自动络筒机主要技术特征综述
- 格式:doc
- 大小:372.50 KB
- 文档页数:33
书山有路勤为径;学海无涯苦作舟
自动络筒机与普通络筒机比较分析__自动络筒机
我国从上世纪50年代开始生产1332型络筒机,直到现在,GA014型络筒机在机器结构和性能上没有大的变化,其特点是结构简单、价格低廉、容易操作、便于维修管理、用电省、回丝少,比较实用,但络纱质量差、生产效率低。
随着无梭织机、针织机速度以及产品质量的不断提高,对筒子纱的质量要求也日益提高,如喷气织机转速已达1800转/分、引纬率3000米/分,普通络筒机就难以适应现代纺织发展的需要。
自动络筒机是棉纺织企业提高生产效率,实现纺纱后道工序的整经
机、无梭织机和针织大圆机高速化的关键设备,自动络筒机取代普通络筒机已是大势所趋。
浙江常山纺织公司2003年开始到现在已使用10台自动络筒机,其中引进萨维奥公司生产的ORION-M自动络筒机6台,青岛宏大生产的Espero型4台。
现就自动络筒机与普通络筒机在提高成纱质量与
节约用工等方面作比较分析。
自动络筒机保证高速状态下络纱质量稳定
纱线在卷绕中的往复运动会使纱线的条干不匀增加和强力下降。
随
着速度的提高,自动络筒机筒纱条干不匀、常发性纱疵、强力损失也逐渐增加,但只要工艺选择适当,质量仍优于普通络筒机络纱质量。
实验数据表明,在纺制C14.5tex时,络纱速度1000米/分时,筒
纱质量损伤程度最少,其中条干CV%值增加0.45个百分点,千米细节增
专注下一代成长,为了孩子。
自动络筒机的技术发展趋势冯雪峰摘要:介绍自动络筒机在节能及提高生产效率等方面的技术进步;其应用不仅为下游工序提高生产效率创造了条件,而且保障高等级纱线生产和卷绕质量,介绍了Autoconerx 5 型当代最先进的全自动络筒机。
关键词: 自动络筒机; 技术:发展Abstract :Introduction is made to the autoconer regardig it s tech2progress in energy economy ,and production rate. Proper application of autoconer is important to downst ream process for good yarn quality and coning quality. It proves that autoconer x5 and POLAR leads t he f ull automation coner in t he world.Key Words :autoconer ;development今年针对棉纺企业提高生产效率,减少用工,提高产品质量,满足纱线品种创新和小批量、多品种的生产模式需求变化,国内外设备生产企业纷纷推出新产品,高效、省工、品种适应性更强成为这些产品共同的特点。
自动络筒机是集机、电、仪、气一体化、高水平的新一代纺织机械产品,近两年成为市场热点。
自动络筒机的配置包括空气捻接器,机械捻接器,电子清纱器,镍合金铸铁槽筒,机械防叠装置,平衡、防震、张力装置,定长、定径装置,单锭变频调速装置,上蜡装置,机头综合监控系统,游动吹吸风装置等.具有运转高效、高速、高质、稳定及维修简便、性能优良等优点。
在传统环锭纺纱工艺过程中,由于钢领直径限制,使得细纱纱管上的容纱量十分有限,无法直接用于织造;同时在原料或纺纱过程中可能出现的杂质及纱疵也必须有效去除。
自动络筒机主要技术特征综述中国纺织工程学会棉纺织专业委员会李妙福自动络筒机自1992年开始研制迄今已有80年的历史。
近几年我国从德国赐来福公司引进的Autoconer338型、日本村田公司No.21c process coner和意大利萨维奥公司的ORION型自动络筒机都属第四代产品,代表国际先进水平。
