比例尺和用比例解决问题资料
- 格式:doc
- 大小:63.00 KB
- 文档页数:10
1.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
2.甲乙两地实际距离是500米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是。
3.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?4.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.某建筑工地挖一个长方形的地基,把它画在比例尺是1 :100000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?7.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?8.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?9.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?10.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?11.在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?12.在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?13.地图的比例尺是,北京到天津某地的距离画在该地图上是4.8厘米,求两地的实际距离多少?14.兰州到乌鲁木齐的铁路线大约长1900km。
在比例尺是1:40000000的地图上,它的长是多少? 15. 在一幅比例尺是80000001的地图,量得甲、乙两城之间的路长12.5cm。
一辆汽车以平均每小时80km的速度从甲城开往乙城,需多少个小时才能到达?16.在一幅比例尺是1:5000的平面图上,量得一段公两个修路队,路长16.8厘米。
把修筑这段公路任务按3:5分配给甲、乙两个修路,这两个队各要修多少米?17.在比例尺是1/5000的地图上,量得一所学校的平面图长6厘米,宽4厘米。
用比例解决问题比例的应用1、一条公路长25km,在一幅地图上长5cm,求这幅地图的比例尺。
2、一个手表的精密零件长5mm,画在设计图纸上是12cm,求这幅的纸的比例尺。
3、在一幅比例尺是1:30000000的地图上,量得北京到上海的距离是3.5km,北京到上海的实际距离是多少千米?4、学校有一个长方形的操场,长是80米,宽是50米,把它画在一幅平面图上,长画了16cm,宽应当画多少厘米?5、某实验小学的平面图的比例尺是1:30000,量得长是9cm,宽是5cm,学校的时间占地面积是多少公顷?6、埃及金字塔是著名的景观,某科学家用测量影长的方法计算金字塔的高度。
测量结果如下:竹竿长5m,它的影长是3m,这一时间段金字塔的影长是87.9m,这座金字塔的实际高度是多少米?7、一颗人造卫星绕地球5周需要13小时,用同样的速度绕地球12周需要多少小时?8、50千克花生仁可以榨油19千克,要榨200千克花生油需要多少千克花生仁?9、修一条路,如果每天修180米,8天可以修完,如果每天修160米,几天可以修完?10、一间大厅,用边长6分米的方砖铺地,需要324块,若改用边长4分米的方砖,需要这样的方砖多少块?11、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需要多少天?12、在一幅比例尺是1:6000000的地图上量得甲地到乙地的长是2cm,一辆汽车以每小时70km的速度匀速行驶,如果这辆小汽车上午8:30出发,10:00能到达吗?13、一个车间装配一批电视,如果每天装50台,60天完成任务,如果要少用20天完成任务,每天应装多少台?14、在一幅比例尺是1:3500000的地图上,量得甲乙两地之间的距离是2.4cm,在另一幅地图上,量得这两地间的距离是2.8cm,求另一幅地图的比例尺?15、新兴小学的学生去旅游,用4辆同样的客车每次可以运送224名学生,如果用13辆这样的客车,每次可以运送多少名学生?16、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?17、小明家用收割机收割小麦。
