非水平、竖直平面内的变速圆周运动
- 格式:pptx
- 大小:327.17 KB
- 文档页数:8
圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。
可见,圆周运动一直受到命题人员的厚爱是有一定原因的。
不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。
同时,也可以把常用的解题方法归结为两条。
1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。
只要受力分析找到合外力,再写出向心力的表达式就可解决问题。
2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。
特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。
注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。
另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。
基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。
【题型讲解】题型一 匀速圆周运动问题例题1:如图所示,两小球A 、B 在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A >r B ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几何关系,两小球运动的向心力相等,所受支持力相等。
两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rvmF 2=向,可得v A >v B ; 由公式2ωmr F =向,可得ωA <ωB ; 由公式ωπ2=T ,可得T A >T B ;A B图3-2-1A B 图3-2-2[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。
第3讲圆周运动及其应用考点1 描述圆周运动的物理量及其关系(d)【典例1】(2018·浙江4月选考真题)A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们( )A.线速度大小之比为4∶3B.角速度大小之比为3∶4C.圆周运动的半径之比为2∶1D. 向心加速度大小之比为1∶2【解析】选A。
因为相同时间内它们通过的路程之比是4∶3,根据v=,则A、B的线速度之比为4∶3,故A正确;运动方向改变的角度之比为3∶2,根据ω=,则角速度之比为3∶2,故B错误;根据v=ωr可得圆周运动的半径之比为=×=×=,故C错误;根据a=vω得,向心加速度之比为==×=,故D错误。
1.如图是自行车传动结构的示意图,其中Ⅰ是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮,假设脚踏板的转速为n r/s,则自行车前进的速度为( )A. B.C. D.【解析】选D。
转速为单位时间内转过的圈数,因为转动一圈,对圆心转过的角度为2π,所以ω=2πn,因为要测量自行车前进的速度,即车轮Ⅲ边缘上的线速度的大小。
根据题意知:轮Ⅰ和轮Ⅱ边缘上的线速度的大小相等,据v=rω可知r1ω1=r2ω2,已知ω1=2πn,则轮Ⅱ的角速度ω2=ω1。
因为轮Ⅱ和轮Ⅲ共轴,所以转动的ω相等,即ω3=ω2,根据v=rω可知,v=r3ω3=,故选D。
2.(2019·台州模拟)如图所示为“行星转动示意图”。
中心“太阳轮”的转动轴固定,其半径为R1,周围四个“行星轮”的转动轴固定,其半径为R2,“齿圈”的半径为R3,其中R1=1.5R2,A、B、C分别是“太阳轮”“行星轮”“齿圈”边缘上的点,齿轮转动过程不打滑,那么( )A.A点与B点的角速度相同B.A点与B点的线速度相同C.B点与C点的转速之比为7∶2D.A点与C点的周期之比为3∶5【解析】选C。
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。
()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。
gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
一、匀速圆周运动的基本概念:1、匀速圆周运动的定义质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动叫做匀速圆周运动。
2、描述匀速圆周运动快慢的物理量(1)线速度v①物理意义:描述质点沿圆周运动的快慢。
②定义:质点做圆周运动通过的弧长s和所用时间t的比值叫做线速度。
③大小:,单位:④方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向。
由于质点做匀速圆周运动时的速度方向不断发生变化,所以匀速圆周运动是一种变速运动。
(2)角速度①物理意义:描述质点转过圆心角的快慢。
②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间的比值,就是质点运动的角速度。
③大小:单位:。
④匀速圆周运动是角速度不变的圆周运动。