它和第三代自动络筒机相比,在高速度、高质量、高劳动生产率、节能、节纱和智能化、一体化等方面都有了新的发展和提高。
1 自动络筒机的技术特征国外三种自动络筒机的技术参数和特征汇总如表l。
1.1 质量保证体系络纱工序除了将管纱卷绕成有-定长度要求的筒纱外,另一个重要任务就是清除对后工序和最终成品质量有影响的各类有害纱疵,如大棉结、粗节、细节、竹节、双纱、股线缺股、藤捻等以改善纱线外观质量。
现代自动络筒机的质量保证体系主要有清纱、捻接、张力控制和减少毛羽增长等方面,现简述如下:1.1.1 清纱和捻接电子清纱器基本上都采用乌斯特(Uster)和洛菲(Loepfe)生产的最新的微机型清纱器,不仅清纱工艺性能好,而且功能强,并且可和机上电脑联接,使清纱器的处理系统融合在微机内,做到电清工艺统一设置和控制,所以操作简单,故障率低,误切、漏切少。
新型清纱器如乌斯特"Uster Quantum"型及络菲"Yarn Master 800"型等还可检切异色纤维,但设置参数应恰当,否则检切率过高,影响效率。
捻接技术都采用捻接器(空气、机械)取代打结器,为生产无结纱创造了条件。
意大利ORION型自动络筒机,在接头前,若电子清纱器检测从筒子上退绕下来的纱线有纱疵,则上捕纱器会继续引纱,直到剔除后再接头,而下捕纱器能通过传感器控制引纱长度,即上捕纱器引纱没有结束,下捕纱器在引纱达到要求长度时不会继续引纱而处于等待状态。
同时由于上、下捕纱器、捻接器都由步进电机单独传动,各自独立受控制;如果两个捕纱器中有一个没有捕捉到纱头,则继续找头,而另一个完成捕捉纱头后处于等待接头状态,而打结器等待至两个捕纱器都达正确位置后才开始启动打结。
⾃动络筒机与普通络筒机⽐较分析书⼭有路勤为径;学海⽆涯苦作⾈⾃动络筒机与普通络筒机⽐较分析我国从上世纪50年代开始⽣产1332型络筒机,直到现在,GA014型络筒机在机器结构和性能上没有⼤的变化,其特点是结构简单、价格低廉、容易操作、便于维修管理、⽤电省、回丝少,⽐较实⽤,但络纱质量差、⽣产效率低。
随着⽆梭织机、针织机速度以及产品质量的不断提⾼,对筒⼦纱的质量要求也⽇益提⾼,如喷⽓织机转速已达1800转/分、引纬率3000⽶/分,普通络筒机就难以适应现代纺织发展的需要。
⾃动络筒机是棉纺织企业提⾼⽣产效率,实现纺纱后道⼯序的整经机、⽆梭织机和针织⼤圆机⾼速化的关键设备,⾃动络筒机取代普通络筒机已是⼤势所趋。
浙江常⼭纺织公司2003年开始到现在已使⽤10台⾃动络筒机,其中引进萨维奥公司⽣产的ORION-M⾃动络筒机6台,青岛宏⼤⽣产的Espero型4台。
现就⾃动络筒机与普通络筒机在提⾼成纱质量与节约⽤⼯等⽅⾯作⽐较分析。
⾃动络筒机保证⾼速状态下络纱质量稳定纱线在卷绕中的往复运动会使纱线的条⼲不匀增加和强⼒下降。
随着速度的提⾼,⾃动络筒机筒纱条⼲不匀、常发性纱疵、强⼒损失也逐渐增加,但只要⼯艺选择适当,质量仍优于普通络筒机络纱质量。
实验数据表明,在纺制C14.5tex时,络纱速度1000⽶/分时,筒纱质量损伤程度最少,其中条⼲CV%值增加0.45个百分点,千⽶细节增加9.6%,千⽶粗节上升8.7%,千⽶棉结上升11.3%,筒纱单纱断裂强⼒损失1.6%,各项指标均好于普通络筒机。
但⾃动络筒机络纱速度达到1500⽶/分时,筒纱的条⼲CV%值、粗细节和棉结增加最多,强⼒损伤最⼤。
专注下⼀代成长,为了孩⼦。
自动络筒机的关键技术及发展趋势
车社海;王海霞
【期刊名称】《纺织器材》
【年(卷),期】2024(51)3
【摘要】为了促进自动络筒机的技术进步,分析自动络筒机高效插管、管纱高速生头及输送、高速卷绕、纱线张力闭环控制等关键技术的工作原理及应用效果,总结其发展趋势;阐明可通过CCD和视觉检测技术、管纱自动翻转和中间等待位技术提高插管速度,槽筒卷绕技术需解决高速卷绕与纱线疵点的关系以及管纱脱圈等问题,精密卷绕系统需降低摆动电机的制造成本,栅式张力控制机构和非旋转式陶瓷张力盘控制机构可解决张力部分缠回丝问题,纱线捻接技术需开发新型捻接器并提高品种适应性,固定式气圈控制器因结构简单、成本低被广泛采用,精密定长专家系统能解决非相同因素造成的长度误差修正问题,通过数字化智能化控制技术提高单锭质量可减小挡车工工作量、提高筒纱成形质量。
