在A 、B 两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f (x )=2x ,(x =0)注意:f(a )是常量,f (x )是变量,f(a )是函数f(x )中当自变量x=a 时的函数值.二、应用数学:例1 判断下列对应是否为函数:(1)1,0,x x x R x→≠∈; (2)x y →,这里2,,y x x N y R =∈∈.小结:练习: P26 3、4例2下列各组函数中,是否表示同一函数?为什么?A .y =x 与y =(错误!)2; B .y =错误!与y =错误!;C .y =2x -1(x ∈R )与y =2t -1(t ∈R);D .y =错误!·错误!与y =错误!小结:练习:同步练习P17例题3例3已知函数1 ()32f x xx=+++,(1)求函数的定义域(2)求2(3),()3f f-的值;(3)当a>0时,求(),(1)f a f a-的值.小结:练习:同步练习P17例题2例4*。
2.1函数的概念2.1.1函数的概念和图象第1课时函数的概念1.了解构成函数的三要素:定义域、对应法则、值域.2.理解函数的概念.3.掌握求函数定义域的方法.[学生用书P15]函数的概念一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域,与输入值x对应的所有输出值y组成的集合称为函数的值域.1.判断(正确的打“√”,错误的打“×”)(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应法则确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.()答案:(1)×(2)×(3)√(4)×(5)×2.函数f(x)=xx-1的定义域为()A.[0,1)B.(1,+∞)C.[0,1)∪(1,+∞) D.(0,1)∪(1,+∞)答案:C3.已知f(x)=x2+1,则f(2)=________,若f(x)=3,则x=________.答案:5 ±2相同函数的判断[学生用书P15]下列各组函数是否表示同一函数? (1)f (x )=2x +1与g (x )=4x 2+4x +1; (2)f (x )=x 2-xx与g (x )=x -1;(3)f (x )=2x -1(x ∈Z )与g (x )=2x +1(x ∈Z ).【解】 (1)g (x )=(2x +1)2=|2x +1|与f (x )=2x +1对应法则不同,因此f (x )与g (x )不是同一个函数.(2)f (x )=x 2-xx =x -1(x ≠0)与g (x )定义域不同,因此f (x )与g (x )不是同一个函数.(3)f (x )与g (x )对应法则不同,不是同一个函数.(1)当一个函数的对应法则和定义域确定后,其值域也随之得到确定,所以两个函数当且仅当定义域和对应法则相同时,为同一个函数.(2)讨论函数是否为同一个函数问题时,要保持定义域优先的原则,判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,看对应法则是否相同.1.下列函数与函数g (x )=2x -1(x >2)相等的是( )A .f (m )=2m -1(m >2)B .f (x )=2x -1(x ∈R )C .f (x )=2x +1(x >2)D .f (x )=x -2(x <-1)解析:选A.对于A ,函数y =f (m )与y =g (x )的定义域与对应关系均相同,故为相等的函数;对于B ,两函数的定义域不同,因此不是相等的函数;对于C ,两函数的对应关系不同,因此不是相等的函数;对于D ,两函数的定义域与对应关系都不相同,故也不是相等的函数.求函数的定义域[学生用书P16]求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x|x |-3.【解】 (1)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(1)①求函数的定义域,其实质是以使函数的表达式所含运算有意义为准则,其原则有:a.分式中分母不为零;b .偶次根式中,被开方数非负;c.对于y =x 0要求x ≠0.d.实际问题中函数定义域,要考虑实际意义.②函数的定义域一定要用集合或区间的形式表示.(2)第(1)题易出现y =x +1-1-x ,错求定义域{x |x ≤1},在求函数定义域时,不能盲目对函数式变形.2.求下列函数的定义域:(1)f (x )=11-x +x ;(2)f (x )=1-x +11+x.解:(1)因为⎩⎪⎨⎪⎧1-x ≠0,x ≥0,所以x ≥0且x ≠1,所以f (x )=11-x+x 的定义域为[0,1)∪(1,+∞).(2)因为⎩⎪⎨⎪⎧1-x ≥0,1+x >0,所以⎩⎪⎨⎪⎧x ≤1,x >-1,即-1<x ≤1,所以f (x )=1-x +11+x的定义域为(-1,1]. 