角平分线的性质定理和判定
- 格式:doc
- 大小:676.00 KB
- 文档页数:18
角平分线的性质定理及其逆定理定理一、角平分线的性质定理及其逆定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
2.角平分线的逆定理:在角的内部,且到角的两边距离相等的点,在这个角的平分线上。
不难发现,定理1的条件是定理2的结论,同时它的结论又是定理2的条件,它们互为逆定理。
定理1说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;定理2反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。
在实际应用中,前者用来证明线段相等,后者用来证明角相等或证明点在一个角的平分线上。
用数学语言可表示如下:例题一:(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D,PE⊥OB于E∴PD=PE(定理1)(2)∵PD⊥OA,PE⊥OB,PD=PE∴OC平分∠AOB(定理2)例题二:如图,△ABC的ㄥB平分线BD与ㄥC的外角的平分线CE相较于点P。
求证:点P到三边AB、BC、CA所在直线的距离相等。
从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等这题对吗?。
三角形角平分线定理三角形角平分线定理是指:三角形内一条角的角平分线把这条角分成两个相等角,并且这条角平分线所在的边与三角形外一边的两个对边的比等于被分角的两边的比。
三角形角平分线定理是一个重要且有用的几何定理,它可以帮助我们推导解决许多与三角形相关的问题。
本文将详细介绍三角形角平分线定理以及其应用。
一、三角形角平分线定理的定义与性质三角形角平分线定理可以描述为:设三角形ABC中,AD是角BAC的角平分线,则有以下两个性质成立:1. 角BAD与角DAC的度数相等,即∠BAD = ∠DAC。
2. AB/BC = BD/DC。
角平分线的定义是指一条线段或射线从一个角的顶点出发,将该角分成两个相等的角。
根据角平分线的定义,我们可以得出性质1。
性质2则是说明了角平分线所在边与三角形外一边的两个对边的比例关系。
这个比例关系在解决一些三角形相关问题时非常有用,比如计算未知边长或角度大小等。
二、三角形角平分线定理的证明现在我们来证明三角形角平分线定理中的性质2。
首先,我们假设角BAD = α,角CAD = β,角DAC = α,角BDA = β。
根据正弦定理,我们可以得到以下两个等式:sinα/BD = sinβ/AB (1)sinα/DC = sinβ/AC (2)将(1)除以(2),可以得到:(AB/BD)/(AC/DC) = sinα/sinα = 1由于左边等式的分数形式是BD/DC的比,因此我们可以得出:AB/BC = BD/DC这就证明了三角形角平分线定理中的性质2。
三、三角形角平分线定理的应用三角形角平分线定理有着广泛的应用,特别是在解决与三角形相关的题目时,可以通过应用该定理得到简洁而准确的答案。
以下是三个典型的应用案例:1. 求角平分线所分角的大小已知三角形ABC中,BD为角BAC的角平分线,要求角BAD的大小。
根据三角形角平分线定理的性质1,我们知道角BAD与角DAC的大小相等,即∠BAD = ∠DAC。
第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1. 已知:在等腰Rt Rt△△ABC 中,AC=BC AC=BC,,∠C=90°,AD 平分∠平分∠BAC BAC BAC,,DE DE⊥⊥AB 于点E ,AB=15cm AB=15cm,,(1)求证:)求证:BD+DE=AC BD+DE=AC BD+DE=AC..(2)求△)求△DBE DBE 的周长.的周长.例2. 如图,∠如图,∠B=B=B=∠C=90°,∠C=90°,∠C=90°,M M 是BC 中点,中点,DM DM 平分∠平分∠ADC ADC ADC,求证:,求证:,求证:AM AM 平分∠平分∠DAB DAB DAB..例3. 如图,已知△如图,已知△ABC ABC 的周长是2222,,OB OB、、OC 分别平分∠分别平分∠ABC ABC 和∠和∠ACB ACB ACB,,OD OD⊥⊥BC 于D ,且OD=3OD=3,△,△,△ABC ABC 的面积是多少?的面积是多少?角平分线的性质定理和判定第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,如图,已知∠1=∠2,P P 为BN 上的一点,PF⊥BC 于F ,PA=PC PA=PC,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论;?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△如图,△ABC ABC 中,中,P P 是角平分线AD AD,,BE 的交点.的交点. 求证:点P 在∠在∠C C 的平分线上.21NPF CBA【变式练习】如图,D 、E 、F 分别是△ABC 的三条边上的点,CE=BF ,△DCE 和△DBF 的面积相等.求证:AD 平分∠BAC .例3.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE=2cm ,AB=9cm ,BC=6cm ,求△ABC 的面积.的面积.第四部分:思维误区第五部分:方法规律第七部分:巩固练习DAD M A B C N P E D B C A E F ADP7.如图,如图,已知在△已知在△ABC 中,90C Ð=,点D 是斜边AB 的中点,2AB BC =,DE AB ^ 交AC 于E .求证:BE 平分ABC Ð.8、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 9.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON ,OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.上.第八部分:中考体验BDAECA . 1B . 2C . 3D . 4A . 11 B . 5.5 C . 7D . 3.5 3.(2010•鄂州)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △=7,A . 4B .3 C .6 D .5 间的距离为间的距离为 _________ .2.(2011•恩施州)如图,AD △ABC DF AB F DE=DG △ADG △AED。