指出:自动络筒机是智能化纺纱车间的关键设备,必须适应“无人工厂”“黑灯工厂”的发展趋势;人工智能将倒逼传统纺织制造业向柔性化、数字化、智能化方向加速转型。
【总页数】5页(P63-67)
【作者】车社海;王海霞
【作者单位】青岛宏大纺织机械有限责任公司
【正文语种】中文
【中图分类】TS103.321
【相关文献】
1.ESPERO-M自动络筒机和ORION自动络筒机工艺试验对比分析
2.KarlMayer 公司的自动络筒机和自动双向络筒机
3.参展产品:VCRO-E托盘型自动络筒机、VCRO-I细络联型自动络筒机
4.谈国内外自动络筒机性能比较及国产自动络筒机的发展
5.基于自动络筒机的松式络筒机改造
因版权原因,仅展示原文概要,查看原文内容请购买。
自动络筒机主要技术特征综述中国纺织工程学会棉纺织专业委员会李妙福自动络筒机自1992年开始研制迄今已有80年的历史。
近几年我国从德国赐来福公司引进的Autoconer338型、日本村田公司No.21c process coner和意大利萨维奥公司的ORION型自动络筒机都属第四代产品,代表国际先进水平。
它和第三代自动络筒机相比,在高速度、高质量、高劳动生产率、节能、节纱和智能化、一体化等方面都有了新的发展和提高。
1 自动络筒机的技术特征国外三种自动络筒机的技术参数和特征汇总如表l。
1.1 质量保证体系络纱工序除了将管纱卷绕成有-定长度要求的筒纱外,另一个重要任务就是清除对后工序和最终成品质量有影响的各类有害纱疵,如大棉结、粗节、细节、竹节、双纱、股线缺股、藤捻等以改善纱线外观质量。
现代自动络筒机的质量保证体系主要有清纱、捻接、张力控制和减少毛羽增长等方面,现简述如下:1.1.1 清纱和捻接电子清纱器基本上都采用乌斯特(Uster)和洛菲(Loepfe)生产的最新的微机型清纱器,不仅清纱工艺性能好,而且功能强,并且可和机上电脑联接,使清纱器的处理系统融合在微机内,做到电清工艺统一设置和控制,所以操作简单,故障率低,误切、漏切少。
新型清纱器如乌斯特"Uster Quantum"型及络菲"Yarn Master 800"型等还可检切异色纤维,但设置参数应恰当,否则检切率过高,影响效率。
捻接技术都采用捻接器(空气、机械)取代打结器,为生产无结纱创造了条件。
意大利ORION型自动络筒机,在接头前,若电子清纱器检测从筒子上退绕下来的纱线有纱疵,则上捕纱器会继续引纱,直到剔除后再接头,而下捕纱器能通过传感器控制引纱长度,即上捕纱器引纱没有结束,下捕纱器在引纱达到要求长度时不会继续引纱而处于等待状态。
同时由于上、下捕纱器、捻接器都由步进电机单独传动,各自独立受控制;如果两个捕纱器中有一个没有捕捉到纱头,则继续找头,而另一个完成捕捉纱头后处于等待接头状态,而打结器等待至两个捕纱器都达正确位置后才开始启动打结。
这样就减少了压缩空气的消耗及降低了回丝、降低了噪音和机件磨损。
最近开发出的集聚纱线(Compact yarn),由于毛羽减少及更加光滑整齐的外观。
带来捻接方面的问题。
一是纱线上接头较为明显,另一因为没有那些有助于退捻、开松及并合再加捻的外部游离纤维而使空气加捻变得困难。
意大利萨维奥公司采用的另一加捻方法--机械搓捻器是目前唯一可以保证集聚纱线及弹性包芯纱的捻接质量的捻接方式。
因为机械搓捻器的工作原理是根据捻系数来控制退捻,纱线头拉伸再聚合加捻,是纱线的机械方式的再生。
德国赐来福公司338型自动络筒机的捻接器有标准型、热捻接器、喷湿捻接器以适合各类纱线的需要。
日本村田公司的捻接器为卡式空气捻接器,三段喷咀捻接器,前者适用于除毛纱以外的各种纱线,后者适用于毛纱的捻接加工。