求函数值和值域[学生用书P16]已知f (x )=12-x (x ∈R ,x ≠2),g (x )=x +4(x ∈R ).(1)求f (1),g (1)的值; (2)求f [g (x )].【解】 (1)f (1)=12-1=1,g (1)=1+4=5.(2)f [g (x )]=f (x +4)=12-(x +4)=1-2-x =-1x +2(x ∈R ,且x ≠-2).1.在本例条件下,求g [f (1)]的值及f (2x +1)的表达式. 解:g [f (1)]=g (1)=1+4=5.f (2x +1)=12-(2x +1)=-12x -1⎝⎛⎭⎫x ∈R ,且x ≠12. 2.若将本例g (x )的定义域改为{0,1,2,3},求g (x )的值域. 解:因为g (x )=x +4,x ∈{0,1,2,3}, 所以g (0)=4,g (1)=5,g (2)=6,g (3)=7. 所以g (x )的值域为{4,5,6,7}.(1)求函数值的方法①先要确定出函数的对应关系f 的具体含义,②然后将变量取值代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别.(2)求函数值域的常用方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.3.求下列函数的值域:(1)y =2x +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =3x -1x +1;(4)y =x +x .解:(1)因为x ∈R ,所以2x +1∈R , 即函数的值域为R .(2)配方:y =x 2-4x +6=(x -2)2+2,因为x ∈[1,5),如图所示. 所以所求函数的值域为[2,11). (3)借助反比例函数的特征求.y =3(x +1)-4x +1=3-4x +1,显然4x +1可取0以外的一切实数,即所求函数的值域为{y |y ≠3}. (4)设u =x (x ≥0),则x =u 2(u ≥0), y =u 2+u =⎝⎛⎭⎫u +122-14(u ≥0). 因为由u ≥0,可知⎝⎛⎭⎫u +122≥14,所以y ≥0.所以函数y =x +x 的值域为[0,+∞).理解函数的概念应关注五点(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)理解函数的概念要注意函数的定义域是非空数集A ,但函数的值域不一定是非空数集B ,而是集合B 的子集.(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足,便不能构成函数.(4)y =f (x )仅仅是函数符号,不是表示“y 等于f 与x 的乘积”,f (x )也不一定就是解析式. (5)除f (x )外,有时还用g (x )、u (x )、F (x )、G (x )等符号来表示函数.判断下列对应是否为函数: (1)x →2x,x ≠0,x ∈R ;(2)x →y ,这里y 2=x ,x ∈N ,y ∈R ;(3)集合A =R ,B ={-1,1},对应关系f :当x 为有理数时,f (x )=-1;当x 为无理数时,f (x )=1,该对应是不是从A 到B 的函数?(4)A ={(x ,y )|x ,y ∈R },B =R .对任意的(x ,y )∈A ,(x ,y )→x +y .[解] (1)是,对于任意一个非零实数x ,2x 被x 唯一确定,所以当x ≠0时,x →2x 是函数.这个函数也可以表示为f (x )=2x(x ≠0).(2)不是,当x =4时,y 2=4,得y =2或y =-2,不是有唯一值和x 对应,所以x →y (y 2=x )不是函数.(3)是,满足函数的定义,在A 中任取一个值,B 中有唯一确定的值和它对应. (4)不是,因为集合A 不是数集.(1)错因:判断一个从A 到B 的对应是否为函数,易忽视定义域应为非空数集的要求,还容易忽视A 中任一元素在B 中都要有元素与之对应的判断,好多同学只判断A 中元素在B 中的对应元素是否唯一.(2)防范:函数是一种特殊的对应,要检验给定两个变量之间是否具有函数关系,只要检验:①定义域和对应关系是否给出;②对定义域内的任一x ,是否在B 中存在唯一的值与之对应.1.函数f (x )=1+x -2x 的定义域是( )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:选C.要使函数有意义,x 的取值需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0,解得x ≥-1,且x ≠0,则函数的定义域是[-1,0)∪(0,+∞).2.设f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12等于( )A .1B .-1 C.35D .-35解析:选B.f (2)=35,f ⎝⎛⎭⎫12=-35,所以f (2)f ⎝⎛⎭⎫12=-1.故选B.3.