角平分线的性质和判定一、基础知识回顾。
角平分线的性质: 角平分线的判定:一、分线的判定定理角平分线的判定:到角两边距离相等的点在 。
如图:∵P D ⊥OA,PF ⊥OB ,PD=PE ,∴P 在∠AOB 的平分线上,或(∠AOP=∠BOP )1、如图,90C ∠=︒,AD 平分CAB ∠,BD=2CD ,BC=9,求点D 到AB 的距离。
D C BA2、如图,求作到三条直线距离相等的所有点。
3、如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠。
MDCBA4. 如图所示,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD . 求证:AD 平分∠BAC .5、如图,DE AB ⊥,DF AC ⊥,DE=DF ,求证:GE=GF 。
FGDCBAE6、如图,CD AB ⊥,BE AC ⊥,OB OC =,求证12∠=∠。
O21A B CDE7、如图,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,BD=DF ,求证:CF=EB 。
FD C BAE8 如图,BE=CF ,BE ⊥AC 于F ,CE ⊥AB 于E,BF 和CE 交于点D ,求证:AD 平分∠BAC.9.如图在△ABC 中,∠B=∠C ,D 是BC 的中点,D E ⊥AB 于E ,DF ⊥AC 于F ,求证:AD 平分∠BACCFABC10.如图BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,且CE=BF,求证:点D在∠BAC的平分线上11,在Rt△ABC中,∠C=90。
,AC=BC,AD为∠BAC的平分线,AE=BC,DE⊥AB,垂足为E,求证△DBE的周长等于AB.12,在△ABC中,外角∠CBE和∠BCG的平分线相交于点F,求证:点F在∠BAC的平分线上13,已知∠B=∠C=90。
,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。
一、角的平分线性质定理1.角平分线上的点到这个角的两边的距离相等。
2.到一个角的两边距离相等的点在这个角的平分线上。
3.三角形的三条角平分线交于一点,称作内心。
内心到三角形三边的距离相等;4.三角形一个角的平分线,把对边所分成的两条线段与这个角的两邻边对应成比例。
判定:角的内部到角的两边距离相等的点,都在这个角的平分线上。
二、角平分线画法方法11、以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M、N。
2、分别以点M、N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3、作射线OP。
射线OP即为角平分线。
方法21、在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD。
2、连接CN与DM,相交于P。
3、作射线OP。
射线OP即为角平分线。
三、角平分线定义1、从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
2、三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。
三角形的角平分线是一条线段。
由于三角形有三个内角,所以三角形有三条角平分线。
三角形的角平分线交点一定在三角形内部。
三角形三条角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
四、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
1、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
五、角平分线的性质:角平分线上的点,到角两边的距离相等定理:角平分线上的任意一点,到角两边的距离相等。
垂直于两边为最短距离。
角平分线能得到相同的两个角。
三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:到角两边的距离相等的点在角平分线上。
专题二 角平分线的性质一、知识归纳1、角平分线的性质定理:角平分线上的点到角两边的距离相等;2、角平分线的判定定理:到角两边距离相等的点在角平分线上。
二、知识应用例1、△ABC 中,AD 是它的角平分线,且BD =CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F,求证:EB =FC例2、已知BF ⊥AC 于点F ,CE ⊥AB 于点E ,BF 和CE 交于点D ,且BE =CF ,求证:AD 平分∠BAC .变式练习:1、∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________.2、如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO =∠EPOD 、PD =OD3.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.4.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 21D APO EB(第2题) A B D CF E 第3题 第4题D C AE B5.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A 、4㎝B 、6㎝C 、10㎝D 、不能确定ED CB A7、 已知:如图,在R t △ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于E , 且DE =DC .(1)求证:BD 平分∠ABC ;(2)若∠A =36°,求∠DBC 的度数.8.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .。
