向量的坐标表示及其运算
- 格式:doc
- 大小:403.50 KB
- 文档页数:8
向量的坐标表示及运算知识回顾:一、概念:a 是平面内任意一个向量,i 、j 分别是与x 轴,y 轴同向的两个单位向量,a =x i +y j ,()y x ,叫做a 的坐标,记作a =()y x ,。
二、向量的坐标的运算: 设a =()11,y x ,b =()22,y x⑴ 加法运算: ⑵ 减法运算:⑶ 实数与向量的积: ⑷ 向量的数量积:⑸ 已知两点A ()11,y x ,B ()22,y x ,则的坐标可以表示为:⑹ a 的模 |a |=三、三种关系:设a =()11,y x ,b =()22,y x⑴ 相等:a =b ⇔ ⑵ 共线:a //b ⇔ ⑶垂直:a ⊥b ⇔知识的运用:例1:设向量a =()2,1-,b =()1,2-,求(a • b )(a +b )。
例2:平面向量a ,b 中,已知()3,4-=a ,1=b ,且a ·b 0=,求b 。
例3:已知a =()2,1,b =()2,3-,当k 为何值时,⑴ k a +b 与a –3b 垂直? ⑵ k a +b 与a –3b 平行?平行时它们是同向还是反向?例4:已知ABC ∆是等腰直角三角形, 90=∠ABC ,()1,2A ,()2,3-B ,求C 点坐标。
课后练习1.已知点()5,1--A 和向量()3,2=a ,若a AB 3=,则点B 的坐标为 。
2.若平面向量b 与向量()2,1-=a 的夹角是90°53=,则=b 。
3.若平面向量b 与向量()2,1-=的夹角是180°53=,则=b 。
4.已知e 为单位向量,()13,13+-=且e 与a 夹角为45°,则=e 。
5.已知向量()2,2-=a ,()k ,5=b 。
若b a +不超过5,则k 的取值范围是A 、[]6,4-B 、[]4,6-C 、[]2,6-D 、[]6,2-6.已知向量()2,1=a ,()4,2--=b ,5=c ,若()b a +·25=c ,则a 与c 的夹角为A 、30°B 、60°C 、120°D 、150°。
向量的线性运算与坐标表示向量是线性代数中一个基本的概念,它在各个学科领域都有广泛的应用。
本文将重点讨论向量的线性运算以及如何用坐标表示向量。
一、向量的定义与表示在二维和三维空间中,向量通常用箭头表示,箭头的起点表示向量的起点,箭头的方向和长度表示向量的方向和大小。
如图所示:[插入示意图:箭头向量的表示]向量有两种表示方法:行向量和列向量。
行向量按照元素排列在一行中,用方括号括起来;列向量按照元素排列在一列中,用方括号括起来。
例如,行向量[a, b, c]和列向量[a; b; c]表示同一个向量。
二、向量的线性运算向量的线性运算主要包括加法和数乘。
1. 向量的加法向量的加法遵循“平行四边形法则”,即将两个向量的起点放在一起,然后将它们的箭头连接起来,箭头的指向为新向量的方向,连接起点和终点,得到新向量的结果。
如图所示:[插入示意图:向量加法示意图]向量加法的坐标表示为,设向量a的坐标为[a1, a2, a3],向量b的坐标为[b1, b2, b3],则向量a和向量b的和的坐标为[a1+b1, a2+b2,a3+b3]。
2. 向量的数乘向量的数乘是将向量的每个元素与一个实数相乘,得到一个新的向量。
数乘后的向量与原向量的方向相同(当数乘的实数为正数时)或相反(当数乘的实数为负数时),而长度与原向量的长度之比为数乘的实数绝对值。
向量的数乘的坐标表示为,设向量a的坐标为[a1, a2, a3],实数k,则向量a的数乘结果的坐标为[k*a1, k*a2, k*a3]。
三、向量的坐标表示向量可以用坐标进行表示,坐标是指向量在坐标系中的位置。
在二维平面中,通常以x轴和y轴为基础建立直角坐标系;而在三维空间中,通常以x轴、y轴和z轴为基础建立直角坐标系。
在直角坐标系中,向量的坐标表示为(a1, a2, a3),其中a1、a2、a3分别表示向量在x轴、y轴和z轴上的投影长度。
例如,向量a在直角坐标系中的坐标表示为(a1, a2, a3)。
向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。
2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。
向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。
- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。
2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。
- 几何意义:数乘就是把向量按比例放大或缩小。