已知函数f (x )=x +2x -6,则f (f (14))=________;若f (x )=3,则x =________.解析:f (14)=14+214-6=168=2,故f (f (14))=f (2)=2+22-6=-1;由f (x )=x +2x -6=3,解得x =10.答案:-1 104.设一个函数的解析式为f (x )=2x +3,它的值域为{-1,2,5,8},则此函数的定义域为__________.解析:分别令y =-1,2,5,8解出x =-2,-12,1,52.答案:⎩⎨⎧⎭⎬⎫-2,-12,1,52[学生用书P88(单独成册)])[A 基础达标]1.下列各组函数中,表示同一函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C.A 项中两函数的定义域不同;B 项,D 项中两函数的对应关系不同.故选C.2.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:选C.若f (x )=|x |,则f (2x )=|2x |=2|x |=2f (x );若f (x )=x -|x |,则f (2x )=2x -|2x |=2(x -|x |)=2f (x );若f (x )=-x ,则f (2x )=-2x =2f (x );若f (x )=x +1,则f (2x )=2x +1,不满足f (2x )=2f (x ).3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1解析:选 B.y =x 的值域为[0,+∞),y =1x 的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).4.若函数f (x )=ax 2-1,a 为一个正数,且f (f (-1))=-1,那么a 的值是( ) A .1 B .0 C .-1D .2解析:选A.因为f (x )=ax 2-1,所以f (-1)=a -1, f (f (-1))=f (a -1)=a ·(a -1)2-1=-1. 所以a (a -1)2=0.又因为a 为正数,所以a =1.5.函数f (x )=(x -1)04-2x的定义域用区间表示为________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≠0,x ≥0,4-2x >0,即⎩⎪⎨⎪⎧x ≠1,x ≥0,x <2.所以函数的定义域为[0,1)∪(1,2). 答案:[0,1)∪(1,2) 6.函数y =1-1x的值域为________.解析:定义域要求1-1x ≥0且x ≠0,故有1-1x ≥0且1-1x ≠1,所以函数的值域为{y |y ≥0且y ≠1}. 答案:{y |y ≥0且y ≠1}7.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析:由题意知,对a ∈A ,|a |∈B , 故函数值域为{1,2,3,4}. 答案:{1,2,3,4}8.若函数f (x )的定义域为[-2,1],则g (x )=f (x )+f (-x )的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2≤x ≤1,-2≤-x ≤1,即-1≤x ≤1.故g (x )=f (x )+f (-x )的定义域为[-1,1]. 答案:[-1,1]9.已知函数y =kx +1k 2x 2+3kx +1的定义域为R ,求实数k 的值.解:函数y =kx +1k 2x 2+3kx +1的定义域即是使k 2x 2+3kx +1≠0的实数x 的集合.由函数的定义域为R ,得方程k 2x 2+3kx +1=0无解. 当k =0时,函数y =kx +1k 2x 2+3kx +1=1,函数定义域为R ,因此k =0符合题意;当k ≠0时,k 2x 2+3kx +1=0无解,即Δ=9k 2-4k 2=5k 2<0,不等式不成立.所以实数k 的值为0.10.求下列函数的定义域. (1)f (x )=6x 2-3x +2;(2)f (x )=3x -1+1-2x ; (3)f (x )=(x -2)0+2x +1. 解:(1)要使函数有意义,只需x 2-3x +2≠0, 即x ≠2且x ≠1.所以函数的定义域为{x |x ∈R ,x ≠2且x ≠1}.(2)要使函数有意义,只需⎩⎪⎨⎪⎧3x -1≥0,1-2x ≥0,解得13≤x ≤12,所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤12. (3)要使函数有意义,只需⎩⎪⎨⎪⎧x -2≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠2,所以函数的定义域为{x |x >-1且x ≠2}.[B 能力提升]1.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( ) A .p +q B .3p +2q C .2p +3qD .p 3+q 2解析:选B.