第一局部:知识点回忆1、角平分线:把一个角平均分为两个一样的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二局部:自我评测知识点掌握情况备注非常好一般有待提高角平分线的定义 角平分线的性质定理 角平分线的判定定理 角平分线的作图第三局部:例题剖析例1. :在等腰Rt △ABC 中,AC=BC ∠C=90°,AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm ,〔1〕求证:BD+DE=AC . 〔2〕求△DBE 的周长.分析:〔1〕因为AC=BC=BD+CD ,只要证明CD=DE 即可,又因为AD 平分∠BAC ,那么CD=DE ;〔2〕由〔1〕可知AC=BD+DE ,由CD=DE ,AD=AD ,∠C=∠AED=90°,可证△ACD ≌△AED ,那么AC=AE ,所以BD+DE+BE=AC+BE=AE+BE=AB .解答:解:〔1〕∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°, ∴CD=DE ,课题 11-4角平分线的性质定理和判定 学生XX年级八年级日期2021.9.22冯晓娟∴BC=BD+CD=BD+DE,AC=BC,∴AC=BD+DE;〔2〕∵CD=DE,AD=AD,∠C=∠AED=90°,∴△ACD≌△AED,∴AC=AE,∵AC=BD+DE,∴BD+DE=AE,∴△BDE周长=BD+DE+BE=AE+BE=AB=15cm.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.分析:首先要作辅助线,ME⊥AD那么利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.解答:证明:作ME⊥AD,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM 平分∠DAB .例3.如图,△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,△ABC 的面积是 多少?.分析:根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进展计算即可求解.解答:解:如图,连接OA ,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是22,OD ⊥BC 于D ,且OD=3, ∴S △ABC =21×22×3=33. 故答案为:33. 第四局部:典型例题例1、:如下图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∠ADC =∠AEB∠1=∠2OA =OA,∴△AOD ≌△AOE 〔AAS 〕.∴OD=OE .在△BOD 和△COE 中,∠BDC =∠CEBOD =OE ∠BOD =∠COE,∴△BOD ≌△COE 〔ASA 〕.∴OB=OC .【变式练习】如图,∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC , 求证:∠PCB+∠BAP=180º过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.解答:证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F ,∴PE=PF ,∠PEA=∠PFB=90°,在Rt △PEA 与Rt △PFC 中PA =PCPE =PF∴Rt △PEA ≌Rt △PFC 〔HL 〕,∴∠PAE=∠PCB ,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°. 点评:此题考察了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.例2、:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . 〔1〕假设连接AM ,那么AM 是否平分∠BAD ?请你证明你的结论; 〔2〕线段DM 与AM 有怎样的位置关系?请说明理由.3〕CD 、AB 、AD 间?直接写出结果首先要作辅助线,ME ⊥AD 那么利用角的平分线上的点到角的两边的距离相等可知ME=MC ,再利用中点的条件可知ME=MB ,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM 平分∠DAB .〔2〕根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.〔3〕证Rt △DCM ≌Rt △DEM ,推出CD=DE ,同理得出AE=AB ,即可得出答案.解答:〔1〕证明:作ME ⊥AD 于E ,∵MC ⊥DC ,ME ⊥DA ,MD 平分∠ADC ,∴ME=MC ,∵M 为BC 中点,∴MB=MC ,又∵ME=MC ,∴ME=MB ,又∵ME ⊥AD ,MB ⊥AB ,∴AM 平分∠DAB .〔2〕解:DM ⊥AM ,理由是:∵DM 平分∠CDA ,AM 平分∠DAB ,∴∠1=∠2,∠3=∠4,∵DC ∥AB ,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°-〔∠1+∠3〕=90°,21NPF CBA即DM⊥AM.〔3〕解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt △DCM和Rt△DEM中DM=DMEM=CM∴Rt△DCM≌Rt△DEM〔HL〕,∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.点评:此题考察了角平分线性质,全等三角形的性质和判定,三角形内角和定理的应用,此题是一道比拟典型的题目,难度适中,注意:角平分线上的点到角的两边的距离相等.