3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。
- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。
4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。
- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。
5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。
- 几何意义:向量积表示一个向量相对于另一个向量的旋转。
以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。
平面向量的坐标表示与运算平面向量是数学中的重要概念,它在几何和物理学中都有广泛的应用。
在平面直角坐标系中,平面向量的坐标表示与运算是研究平面向量的基础。
一、平面向量的坐标表示在平面直角坐标系中,一个平面向量可以用两个有序实数表示,这两个实数分别表示向量在x轴和y轴上的投影。
设向量a的坐标为(a₁, a₂),则a可以表示为:a = a₁i + a₂j,其中i和j分别是x轴和y轴的单位向量。
二、平面向量的运算1. 向量的加法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a加b的结果可以表示为:a +b = (a₁ + b₁)i + (a₂ + b₂)j。
2. 向量的减法设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a减b的结果可以表示为:a -b = (a₁ - b₁)i + (a₂ - b₂)j。
3. 向量的数量乘法设向量a的坐标为(a₁, a₂),实数k,则向量a乘以k的结果可以表示为:k*a = ka = (ka₁)i + (ka₂)j。
4. 向量的数量除法设向量a的坐标为(a₁, a₂),实数k(k ≠ 0),则向量a除以k的结果可以表示为:a/k = a*(1/k) = (a₁/k)i + (a₂/k)j。
5. 向量的数量积设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则向量a与向量b的数量积结果可以表示为:a·b = a₁b₁ + a₂b₂。
6. 向量的模长设向量a的坐标为(a₁, a₂),则向量a的模长可以表示为:|a| = √(a₁² + a₂²)。
三、示例分析为了更好地理解平面向量的坐标表示与运算,下面以实际问题为例进行分析。
问题:有两个平面向量a(-3, 4)和b(2, -1),求这两个向量的和、差、数量积和模长。
解答:1. 向量的加法:a +b = (-3 + 2)i + (4 - 1)j = -i + 3j。
平面向量的坐标表示与运算平面向量是数学中的一个重要概念,它在几何学和向量代数的研究中具有广泛的应用。
在平面直角坐标系中,平面向量可以通过其坐标表示和进行运算。
本文将详细介绍平面向量的坐标表示和运算方法。
一、平面向量的坐标表示平面向量可以用有序数对表示,其中第一个数表示向量在x轴上的分量,第二个数表示向量在y轴上的分量。
例如,向量AB可以表示为(3, 4),其中向量的起点为A,终点为B,x轴上的分量为3,y轴上的分量为4。
二、平面向量的运算1. 向量的加法与减法向量的加法可以通过分别对应分量进行加法运算得到。
例如,向量A(3, 4)与向量B(1, 2)的和向量C可以表示为C(3+1, 4+2),即C(4, 6)。
类似地,向量的减法可以通过分别对应分量进行减法运算得到。
2. 向量的数量积两个向量的数量积,也称为点积或内积,可以表示为两个向量的对应分量乘积的和。
例如,向量A(3, 4)与向量B(1, 2)的数量积可以表示为3×1 + 4×2 = 11。
数量积具有一些重要的性质,如交换律和分配律,可以用于向量的运算。
3. 向量的数量积与夹角两个向量的数量积与它们之间的夹角有一定的关系。
根据数量积的定义,两个向量的数量积等于它们的模的乘积与它们之间夹角的余弦值的乘积。
即A·B = |A| |B| cosθ,其中A·B表示向量A与向量B的数量积,|A|和|B|分别表示向量A和B的模,θ表示A与B之间的夹角。
4. 向量的数量积与平行垂直关系如果两个非零向量的数量积为0,则它们是垂直的。
如果两个非零向量的数量积非零,则可以通过比较它们的数量积的正负来判断其是否平行。
如果数量积为正数,则它们是同向的;如果数量积为负数,则它们是反向的。
5. 向量的向量积向量的向量积,也称为叉积或外积,是一种特殊的向量运算。
向量的向量积满足“左手定则”,结果的方向垂直于原来两个向量所在的平面,并符合右手法则。