比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶小时后,离乙地还有多远?16.一个零件长厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A 地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题——比例问题(1)年级姓名一、填空题 1. 4:=设4:x=16=?10=% 2016?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为亩、亩、亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728 540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210 325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?233 1112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B 两地同时出发相向而行,小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。
比和比例应用题1、房产博览会上, 某楼盘的模型是按照1: 500的比例尺制作的, 该楼盘1号楼模型高7厘米, 它的实际高度是多少?2、兰州到乌鲁木齐的铁路长约1900千米, 在比例尺是1: 40000000的地图上, 它的长是多少?3、修一条长12千米的公路, 开工3天修了1.5千米。
照这样计算, 修完这条路还要多少天?4、专业户刘大伯家养鸡、鸭、鹅共1800只, 这三种家禽的只数比是5: 3: 1。
刘大伯家养鸡、鸭、鹅各多少只?5.把一批书按4: 5: 6的比例分给甲、乙、丙三个班, 已知甲班比丙班少分到24本, 三个班各分到多少本书?6.亮亮家造了新房, 准备用边长是0.4米的正方形地砖装饰客厅地面, 这样需要180块, 装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?7.一艘轮船以每小时40千米的速度从甲港开往乙港, 行了全程的20 后, 又行驶了1小时, 这时未行路程与已行路程的比是3: 1。
甲乙两港相距多少千米?8.建筑工人用水泥、沙子、石子按2: 3: 5配制成96吨的混凝土, 需要水泥、沙子、石子各多少吨?1.一个县共有拖拉机550台, 其中大型拖拉机台数和手扶拖拉机台数的比是 3: 8, 这两种拖拉机各有多少台?用84厘米长的铜丝围成一个三角形, 这个三角形三条边长度的比是3: 4: 5。
这个三角形的三条边各是多少厘米?甲、乙、丙三个数的平均数是84, 甲、乙、丙三个数的比是3: 4: 5, 甲、乙、丙三个数各是多少?乙两个数的平均数是25, 甲数与乙数的比是3: 4, 甲、乙两数各是多少?一个直角三角形的两个锐角的度数比是1: 5, 这两个锐角各是多少度?一块长方形试验田的周长是120米, 已知长与宽的比是2: 1, 这块试验田的面积是多少平方米?(1)一种药水是用药物和水按3: 400配制成的。
(2)要配制这种药水1612千克, 需要药粉多少千克?用水60千克, 需要药粉多少千克?用48千克药粉, 可配制成多少千克的药水?商店运来一批电冰箱, 卖了18台, 卖出的台数与剩下的台数比是3: 2, 求运来电冰箱多少台?纸箱里有红绿黄三色球, 红色球的个数是绿色球的, 绿色球的个数与黄色球个数的比是4: 5, 已知绿色球与黄色球共81个, 问三色球各有多少个?一幅地图, 图上20厘米表示实际距离10千米, 求这幅地图的比例尺?甲地到乙地的实际距离是120千米, 在一幅比例尺是1:6000000的地图上, 应画多少厘米?在一幅比例尺是1:300的地图上, 量得东、西两村的距离是12.3厘米, 东、西两村的实际距离是多少米?朝阳小学的操场是一个长方形, 长120米, 宽75米, 用的比例尺画成平面图, 长和宽各是多少厘米?在比例尺是1:6000000的地图上, 量得两地之间的距离是3厘米, 这两地之间的实际距离是多少千米?右图是一个梯形地平面图(单位: 厘米), 求它的实际面积修一条路, 如果每天修120米, 8天可以修完;如果每天修150米, 几天可以修完?(用比例方法解)同学们做操, 每行站20人, 正好站18行。
用比例解决问题知识点总结一、知识点总结。
1. 比例的意义。
- 表示两个比相等的式子叫做比例。
例如:2:3 = 4:6,因为2×6 = 3×4 = 12。
2. 比例的基本性质。
- 在比例里,两个外项的积等于两个内项的积。
如果a:b = c:d,那么ad = bc。
例如在3:4 = 9:12中,3×12 = 4×9 = 36。
3. 解比例。
- 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