【变式练习】1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.首先过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,然后证明PQ=PN即可.解答:证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.点评:此题主要考察角平分线上的点到角两边的距离相等的性质.用此性质证明它的逆定理成立.角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上.正确作出辅助线是解答此题的关键例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC 的面积.过点D作DF⊥BC于点F.根据角平分线的性质,得DE=DF=2,再根据三角形的面积公式分别求得△ABD和△BCD的面积即可.解答:解:过点D作DF⊥BC于点F.∵BD是∠ABC的平分线,DE⊥AB,∴DF=DE=2.∴△ABC的面积为12(9×2+6×2)=15cm2【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.首先过D作DN⊥AC,DM⊥AB,分别表示出再△DCE和△DBF的面积,再根据条件“△DCE和△DBF的面积相等〞可得到12BF•DM=12DN•CE,由于CE=BF,可得结论DM=DN,根据角平分线性质的逆定理进而得到AD平分∠BAC.解答:证明:过D作DN⊥AC,DM⊥AB,△DBF的面积为:12BF•DM,△DCE的面积为:12DN•CE,∵△DCE和△DBF的面积相等,∴12BF•DM=12DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC〔到角两边距离相等的点在角的平分线上〕例4.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.〔1〕在图上标出仓库G的位置.〔比例尺为1:10000,用尺规作图〕.〔2〕求出仓库G到铁路的实际距离。
角平分线与角的判定条件角平分线是指将一个角分为两个相等的角的线段。
在几何学中,角平分线的性质与角的判定条件密切相关。
本文将探讨角平分线的性质及其判定条件。
一、角平分线的性质角平分线具有以下性质:1. 角平分线将原角分成两个相等的角。
设角AOC为原角,角BOC 为角平分线,那么∠BOC = ∠AOC/2,∠COB = ∠AOC/2。
2. 角平分线上的任意一点到角的两边上的点的距离相等。
3. 角平分线上的任意一点引出的辅助线与角的两边所夹的两个小角相等。
二、角平分线的判定条件角平分线的判定条件可以从不同角度进行讨论。
1. 几何判定条件当且仅当一条线段能够同时与角的两边相交且将角分成两个相等的角时,该线段即为角的平分线。
2. 角平分线的垂直判定条件若角AOC的平分线上一点B与AC边垂直相交,则角ABC =∠CBO = ∠BCO = 90°,此时BO即为角AOC的平分线。
3. 角平分线的三等分判定条件若角AOC的平分线上一点B与AC边分成三个相等的线段,即AB = BC = AC/3,则BO即为角AOC的平分线。
4. 角平分线的等边三角形判定条件若角AOC的平分线上一点B与AC边相等,即AB = BC = AC,则BO即为角AOC的平分线。
需要注意的是,以上判定条件都是充分条件而非必要条件,即满足这些条件的线段不一定是角的平分线,但是如果一条线段满足以上任何一个判定条件,则可以确定该线段是角的平分线。
三、角平分线的应用角平分线在几何学中具有广泛的应用,其中一些应用如下:1. 三角形的内心:三角形的内心是三条角平分线的交点,它到三角形的三边的距离相等。
2. 角平分线定理:角平分线定理指出,如果一条直线穿过一个三角形的两个角并且与第三个角的外角相等,则该直线为该三角形的角平分线。
3. 角平分线的三角函数关系:在三角学中,角平分线与三角函数有密切的关系,例如角平分线的正切值等于角的正弦值的平方根除以一减去角的正弦值的平方根。
初二数学角平分线定义角平分线是指将一个角分成两个相等的角的直线。
在数学中,角平分线是一个重要的概念,它在几何学和三角学中都有广泛的应用。
本文将介绍角平分线的定义、性质以及一些相关的定理和例题。
一、角平分线的定义角平分线是指从一个角的顶点出发,将这个角分成两个相等的角的直线。
也可以说,角平分线把一个角分成两个度数相等的小角。
二、角平分线的性质1. 角平分线上的点到角的两边的距离相等;2. 角平分线将角分成两个度数相等的小角;3. 角平分线将角的两边分成相等的线段;4. 角平分线与角的两边垂直;5. 角平分线与角的两边的夹角相等。
三、角平分线的定理1. 角平分线定理:如果一条直线平分一个角,那么这条直线上的点到角的两边的距离相等。
证明:设角AOC为被平分的角,OD为角平分线,OD与OA、OC交于点B、E。
由角平分线的定义可知,∠BOD=∠DOE,∠BOA=∠COE。
因此,三角形BOA与三角形COE相似。
根据相似三角形的性质可知,OA/OB=OC/OE。
又因为∠BOA=∠COE,所以三角形BOA与三角形COE全等。
因此,AB=CE,即点B到角的两边的距离等于点E到角的两边的距离。
2. 角平分线的唯一性定理:一个角的平分线只有一条。
证明:设角AOC为被平分的角,OD和OF为两条角平分线,OD与OA、OC交于点B、E,OF与OA、OC交于点C、F。
由角平分线的定义可知,∠BOD=∠DOE,∠COF=∠FOE。
又因为∠BOD=∠COF,∠DOE=∠FOE,所以三角形BOA与三角形COF全等,三角形COE与三角形DOF全等。
因此,AB=CF,CE=DF。
由于AB=CF,CE=DF,所以线段BE与线段DF 重合。
因此,OD与OF重合,即角平分线OD和OF是同一条直线。
四、角平分线的应用角平分线在几何学和三角学中有广泛的应用。
例如,在三角形中,如果一条角平分线与对边相交,那么它将对边平分成两个相等的线段。
此外,角平分线还可以用于解决一些角度相等的问题,如证明两条线段相等、两条直线平行等。
全等三角形角平分线的判定一、概述全等三角形是几何学中重要的概念之一,它指的是具有相同形状和大小的两个三角形。