表1 三种自动络筒机的技术参数和特征汇总表新一代自动络筒机在清纱和捻接技术方面,基本上和原型号相类似,改进不显著,由于高性能电子清纱器和捻接器相配套,也就能生产"无疵无结"纱,这对提高高速无梭织机效率和织物质量都具有现实的重要意义。
关于验结,德国338型、意大利0RI0N型一直采用空气捻接器后电子清纱器的配置,所以验结都在纱线通路中解决。
而村田公司的自动络筒机长期采用先清纱后捻接的配置顺序,为之还需要一套机构来解决此间题。
这次N0.21C型自动络筒机,纠正了过去传统的不合理的配置顺序,改变为先捻接后清纱,因而也可在纱线运行通道中自然解决,简化了机构,提高了质量。
l.1.2 张力控制系统:络纱张力是络纱工序中一个重要工艺参数。
络纱张力的大小和均匀,不仅影响筒纱能否获得一定的卷绕密度和良好的成形,而且还将关系到能否有效清除纱线中的薄弱环节、提高纱线的条干均匀度,并直接影响下游工序的生产和织物质量。
(1)退绕张力的构成和变化。
简单的说,退绕张力是由气圈张力和摩擦张力组成。
气圈张力也就是纱线在高速退绕时作用于气圈纱段上的纱线重力、空气阻力、惯性力以及纱线两端张力等的合成;摩擦张力应称分离点张力,即纱线静态平衡力、纱线表面之间的粘附力、纱线从静态向动态过渡的惯性力及摩擦力组成。
实践证明,上述诸力中,有的数值很小,可以不计,而摩擦纱段和纱层及纱管间摩擦所生产的摩擦力是退绕张力的主要因素。
纱线退绕过程中产生的退绕张力是变化的。
一是纱线从管纱上退绕一个层次(即细纱的卷绕层和包覆层)时张力就波动一次。
由于纱层上部退绕半径小,退绕角和纱管的摩擦包围角大,所以上端张力最大,下端张力最小。
因此当纱线自卷绕层顶端向底部退绕时,张力是渐减的。
由于卷绕层圈数多,退绕时间长,波动影响的时间也长;相反,当纱线自包覆层的底部向顶端退绕时,则退绕张力是渐增的,并且波动时间也短。
总之纱线每退绕一个层次,退绕张力就产生一次波动。
第二是从大纱到小纱的波动。
由于管纱退绕的层次逐渐下降,气圈高度、气圈节数、纱线对管纱表面和纱管的摩擦纱段都相应逐渐增加,摩擦包围角也相应加大,因此退绕张力明显变大。
尤其当接近管底时(满纱l/3左右),由于纱线的管底结构不同,纱层倾斜角迅速减少,使摩擦纱段的包围角增加,因此退绕张力加剧增长,为满纱时的3倍左右。
其他如络纱速度和纱线特数等都和退绕张力成正比,但整个过程中不会引起张力过多的波动。
总之,在整个退绕过程中,管纱自满纱退绕到空管是引起退绕张力不匀的最主要因素。
(2)张力均匀控制装置。
络纱张力是由退绕张力和附加张力组成。
第三代自动络筒机(德国238型、意大利Espero型、村田No7-Ⅱ型)的络纱张力控制是随机的,即附加张力是事先设定的一个不变的张力补偿值,它不因纱线退绕张力的变化而变化,因此会造成卷绕不匀和在下游工序退绕时纱线张力的波动。
新型自动络筒机则采取了新的张力控制措施,即附加张力是变化的,它随退绕张力变化而反向变化,加以调节、补偿,使络纱张力保持恒定。
这一系统由气圈破裂器、张力器、张力传感器及自控元件组成。
德国Autoconer338型的自动纱线控制装置(Autotense)及意大利ORION型都采用闭环控制系统。
纱线张力控制系统示意图如图l。
张力传感器安装在卷绕纱络的清纱器上端槽筒附近,瞬时检测纱线退绕过程中动态张力的变化值并及时通过电子计算机进行相应调节。
当纱线张力变化时,传感器中的弹性元件发生变位,改变输出的电流或电压数据。
此信号传输到单锭电脑中,经计算机处理后,将需调整的信号再传输给张力器,张力器中的电磁加压则根据输人数据大小使压力增减,用以调节补偿,使络纱张力趋向恒定。
日本村田No 21C型的张力程控管理系统,则采用开环控制系统。
它的检测点在纱络下边管纱位置,由跟踪式气圈控制器(Bo1-Con)监测管纱的残纱量,通过电脑,对应管纱残纱位置,控制栅栏式张力器的加压张力,使络纱张力波动保持在最小范围内。