(3)周期T和频率f①物理意义:周期和频率都是描述物体做圆周运动快慢的物理量。
②定义:做圆周运动的物体运动一周所用的时间叫做周期。
用T表示,单位:s。
做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做频率。
用f表示,单位:Hz。
在国际单位制中是,在一些实际问题中常用的是每分钟多少转,用n表示,转速的单位为转每秒,即。
3、线速度、角速度、周期之间的关系(1)线速度和角速度间的关系如果物体沿半径为r的圆周做匀速圆周运动,在时间t 内通过的弧长是s,半径转过的角度是,由数学知识知,于是有,即。
上式表明:①当半径相同时,线速度大的角速度也大,角速度大的线速度也大,且成正比。
如图(a)所示。
②当角速度相同时,半径大的线速度大,且成正比。
如图(b)所示。
③当线速度相同时,半径大的角速度小,半径小的角速度大,且成反比。
如图(c)、(d)所示。
(2)线速度与周期的关系由于做匀速圆周运动的物体,在一个周期内通过的弧长为,所以有。
上式表明,只有当半径相同时,周期小的线速度大;当半径不同时,周期小的线速度不一定大,所以周期与线速度描述的快慢是不一样的。
(3)角速度与周期的关系由于做匀速圆周运动的物体,在一个周期内半径转过的角度为,则有。
圆周运动与能量、动量问题1 如图所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A、B静置于光滑水平轨道上,A、B的质量分别为1.5 kg和0.5 kg.现让A以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s,碰后的速度大小变为4 m/s.当A与B碰撞后会立即粘在一起运动,g 取10 m/s2,求:(1)在A与墙壁碰撞的过程中,墙壁对A的平均作用力的大小;(2)A、B滑上圆弧轨道的最大高度.答案(1)50 N(2)0.45 m解析(1)设水平向右为正方向,当A与墙壁碰撞时根据动量定理有Ft=m A v1′-m A(-v1)解得F=50 N(2)设碰撞后A、B的共同速度为v,根据动量守恒定律有m A v1′=(m A+m B)vA、B在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得12(m A+m B)v2=(m A+m B)gh解得h=0.45 m.2 如图所示,光滑水平面上有一具有光滑曲面的静止滑块B,可视为质点的小球A从B的曲面上离地面高为h处由静止释放,且A可以平稳地由B的曲面滑至水平地面.已知A的质量为m,B 的质量为3m,重力加速度为g,试求:(1)A刚从B上滑至地面时的速度大小;(2)若A到地面后与地面上的固定挡板P碰撞,之后以原速率反弹,则A返回B的曲面上能到达的最大高度为多少?答案(1)126gh(2)14h解析(1)设A刚滑至地面时速度大小为v1,B速度大小为v2,规12定向右为正方向,由水平方向动量守恒得3m v 2-m v 1=0,由系统机械能守恒得mgh =12m v 12+12×3m v 22联立以上两式解得:v 1=126gh v 2=166gh .(2)从A 与挡板碰后开始,到A 追上B 到达最大高度h ′并具有共同速度v ,此过程根据系统水平方向动量守恒得 m v 1+3m v 2=4m v根据系统机械能守恒得 mgh =12×4m v 2+mgh ′联立解得: h ′=14h .3 如图所示,质量为m 的b 球用长h 的细绳悬挂于水平轨道BC 的出口C 处.质量也为m 的小球a ,从距BC 高h 的A 处由静止释放,沿光滑轨道ABC 下滑,在C 处与b 球正碰并与b 黏在一起.已知BC 轨道距地面的高度为0.5h ,悬挂b 球的细绳能承受的最大拉力为2.8mg 。
专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
高考常用 24 个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的 24 个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度 向上超重 (加速向上或减速向下 )F=m(g+a); 向下失重(加速向下或减速上升 )F=m(g-a) 难点:一个物体的运动导致系统重心的运动(或此方向的分量 a y )斜面对地面的压力 ? 地面对斜面摩擦力 ? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面 < tg 物体沿斜面加速下滑 a=g(sin 一 cos ) 绳剪断后台称示数 系统重心向下加速 铁木球的运动 用同体积的水去补充模型三:连接体是指运动中几个物体或叠放在一起、 或并排挤放在一起、或用细绳、细杆联 系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法 :指连接体内的物体间无相对运动时 ,可以把物体组作为整体, 对整体用 牛二定律列方程。