平面向量的坐标表示与运算一、平面向量的坐标表示平面向量是具有大小和方向的量,可以用有序数对表示。
对于二维平面上的向量,一般采用坐标形式表示。
平面向量的坐标表示通常用(a, b)来表示,其中a表示向量在x轴上的投影,b表示向量在y轴上的投影。
二、平面向量的加法和减法运算1. 平面向量的加法运算将两个向量合成为一个新的向量,其坐标表示分别对应相加。
例如,设有向量A(a1, b1)和向量B(a2, b2),则它们的和为向量C(a1+a2,b1+b2)。
2. 平面向量的减法运算将一个向量减去另一个向量,其坐标表示分别对应相减。
例如,设有向量A(a1, b1)和向量B(a2, b2),则它们的差为向量C(a1-a2, b1-b2)。
三、平面向量的数乘运算平面向量的数乘运算指的是向量与一个实数的乘法运算。
将向量的每个分量与实数相乘即可。
例如,设有向量A(a, b)和实数k,那么k乘以向量A就是向量B(ka, kb)。
四、平面向量的数量积运算平面向量的数量积运算又称为点积运算,结果是一个实数。
设有两个向量A(a1, b1)和B(a2, b2),它们的数量积可以表示为A·B = a1·a2 +b1·b2。
五、平面向量的向量积运算平面向量的向量积运算又称为叉积运算,结果是一个向量。
设有两个向量A(a1, b1)和B(a2, b2),它们的向量积可以表示为A×B = a1b2 -a2b1。
六、平面向量的运算规律1. 加法的交换律和结合律向量加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A+ (B + C)。
2. 数量积的交换律和结合律向量数量积满足交换律和结合律,即A·B = B·A,(kA)·B = k(A·B)。
3. 数量积与向量积的分配律向量数量积与向量积满足分配律,即A·(B + C) = A·B + A·C。
资源信息表
(2)向量的坐标表示及其运算(2)
一、教学内容分析
向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础.
二、教学目标设计
1.理解并掌握两个非零向量平行的充要条件,巩固加深充要条件的证明方式;
2.会用平行的充要条件解决点共线问题;
3、定比分点坐标公式.
三、教学重点及难点
课本例5的演绎证明;
分类思想,数形结合思想在解决问题时的运用;
特殊——一般——特殊的探究问题意识.
五、教学过程设计:
复习向量平行的概念:
提问:(1)升么是平行向量方向相同或相反的向量叫做平行向量。
(2)实数与向量相乘有何几何意义
(3)由此对任意两个向量,a b,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b,若存在一个常数 ,使得
a b λ=⋅成立,则两向量a 与向量b 平行
(4)思考:如果向量,a b 用坐标表示为)
,(),,(2211y x b y x a ==能否用向量的坐标来刻画这个数量关系12
12
x x y y λλ=⎧⎨=⎩
思考:如果向量,a b 用坐标表示为),(),,(2211y x b y x a ==,则
2
121y y
x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出
课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==,
则//a b 的充要条件是1221x y x y =.
分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明,
(Ⅰ)先证必要性://a b 1221x y x y ⇒=
非零向量//a b ⇔存在非零实数λ,使得a b λ=,即
1122(,)(,)x y x y λ=,化简整理可得:1212
x x y y λλ=⎧⎨
=⎩,消去λ即得1221x y x y = (Ⅱ)再证充分性:1221x y x y =//a b ⇒
(1)若12210x y x y =≠,则1x 、2x 、1y 、2y 全不为零,显然有
11
22
0x y x y λ==≠,即1122(,)(,)x y x y λ=a b λ⇒=//a b ⇒
(2)若12210x y x y ==,则1x 、2x 、1y 、2y 中至少有两个为零. ①如果10x =,则由a 是非零向量得出一定有10y ≠,⇒20x =, 又由b 是非零向量得出20y ≠,从而,此时存在1
2
0y y λ=
≠使12(0,)(0,)y y λ=,即a b λ=//a b ⇒
②如果10x ≠,则有20y =,同理可证//a b 综上,当1221x y x y =时,总有//a b 所以,命题得证.