在判定两个三角形是否全等时,角平分线是一个重要的判定条件之一。
本文将详细探讨全等三角形角平分线的判定方法。
二、角平分线的定义和性质角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。
在三角形中,每个内角都有一条角平分线。
角平分线的性质如下: 1. 角平分线将角分成两个相等的角。
2. 三角形的三条角平分线交于一点,该点称为角平分点。
3. 角平分线与三角形的边相交,将边分成两个与角平分线所在直线段成比例的线段。
三、全等三角形的定义和判定条件全等三角形是指具有相同形状和大小的两个三角形。
判定两个三角形全等的条件有多种,其中之一就是角平分线的相等性。
以下是判定两个三角形全等的常用条件:1. SSS(边-边-边):若两个三角形的三条边分别相等,则它们全等。
2. SAS(边-角-边):若两个三角形的两边和夹角分别相等,则它们全等。
3. ASA(角-边-角):若两个三角形的两角和一边分别相等,则它们全等。
4. AAS(角-角-边):若两个三角形的两角和一边分别相等,则它们全等。
5. RHS(直角-斜边-高):若两个直角三角形的斜边和高分别相等,则它们全等。
四、角平分线的判定方法在判定两个三角形全等时,我们可以利用角平分线的相等性来简化判定过程。
以下是角平分线的判定方法: 1. 若两个三角形的一个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。
2. 若两个三角形的两个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。
3. 若两个三角形的一个内角的角平分线分别与另一个三角形的一个内角的角平分线相等,并且这两个内角的角平分线所在直线段成比例,则这两个三角形全等。
五、示例分析下面通过一个示例来说明角平分线的判定方法。
假设有两个三角形ABC和DEF,已知∠A = ∠D,∠B = ∠E,AD/DE = BC/EF。
三角形内角平分线定理三角形任意两边之比等于它们夹角的平分线平分对边之比。
即在ΔABC中,若AD是∠A的平分线,则BD/DC=AB/AC应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例.三角形外角平分线的性质定理:三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明.角平分线性质定理角平分线的性质:1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的距离相等。
3.三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边的距离相等。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
证明●三角形内角平分线分对边所成的两条线段,和两条邻边成比例.即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC.证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF.S△ABD:S△ACD=BD:CD又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC所以BD/CD=AB/AC.1.角平分线可以得到两个相等的角。
角平分线,顾名思义,就是将角平分的射线。
如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。
2.角平分线线上的点到角两边的距离相等。
如右上图,若射线AD是∠CAB的角平分线,求证:CD=BD∵∠DCA=∠DBA∠CAD=∠BADAD=AD∴△ACD≌△ABD∴CD=BD3.三角形的三条角平分线交于一点,称作三角形的内心。
三角形的内心到三角形三边的距离相等。
这一条是第二条的引申,详细证明过程参照第二条和三角形内心。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD:作BE=BD交射线AS于E,如图1:∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC又∵∠BAE=∠CAD,∴△AEB∽△ADC,∴AB/BE=AC/CD, 即AB/BD=AC/CD.另外的情况,如图2,直线BC交AS的反向延长线于D,如图3,直线BC交AN的反向延长线于C;此时,仍有AB/BD=AC/CD证法与图1类似【角平分线逆定理】1.到角两边的距离相等的点在角平分线上。
角平分线的性质与判定1、角平分线:把一个角为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点一、角平分线的性质定理例1.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=11cm,BD=7cm,那么点D 到直线AB的距离是cm.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.4二:角平分线的性质定理的逆定理例1.如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.三、常见题型(一)利用角平分线的性质求线段长度例1.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.变式1.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足是点E,AC=DE+BD.(1)求∠BAD的度数;(2)若△DBE的周长为4cm,则AB=.变式2.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.(二)利用角平分线的性质求角度问题例1.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,P A=PC.求证:∠PCB+∠BAP=180°.变式1.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.(3)CD、AB、AD间?