隔离法 :指在需要求连接体内各部分间的相互作用 (如求相互间的压力或相互间 的摩擦力等 )时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动: 两球有相同的角速度; 两球构成的系统机械能守恒 (单个球 机械能不守恒 ) 与运动方向和有无摩擦 (μ 相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止m 1m2F 1>F 2 m 1>m 2 N 1<N 2例如: N 5对6=mF(m 为第 6 个以后的质量 ) 第 12对 13的作用力 MN 12对 13=(n -12)mFnm记住: N= m 2F 1m 1F2 (N 为两物体间相互作用力 ),起加速运动的物体的分子 m 1F 2 和 m 2F 1两项的规律并能应用讨论: ①F 1≠0 F 2=0F=(m 1+m 2)aN=m 2aN= m2Fm 1 m 2② F 1≠0; F 2≠ 0 m 2F1 m 1F2 m1 m2 0是上面的情 N=( F2况)Fm 1 m 2m 1 m 2F= m 1 (m 2 g) m 2(m 1gsin ) m 1 m 2m2 m 1m 2FF= m 1 (m 2g) m 2 (m 1g)m 1 m 2F=m A (m B g) m B F模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
压轴题19 竖直面内的圆周运动一、单选题1.如图所示,AB 是半径为R 的四分之一圆弧轨道,轨道底端B 点与一水平轨道BC 相切,水平轨道又在C 点与足够长的斜面轨道CD 平滑连接,轨道B 处有一挡板(厚度不计)。
在圆弧轨道上静止摆放着N 个半径为r (r ≪R )的光滑刚性小球,恰好将AB 轨道铺满,小球从A 到B 依次标记为1、2、3、…、N 号。
现将B 处挡板抽走,N 个小球均开始运动,不计一切摩擦,考虑小球从AB 向CD 的运动过程,下列说法正确的是A. N 个小球在离开圆弧轨道的过程中均作匀速圆周运动B. 1号小球第一次经过B 点的速度一定小于√2gRC. 1号小球第一次经过B 点的向心加速度一定等于2gD. 1号小球第一次沿CD 斜面上升的最大高度为R2.如图所示,半径为R 的光滑34圆弧轨道ABC 竖直固定在水平地面上,顶端A 处切线水平。
将一质量为m的小球(可视为质点)从轨道右端点C 的正上方由静止释放,释放位置距离地面的高度为ℎ(可以调节),不计空气阻力,下列说法正确的是A. ℎ=2R 时,小球刚好能够到达圆弧轨道的顶端AB. 适当调节h 的大小,可使小球从A 点飞出,恰好落在C 点C. ℎ=5R4时,由机械能守恒定律可知,小球在轨道左侧能够到达的最大距地高度为5R4 D. ℎ=4R 时,小球从A 点飞出,落地点与O 点之间的水平距离为4R3.用绝缘材料制成的半径为R 的管形圆环竖直放置,圆管内壁光滑,空间有平行圆环平面的匀强电场,质量为m 的带电荷量大小为q 的两个小球以速度v 先后进入管中,小球直径略小于管内径,两小球在管中均恰好做匀速圆周运动,重力加速度为g ,不考虑两小球进入圆管前的相互作用,小球在管中运动过程中电荷量不变,圆环半径远大于圆管内径,则下列说法不正确的是( )A. 两小球一定带同种电荷B. 两球进入管中的最短时间差为πRvC. 两球进入管中的速度必须大于某个不为零的值D. 两球均在圆环中运动时整个系统机械能不变4.长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,重力加速度为g,则下列说法中正确的是()A. 小球过最高点时速度为零B. 小球过最高点时速度大小为√gLD. 小球过最高点时绳对小球的拉力为mgC. 小球开始运动时绳对小球的拉力为mv02L5.如图所示,质量为m的小球置于立方体的光滑盒子中,盒子的边长略大于球的直径。
一、选择题1.下面说法正确的是()A.平抛运动属于匀变速运动B.匀速圆周运动属于匀变速运动C.圆周运动的向心力就是做圆周运动物体受到的合外力D.如果物体同时参与两个直线运动,其运动轨迹一定是直线运动2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。
已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图所示,一圆盘绕过O点的竖直轴在水平面内旋转,角速度为ω,半径R,有人站在盘边缘P点处面对O随圆盘转动,他想用枪击中盘中心的目标O,子弹发射速度为v,则()A.枪应瞄准O点射击B.枪应向PO左方偏过θ角射击,cosRvωθ=C.枪应向PO左方偏过θ角射击,tanRvωθ=D.枪应向PO左方偏过θ角射击,sinRvωθ=4.和谐号动车以80m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10︒。
在此10s时间内,则火车()A.角速度约为1rad/s B.运动路程为800mC .加速度为零D .转弯半径约为80m5.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。
如图甲所示,曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。
将圆周运动的半径换成曲率半径后,质点在曲线上某点的向心加速度可根据圆周运动的向心加速度表达式求出,向心加速度方向沿曲率圆的半径方向。
已知重力加速度为g 。
现将一物体沿与水平面成α角的方向以速度v 0抛出,如图乙所示,则在轨迹最高点Q 处和抛出点P 处的曲率半径之比为( )A .cos αB .cos αC .cos 2αD .cos 3α6.如图所示,旋转雨伞时,水珠会从伞的边缘沿切线方向飞出,说明( )A .水珠做圆周运动B .水珠处于超重状态C .水珠做离心运动D .水珠蒸发7.如图所示,A 、B 两物块置于绕竖直轴匀速转动的水平圆盘上。