因为f (ab )=f (a )+f (b ), 所以f (9)=f (3)+f (3)=2q , f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .2.已知f (x )=1x +1,则f (f (x ))的定义域为________.解析:法一:因为f (x )=1x +1,所以f (x )的定义域为{x |x ≠-1}, 则在f (f (x ))中,f (x )≠-1,即1x +1≠-1, 解得x ≠-2.所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}.法二:因为f (x )=1x +1,则f (f (x ))=f ⎝⎛⎭⎫1x +1=x +1x +2,所以x +2≠0 且x +1≠0,即x ≠-2且x ≠-1.所以f (f (x ))的定义域为{x |x ≠-2且x ≠-1}. 答案:{x |x ≠-2且x ≠-1}3.若函数y =f (x +1)的定义域为[-1,2],则函数y =f (x )的定义域为________. 解析:由题意易得y =f (x +1)中的x 满足-1≤x ≤2,所以0≤x +1≤3,所以函数y =f (x )的定义域为[0,3].答案:[0,3]4.(选做题)已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值;(3)求2f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 016)+f ⎝⎛⎭⎫12 016+f (2 017)+f ⎝⎛⎭⎫12 017的值. 解:(1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1, f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1,是定值. (3)由(2)知,f (x )+f ⎝⎛⎭⎫1x =1, 因为f (1)+f (1)=1, f (2)+f ⎝⎛⎭⎫12=1, f (3)+f ⎝⎛⎭⎫13=1, f (4)+f ⎝⎛⎭⎫14=1, …f (2 017)+f ⎝⎛⎭⎫12 017=1,所以2f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 016)+f ⎝⎛⎭⎫12 016+f (2 017)+f ⎝⎛⎭⎫12 017=2 017.。
函数的概念和图像(1)
一、教学重难点:对函数概念的理解
二、新课导航
1.问题展示
函数概念:一般地,设A,B是两个_________,如果按某种_________,对于集合A 中的每一个元素x,在集合B中都有__________________________,那么这样的对应叫做从A到B的一个函数,通常记为__________。
定义域:____________________。
值域:____________________。
注:1)给定函数时要指明定义域,对于用解析式表示的函数没有指明定义域,则认为定义域是指函数表达式有意义的输入值的集合。
2)判断一个对应是否为函数,可从三个方面考虑
① A、B为非空数集;
② A、B之间存在着对应法则;
③对于集合A中每一个数,在B中只有唯一的数与之对应。
3)函数三要素:定义域、值域、对应法则(两个函数相同的条件)
2.基础测评
(1)判断下列对应是否为函数
①这里;
,,,0
→=∈>
x y y x x R y
2
②这里;
→=∈∈
,,,
x y y x x R y R
→=≥∈
③这里
x y y x y R
,0,.
三、合作探究
活动1判断下列对应是否为函数。
(1)R x x x
x ∈≠→,0,2; (2)y x →,R y N x x y ∈∈=,,2;
(3){}{}8,6,4,2,0,5,4,3,2,1==B A ,对于任意x x A x 2,→∈
(4){}R B x x A =>=,0,对于任意x x A x →∈,
活动2 判断下列各组中两个函数是否相同。
(1)R x x y ∈-=,1与N x x y ∈-=,1;
(2)42-=x y 与22+⋅-=x x y ;
(3)x y =与x x y 2
=
(4)x y =与33x y =
活动3 求下列函数定义域
(1)1)(-=x x f (2)11
)(+=x x g
(3)0
)3(2)(-+-=x x x h 21
(4)1x y x +=-
活动4 求下列函数的值域
(1){}3,2,1,0,1,1)1()(2-∈+-=x x x f ;
(2)1)1()(2+-=x x f ;
(][)22()(1)1,0,22()(1)13,5f x x f x x x =-+∈=-+∈变:1)x 的值域;),的值域呢?
活动5.若{}{}A=0,1,B=1,2,则可建立从A 到B 的多少个函数?从B 到A 呢?。