直接写出结果(三)利用角平分线解决与面积有关的问题例1.如图,BD是△ABC的角平分线,△ABC的面积为60,AB=15,BC=9,求△ABD的面积.变式1 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是多少?(四)角平分线性质定理的逆定理应用例1.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF求证:AD平分∠BAC.变式1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.(五)角平分线性质定理的实际应用例1.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?变式1.如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.。
第7 讲角平分线的判定与性质【知识点与方法梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。
角平分线的判定定理:到一个角的两边的距离相等的点,在这个角的平分线上。
角平分线的作法(尺规作图)①以点0为圆心,任意长为半径画弧,交OA 0B于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线0P射线0P即为所求.角平分线的性质及判定1. 角平分线的性质:角的平分线上的点到角的两边的距离相等. 推导已知:0C平分/ MON P是0C上任意一点,PAL OM PB丄ON垂足分别为点A、点B. 求证:P心PB. 证明:T PAL OM PB丄ON•••/ PAO=Z PBO= 90°T OC平分/ MON•i/ 1 = / 2在厶PAO?3 PBC中,•••△ PAO^A PBO••• P心PB几何表达:(角的平分线上的点到角的两边的距离相等)T OP平分/ MO N/ 1 = / 2),PALOM PB丄ON•PA= PB.2角平分线的判定:至V角的两边的距离相等的点在角的平分线上. 推导:已知:点P是/ MOF内一点,PAI OMT A,PB丄ON于B,且PA= PB.求证:点P在/ MON勺平分线上.证明:连结0PPA-PBQP= OP在Rt △ PAO ffi Rt △ PBO中, 1•Rt △ PAO^ Rt △ PBO( HL)••/ 1 = / 2•OP平分/ MON即点P在/MON勺平分线上.几何表达:(到角的两边的距离相等的点在角的平分线上.)T PAL OM PB丄ON PA= PB•/ 1 = / 2 (OP平分/ MON【经典例题】例1.已知:如图,△ ABC 中, Z C=90o ,人。
是厶ABC 的角平分线, 求证:CF=EB例2.已知:如图,AD BE 是厶ABC 的两条角平分线,AD BE 相 交于O 点 求证:O 在Z C 的平分线上例3.如图AB// CD Z B = 90°, E 是BC 的中点。
流河路公北M 区CB A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:∵∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )基础闯关1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD5.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点6.到一个角的两边距离相等的点在 .7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .8.三角形中,到三边距离相等的点是(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 ODPEBA 第3题图D ABC21D APOE B第4题图FEDCBAF E DCBA(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .二.解答题:1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:自我评测知识点掌握情况备注非常好一般有待提高角平分线的定义 角平分线的性质定理 角平分线的判定定理 角平分线的作图第三部分:例题剖析例1. 已知:在等腰Rt △ABC 中,AC=BC ∠C=90°,AD 平分∠BAC ,DE ⊥AB 于点E ,AB=15cm ,(1)求证:BD+DE=AC . (2)求△DBE 的周长.分析:(1)因为AC=BC=BD+CD ,只要证明CD=DE 即可,又因为AD 平分∠BAC ,则CD=DE ; (2)由(1)可知AC=BD+DE ,由CD=DE ,AD=AD ,∠C=∠AED=90°,可证△ACD ≌△AED ,则AC=AE ,所以BD+DE+BE=AC+BE=AE+BE=AB . 解答:解:(1)∵AD 平分∠BAC ,DE ⊥AB ,∠C=90°, ∴CD=DE ,∴BC=BD+CD=BD+DE , AC=BC , ∴AC=BD+DE ;(2)∵CD=DE ,AD=AD ,∠C=∠AED=90°, ∴△ACD ≌△AED ,课题 11-4角平分线的性质定理和判定 学生姓名年级八年级日期2012.9.22冯晓娟∴AC=AE,∵AC=BD+DE,∴BD+DE=AE,∴△BDE周长=BD+DE+BE=AE+BE=AB=15cm.例2.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,求证:AM平分∠DAB.分析:首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.解答:证明:作ME⊥AD,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.例3. 如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC 的面积是多少?.分析:根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等,从而可得到△ABC 的面积等于周长的一半乘以OD ,然后列式进行计算即可求解.