第三章差分方程模型
- 格式:ppt
- 大小:4.00 MB
- 文档页数:87
数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。
在各种数学模型中,差分方程模型也是一种很重要的模型。
本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。
差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。
这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。
例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。
差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。
一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。
此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。
以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。
设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。
我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。
差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。
差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。
1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。
2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。
3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。
4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。
2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。
2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。
3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。
4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。
随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。
在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。
有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。
例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。
这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。
二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。
但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。
第三章 差分方程方式差分方程的平稳点及其稳固性设有未知序列{}n x ,称0),,,;(1=++k n n n x x x n F为k 阶差分方程。
假设有)(n x x n =,知足0))(,),1(),(;(=++k n x n x n x n F那么称)(n x x n =是差分方程的解,包括k 个任意常数的解称为的通解,110,,,-k x x x 为已知时,称其为的初始条件,通解中的任意常数都由初始条件确信后的解称为的特解。
形如)()()(11n f x n a x n a x n k k n k n =+++-++的差分方程,称为k 阶线性差分方程。
)(n a i 为已知系数,且0)(≠n a k 。
假设差分方程中的0)(=n f ,那么称差分方程为k 阶齐次线性差分方程,不然称为k 阶非齐次线性差分方程。
假设有常数α是差分方程的解,即0),,,;(=ααα n F ,那么称α是差分方程的平稳点,又对差分方程的任意由初始条件确信的解)(n x x n =,都有)(∞→→n x n α,那么称那个平稳点α是稳固的。
若110,,,-k x x x 已知,那么形如),,,;(11-+++=k n n n k n x x x n g x 的差分方程的解能够在运算机上实现。
下面给出理论上需要的一些特殊差分方程的解。
一阶常系数线性差分方程b x x n n =++α1,(其中b ,α为常数,且0,1-≠α)的通解为)1()(++-=a b C x n n α易知)1(+αb 是方程的平稳点,由式知,当且仅当1<α时,)1(+αb 是稳固的平稳点。
二阶常系数线性差分方程r bx x x n n n =++++12α,其中r b a ,,为常数,当0=r 时,它有一特解0*=x ;当0≠r ,且01≠++b a 时,它有一特解)1(*++=b a r x 。
不管是哪一种情形,*x 是方程的平稳点。
差分方程模型与生长率模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!差分方程模型与生长率模型在数学和生物学领域中都扮演着重要的角色。
第八讲 差分方程模型一、差分方程介绍规定t 只取非负整数。
记为变量在t 点的取值,则称t y y t t t y y y −=Δ+1为的一阶向前差分,简称差分,称Δ为的二阶差分。
类似地,可以定义的阶差分。
t y t t t t t y t t y y y y y y +−=Δ−Δ=ΔΔ=+++12122)(t y t y n t ny Δ由及的差分给出的方程称为的差分方程,其中含的最高阶差分的阶数称为该差分方程的阶。
差分方程也可以写成不显含差分的形式。
例如,二阶差分方程也可改写成t y t 、t y t y t y 02=+Δ+Δt t t y y y 012=+−++t t t y y y 。
满足一差分方程的序列称为差分方程的解。
类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。
若解中不含任意常数,则称此解为满足某些初值条件的特解。
t y 称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++−++L (1) 为阶常系数线性差分方程,其中是常数,n n a a a ,,,10L 00≠a 。
其对应的齐次方程为0110=+++−++t n t n t n y a y a y a L (2)容易证明,若序列与均为(2)的解,则也是方程(2)的解,其中为任意常数。
若是方程(2)的解,是方程(1)的解,则也是方程(1)的解。
)1(t y )2(t y )2(2)1(1t tt y c y c y +=21,c c )1(t y )2(t y )2()1(t t t y y y +=方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程(3)00110=+++−a a a n nL λλ(II )根据特征根的不同情况,求齐次方程(2)的通解。
(i )若特征方程(3)有n 个互不相同的实根n λλ,,1L ,则齐次方程(2)的通解为t n n t c c λλ++L 11 (为任意常数)n c c ,,1L (ii )若λ是特征方程(3)的重根,通解中对应于k λ的项为t k k tc c λ)(11−++L ,),,1(k i c i L =为任意常数。
第三章 差分方程模型§1、 差分方程设有未知序列{}k y ,称0),,,;(1=++n k k k y y y k F (1)为n 阶差分方程。
若有)(k y y k =,满足0))(,),1(),(;(=++n k y k y k y k F则称)(k y y k =是差分方程(1)的解,包含n 个任意常数的解称为(1)的通解, 当110,,,-n y y y 为已知时,称其为(1)的初始条件,通解中的任意常数都由初始条件确定后的解称为(1)的特解。
[例1] 设第一月初有雌雄各一的一对小兔,假定两月后长成成兔,同时即第三月开始每月初产雌雄各一的一对小兔,新增小兔也按此规律繁殖。
设第k 月末共有k y 对兔子,试建立关于k y 的差分方程。
[解] 因为第2+k 月末的兔子包括两部分,一部分为上月留下的,另一部分为当月新生的,而由题设当月生的小兔数等于前月末的兔数,所以有⎩⎨⎧==+=++1,01012y y y y y k k k 这是著名的裴波那契数列。
[例2] 汉诺塔问题将k 个大小不同的圆盘依其半径大小依次套在桩A 上,大的在下,小的在上。
现将此k 个盘移到空桩B 或C 上,但要求一次只能移动一个盘且移动过程中,始终保持大盘在下,小盘在上,移动过程中桩A 也可利用。
设移动k 个盘的次数为k y ,试建立k y 的差分方程。
[解] 先将桩A 上的k 个大小不同的圆盘按题设要求移到C 上,这需要移动k y 次,再将A 上的最大盘移到B 上,这需要移动一次,最后将C 上的k 个盘按要求移到B 上,这又需要移动k y 次。
所以,差分方程为⎩⎨⎧=+=+01201y y y k k§2、 差分方程的解法一.常系数线性齐次差分方程形如 0110=+++-++k n n k n k y a y a y a ——(1)其中n a a a ,,,10 为常数,且0,00≠≠n a a ,称为n 阶常系数齐次线性差分方程。
数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。
所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。
在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。
差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。
差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。
差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。
这个方程是离散的,通过已知的初始条件来逐步递推获得结果。
差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。
例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。
在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。
差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。
2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。
3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。
这部分需要结合实际问题和数学方法来确定。
4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。
这部分是求解差分方程的前提条件。
5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。