采用张力程控管理系统后,纱线张力变化如图2。
图中(1)为旧型(固定式)气圈破裂器时张力变化曲线;(2)为村田No.21c型使用跟综式气圈控制器时张力变化曲线;(3)为村田No.21c型使用张力管理系统即跟踪式气圈控制器和栅栏式张力器后的实际运行的络纱张力;(4)为村田No.21C型使用张力管理系统中栅栏式张力器的附加张力曲线变化。
村田张力管理系统中加压张力的设定,只需输入纱线品种,支数和生产速度,计算机就会算出合适的设定张力。
这二种方式,从理论上说,闭环控制系统有滞后性,但从实际情况对恒定络纱张力的作用没有很大的差异。
在检测方法上,欧洲是采用直接测量的方法,而日本则用间接测量方法,即用数学模式根据残纱位置测算张力变化而调节加压--附加张力。
二者都能达到络纱张力比较恒定的效果。
通过上述张力均匀控制装置后,在保证筒纱质量情况下,一般都能适当提高络纱速度lo%左右,并对单纱强力和单强CV%值都有改善。
1.1.3 毛羽减增装置络纱工序是纱线毛羽增加最多的工序。
由于无梭织机梭口小、速度高、纱线间摩擦、碰撞机会多,其作用强度也高,所以纱线毛羽对无梭织机的织造影响较大,比有梭织机更为突出,因此在无梭织机日益发展的今天,控制纱线毛羽的增加,是高速织造的关键。
管纱经络纱后,纱线毛羽呈显著增加如图3。
络纱工序影响毛羽因素很多,如络纱速度、槽筒材质、纱线通道光洁及角度,清纱板形式及隔距,络纱张力、气圈大小等等,但主要是由摩擦和碰撞引起的,使卷入纱体中的一部分纤维又露出纱体,或将原有短毛羽刮擦为长毛羽。
近几年来各机械制造厂,对降低毛羽增长,围绕减少纱线摩擦,采取不少措施:诸如采用钢质、有肩槽筒,断头抬起刹车装置,无接触式电子清纱器,尽量采取直线型纱线通路、减少折弯角度,改善纱线通道光洁度、采用耐磨的陶瓷部件,降低络纱张力等等都取得一定成效。
如南通某厂在赐来福AC238型和338型对比,10m 3mm毛羽由原238型的135个降到338型的102个,降低33个,近25%。
日本村田No.21C型最早推出跟踪式气圈控制器(Bal-Con),它改变传统的固定式气圈破裂器为随着纱的退绕而自动地逐渐下降的升降式气圈控制器,使管纱在退绕中始终保持单气圈的张力稳定的气圈控制装置,使刚退绕出来纱线和管纱锥形纱层及纱管间的摩擦降到最低,从而使退绕过程中毛羽的产生可以显著地减少,如图3中使用新型跟踪式气圈控制器后,即使络纱速度在1300 m/min和1500 m/min高速条件下,毛羽量都较旧型气圈破裂器在1000 m/min时为低。
日本村田No.2lC型增装了毛羽减少装置(Perla-A/D)该装置位于栅栏式张力器下方,Perla-A形状如示意图4。
其机理是在圆形内腔有一压缩空气咀,喷出气流使运行中纱线在圆形腔内旋转并贴附在腔壁上,将蓬松的毛羽捻附在纱体上,结果使毛羽减少,外观改善。
如图5。
并且筒子在高速退绕时,张力低而较稳定,如图6。
因而可以减少弱环纱和脱圈造成的断头。
石家庄国棉二厂在使用毛羽装置后纱线毛羽情况如表2;石家庄国棉一厂使用毛羽装置后乌斯特毛羽指数情况如表3。
表2 石家庄国棉二厂毛羽试验对比情况支数:J9.8tex 络纱速度:1500m/min 仪器:172型毛羽测试仪。
表3 石家庄国棉一厂乌斯特毛羽指数对比情况仪器:乌斯特4型络纱速度:1200m/min从表2、表3数据看出,经毛羽装置一各挡次毛羽增长率以及毛羽指数都有降低,尤其3mm以上的有害毛羽较为明显。
Perla-A型毛羽减少装置,实质是一种假捻器,在示意图4中可知上端为加捻区,下端为解捻区,,它和细纱机的卡摩纺(com4)把毛羽在纺纱过程中吹捻在纱体中完全不同,虽是假捻,但对改善外观仍有一定作用。
Peral-D型是机械式毛羽减少系统,具有比Peral-A型更显著的毛羽减少装置,如图7。