解答:解:如图,连接OA ,∵OB 、OC 分别平分∠ABC 和∠ACB , ∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是22,OD ⊥BC 于D ,且OD=3, ∴S △ABC =21×22×3=33. 故答案为:33.第四部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD交于点O ,且AO 平分∠BAC ,求证:OB=OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC=∠BDC=∠AEB=∠CEB=90°. ∵AO 平分∠BAC , ∴∠1=∠2.在△AOD 和△AOE 中,∠ADC =∠AEB∠1=∠2OA =OA,∴△AOD ≌△AOE (AAS ).∴OD=OE .在△BOD 和△COE 中,∠BDC =∠CEBOD =OE ∠BOD =∠COE,∴△BOD ≌△COE (ASA ). ∴OB=OC .【变式练习】如图,已知∠1=∠2,P 为BN 上的一点,PF⊥BC 于F ,PA=PC , 求证:∠PCB+∠BAP=180º过点P 作PE ⊥BA 于E ,根据角平分线上的点到角的两边距离相等可得PE=PF ,然后利用HL 证明Rt △PEA 与Rt △PFC 全等,根据全等三角形对应角相等可得∠PAE=∠PCB ,再根据平角的定义解答.解答:证明:如图,过点P 作PE ⊥BA 于E ,∵∠1=∠2,PF ⊥BC 于F , ∴PE=PF ,∠PEA=∠PFB=90°, 在Rt △PEA 与Rt △PFC 中PE =PF∴Rt △PEA ≌Rt △PFC (HL ), ∴∠PAE=∠PCB , ∵∠BAP+∠PAE=180°, ∴∠PCB+∠BAP=180°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.3)CD 、AB 、AD 间?直接写出结果21NPF CA首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.解答:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°-(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM=DMEM=CM∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.点评:本题考查了角平分线性质,全等三角形的性质和判定,三角形内角和定理的应用,此题是一道比较典型的题目,难度适中,注意:角平分线上的点到角的两边的距离相等.【变式练习】1.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.首先过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,然后证明PQ=PN即可.解答:证明:如图,过点P作PM⊥AB,PN⊥BC,PQ⊥AC,垂足分别为M、N、Q,∵P在∠BAC的平分线AD上,∴PM=PQ,P在∠ABC的平分线BE上,∴PM=PN,∴PQ=PN,∴点P在∠C的平分线.点评:本题主要考查角平分线上的点到角两边的距离相等的性质.用此性质证明它的逆定理成立.角平分线性质的逆定理:到角的两边距离相等的点在角的平分线上.正确作出辅助线是解答本题的关键例3.如图,在△ABC中,BD为∠ABC的平分线,DE⊥AB于点E,且DE=2cm,AB=9cm,BC=6cm,求△ABC的面积.过点D作DF⊥BC于点F.根据角平分线的性质,得DE=DF=2,再根据三角形的面积公式分别求得△ABD和△BCD的面积即可.解答:解:过点D作DF⊥BC于点F.∵BD是∠ABC的平分线,DE⊥AB,∴DF=DE=2.∴△ABC的面积为12(9×2+6×2)=15cm2【变式练习】如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.首先过D作DN⊥AC,DM⊥AB,分别表示出再△DCE和△DBF的面积,再根据条件“△DCE和△DBF的面积相等”可得到12BF•DM=12DN•CE,由于CE=BF,可得结论DM=DN,根据角平分线性质的逆定理进而得到AD平分∠BAC.解答:证明:过D作DN⊥AC,DM⊥AB,△DBF的面积为:12BF•DM,△DCE的面积为:12DN•CE,∵△DCE和△DBF的面积相等,∴12BF•DM=12DN•CE,∵CE=BF,∴DM=DN,∴AD平分∠BAC(到角两边距离相等的点在角的平分线上)例4.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.(1)在图上标出仓库G的位置.(比例尺为1:10 000,用尺规作图).(2)求出仓库G到铁路的实际距离。
(1)利用角的平分线上的点到角的两边的距离相等可知点G在∠NOQ的平分线上;(2)利用图上距离与实际距离的比值进行计算即可.解答:解:(1)∵其仓库G 在A 区,到公路和铁路距离相等,∴利用角的平分线上的点到角的两边的距离相等可知点G 在∠NOQ 的平分线上,再用刻度尺量出5cm 即可得出G 点.(2)仓库到铁路的图上距离为5cm , 则实际距离为5×10 000=50 000cm=500m . 答:仓库到铁路的实际距离为500m .【变式练习】如图,直线123,,l l l 表示三条互相交叉的公路,现要建一个塔台,若要求它到 三条公路的距离相等,试问: (1) 可选择的地点有几处? (2) 你能画出塔台的位置吗?第五部分:思维误区一、忽视“垂直”条件例1.已知,如图,CE ⊥AB,BD ⊥AC,∠B=∠C ,BF=CF 。
求证:AF 为∠BAC 的平分线。
错误解法:线上)距离相等的点在角平分的平分线上(到角两边在点CAB F BFCF ∠∴=正确解法: ∵CE ⊥AB,BD ⊥AC (已知) ∴∠CDF=∠BEF=90°∵∠DFC=∠BFE(对顶角相等),BF=CF(已知) ∴△DFC ≌△EFB(S.S.A.)∴DF=EF(全等三角形对应边相等) ∵FE ⊥AB,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上) 即AF 为∠BAC 的平分线错因:在应用角平分线定理及逆定理时遗漏了“垂直” 的条件。