[说明] 本题是一典型的代数证明,推理严密,层次清楚,要求较高,是培养数学思维能力的良好范例. 练习2:
1.已知向量(2,3)a =,(,6)b x =,且//a b ,则x 为_________; 2.设a =(x 1,y 1),b =(x 2,y 2),则下列a 与b 共线的充要条件的有( )
① 存在一个实数λ,使a =λb 或b =λa ; ②2
121y y
x x =;③(a +b )a
b 0a a 0a a a =⋅a 0a 0a a a =⋅a 0a 1a =0
a a =述命题中,其
中假命题的序号为 ;
[说明] 安排此组练习快速巩固所学基础知识,当堂消化,及时反馈.
知识拓展应用
问题一:已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=____ (学生讨论与分析)
[说明] 三点共线的证明方法总结: 法一:利用向量的模的等量关系
法二:若A 、B 、C 三点满足AB AC λ=,则A 、B 、C 三点共线. *法三:若A 、B 、C 三点满足OC mOA nOB =+,当1m n +=时,A 、B 、C 三点共线.
问题二:定比分点公式:
设点P 1(),11y x ,),(222y x P ,点P 是直线 21P P 上任意一点,且满足 12PP PP λ=,求点P 的坐标.
解:由12PP PP λ= ,可知
{
)
()(2121x x x x y y y y -=--=-λλ,因为λ≠-1, 所以⎩⎨⎧++
=++=λ
λλ
λ112
121x x x y y y ,这就是点P 的坐标.
[说明]此例题的结论可作为公式掌握,此公式叫线段21P P 的定
比分点公式.
2.小组交流
(1)定比分点公式中反映了那几个量之间的关系当λ=1时,
点P 的坐标是什么 (2)满足式子12PP PP λ=的点P 称为向量 12PP 的分点.
思考:上式中正确反映 P 1,P ,2P 三点位置关系的是( )
A 、 始→分,分→终.
B 、始→分,终→分.
C 、终→分,分→
始
(3)关于定比λ和分点P 叙述正确的序号是 1)点P 在线段21P P 中点时,λ=1;2)点P 在线段21P P 上时,λ≥0 3)点P 在线段21P P 外时,λ﹤0; 4)定比λR ∈
[说明]由定比分点公式可知λ=1 时有⎪⎩⎪⎨⎧+=+=2
2
2
121x x x y y y ,此公式叫
做线段21P P 的中点公式. 此公式应用很广泛.
3.例题辨析
例1、已知平面上A 、B 、C 三点的坐标分别为A (),11y x , ),(22y x B , ),(33y x C ,G 是△ABC 的重心,求点G 的坐标. 解:由于点G 是△ABC 的重心,因此CG 与AB 的交点D 是AB
的中点,于是点D 的坐标是(
2
,22
121y y x x ++). 设点G 的坐标为),(y x ,且2CG GD =
则由定比分点公式得 ⎪⎩
⎪⎨⎧+++=+++=
212
221222
13213x x x x y y y y ,整理得
⎪⎩
⎪⎨⎧++=++=333
2121x x x x y y y y 这就是△ABC 的重心G 的坐标.
[说明]本题难度不大,但综合性却比较强.不仅涉及到定比的概
念,而且用到了中点公式、定比分点公式.(2)此结论可作为三角形重心的坐标公式.
例2、)15,12(),0,3(),5,2(21P P P - 且有12PP PP λ=求实数λ的值. 解1: 由已知可求 1(10,10)PP =,2(15,15)PP λλ=-- 故10=λ .(-15),
所以定比λ=-3
2
.
解2: 因为12PP PP λ=,所以P 1,P ,2P 三点共线,由定比分点公式
得12=
λλ+-⨯+1)3(2 解出实数λ=-3
2
.
解3:由图形可知点P 在线段21P P 外,故λ﹤0 ,又
21
PP PP = 32
,
所以λ=-3
2 .
[说明] 本题已知三点坐标求定比λ的值,学生往往偏爱第一种解法;解法二是定比分点公式的一个应用,其前提是三点共线,代公式时要注意始点、终点、分点坐标的位置;解法三是求定比λ的有效方法,简洁方便,鼓励学生大胆去尝试. 课后作业。