(1)有角平分线,通常向角两边引垂线。
(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。
常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。
(3)注意:许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用角平分线性质定理和判定定理,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.A 组一、耐心选一选,你会开心(每题6分,共30分) 1.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点2.如图,△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB =12cm ,则△DBE 的周长为()A 、12cmB 、10cmC 、14cmD 、11cmDC EB3.如图2所示,已知PA 、PC 分别是△ABC 的外角∠DAC 、∠ECA 的平分线,PM ⊥BD ,PN ⊥BE ,垂足分别为M 、N ,那么PM 与PN 的关系是()A.PM >PNB.PM =PNC.PM <PND.无法确定4.如图3所示,△ABC 中,AB=AC ,AD 是∠A 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,下面给出四个结论,其中正确的结论有( )①AD 平分∠EDF ; ②AE=AF ; ③AD 上的点到B 、C 两点的距离相等 ④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等A 、1个B 、2个C 、3个D 、4个 5. 如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,P A ⊥AB ,PC ⊥BC ,垂足分别为A ,C .下列结论错误的是( ). A .AD =CP B .△ABP ≌△CBP C .△ABD ≌△CBD D .∠ADB =∠CDB . 二、精心填一填,你会轻松(每题6分,共30分)6.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=8,则点D 到斜边AB 的距离等于_____________.7.如图5所示,已知点C 是∠AOB 平分线上的一点,点P 、P ′分别在边OA 、OB 上,如果要得到OP =OP ′,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为___________________.①∠OCP =∠OCP ′;②∠OPC =∠OP ′C ;③PC =P ′C ;④PP ′⊥OC . 8.如图,已知BO 平分CBA ∠,CO 平分ACB ∠,MN BC ∥,且过点O ,若12AB =,14AC =,则AMN △的周长是.D M ACNPE图2图3ABC DP9.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .10.如图所示:⑴若∠BAD =∠CAD ,且BD ⊥AB 于B ,DC ⊥AC 于C ,则BD =CD ,⑵若BD ⊥AB 于B ,DC ⊥AC 于C ,且BD =CD ,则∠BAD =∠CAD ,试利用上述知识,解决下面的问题:三条公路两两相交于A 、B 、C 三点,现计划修建一个商品超市,要求这个超市到三条公路距离相等,问可供选择的地方有 处. 三、细心做一做,你会成功(共40分)11.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,求证:∠B =∠C.12.如图,已知在△ABC 中,90C ∠=,点D 是斜边AB 的中点,2AB BC =,DE AB ⊥ 交AC 于E .求证:BE 平分ABC ∠.13. 先作图,再证明.(1)在所给的图形(如图)中完成下列作图(保留作图痕迹) ①作ACB ∠的平分线CD ,交AB 于点D ; ②延长BC 到点E ,使CE CA =,连结AE . (2)求证:CD AE ∥.BA COAMBCNBDACEBDCAAFC E14、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .B 组一、选择题1、△ABC 中,∠C =90°,点O 为△ABC 三条角平分线的交点,OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,且AB =10cm ,BC =8cm ,AC =6cm ,则点O 到三边AB 、AC 、BC 的距离为( ) A .2cm ,2cm ,2cm ; B . 3cm ,3cm ,3cm ; C . 4cm ,4cm ,4cm ; D . 2cm ,3cm ,5cm2、如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、1处B 、2处C 、3处D 、4处 l 2l 1l 33、如图,AB =AD ,CB =CD ,AC 、BD 相交于点O ,则下列结论正确的是( )A .OA =OCB .点O 到AB 、CD 的距离相等C .∠BDA =∠BDCD .点O 到CB 、CD 的距离相等4、(2009·温州中考)如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A.PA PB =B.PO 平分APB ∠C.OA OB =D.AB 垂直平分OPDCAO5、(2009·牡丹江中考)尺规作图作AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS 二、填空题6、(2009·厦门中考)如图,在ΔABC 中,∠C=90°,∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,则点D 到直线AB 的距离是_______厘米。