- 例如:解比例x:2 = 3:4,根据比例的基本性质4x = 2×3,4x = 6,解得x=(6)/(4)=(3)/(2)。
4. 正比例关系。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
- 例如:汽车行驶的速度一定,行驶的路程和时间成正比例关系。
因为(路程)/(时间)=速度(一定)。
5. 正比例关系的图像。
- 正比例关系的图像是一条经过原点的直线。
6. 反比例关系。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
- 例如:长方形的面积一定,长和宽成反比例关系。
因为长×宽 = 面积(一定)。
二、20题带解析。
(一)比例的意义和基本性质相关题目。
1. 判断12:15和8:10是否能组成比例。
- 解析:根据比例的意义,判断两个比是否相等。
12:15=(12)/(15)=(4)/(5),8:10=(8)/(10)=(4)/(5),因为(12)/(15)=(8)/(10),所以12:15和8:10能组成比例。
2. 在比例3:5 = 6:x中,求x的值。
- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。
比例尺,按比分配☆知识要点:(1)比例尺的意义:图上距离和实际距离的比叫这幅图的比例尺.注意:比例尺与一般的尺不同,它是一个比,不带有计算单位的名称.求比例尺时,前项与后项的长度一定要化成同级单位,如10厘米∶100米,要把后项的米化成厘米,再算出比例尺,即10厘米∶100米=10∶10000,为了计算简便把比例尺的前项都要化成:“1”,即:10厘米∶100米=10∶10000=1∶1000(2)比例尺的种类表示图上的厘米相当于实际的50千米。
例1.在一幅地图上,用12厘米表示实际120千米,求这幅图的比例尺答:这幅图的比例尺是1∶1000000.例2.在一幅地图上,用2厘米长的线段表示实际的400千米,在这幅地图上量得两地的距离是 6.5厘米,求甲乙两地实际距离是多少?方法1.此题可以先求出比例尺,再求甲乙两地的实际距离.方法3.用倍比方法解:400×(6.5÷2)=1300(千米)答:甲乙两地的实际距离是1300千米.例3.一幅地图的比例尺是答:甲乙两地的实际距离是240千米.(3)按比分配:一个数量按一定的比来进行分配(4)按比分配应用题,解题步骤:求总份数②求各占几分之几③求各得多少例1.某学校把500本故事书,按3∶2分给六年级和五年级,两个年级各得几本书?方法1. 3+2=5方法2. 还可以用归一解2+3=5500÷5=100(本)100×3=300(本)100×2=200(本)答:六年级分300本,五年级分200本.验算的两种方法:方法1.各部分的量加起来等于总量,300+200=500(本)方法2.把所求的量写成比的形式,然后化简300∶200=3∶2☆基础练习:⑥把30克糖溶于100克水中,糖占糖水的重量比是(),糖与水的重量比是().①在比例尺是1∶200000的地图上,量得甲乙两地长3.6厘米,那么在比例尺是,1∶300000的地图上,可量得甲乙两地多远?②一间教教室长10米,宽8米,请用的比例尺画出教室的平面图,并写出图上面积与实际面积的比.③甲乙丙三个数的和是476,它们之间的比是4∶2∶1,甲乙丙三个数各是多少?④某工程队修一条公路,已经修了900米,这时已修的与未修长度的比是3∶7,这条公路全长是多少?⑤甲乙两地相距990千米,一列客车和一列货车分别从两地同时相对开出,4.5小时相遇,客车与货车速度的比是6∶5,客车、货车每小时各行多少千米?⑥甲乙两汽车分别从A、B两地同时相对开出,甲每小时行35千米,乙每小时行40千米,4小时后,两车共行了全程的40%,A、B两地的距离是多少厘米?7、在比例尺是1∶3000000的地图上,8、把一批图书按4∶5∶6分给甲、乙、丙三个班,已知丙班分到36本,甲、乙两班各分到几本?9、修一条路,第一天修了全长的,第二天比第一天多修18米,这时修的和未修的数比是3∶5,这条路有多长?10、甲、乙两仓共存粮840吨,如果把甲仓存粮的运入乙仓,这时甲、乙两仓存粮数量比是3∶4,甲、乙两仓原来各存粮多少吨?☆数学医院:(数学医院里的患者病在哪儿?你能够医治吗?)①把100克盐溶在1000克水中,盐和盐水的比是1∶10.②大正方形的边长是小正方形的2倍,那么大正方形的面积与小正方形面积的比是2∶1.③8∶0.125的最简单的整数比是64.④比的后项,可以是任何一个整数.。
比例的实际应用
一、比例尺
例1、哈尔滨到北京的铁路长1388km,在比例尺是1:40000000的地图上,长是多少厘米?
例2、学校要建一个长80cm、宽60cm的长方形操场,画出操场的平面图。
例3、在比例尺是1:7000000的地图上。
量得两地的距离是6厘米,甲、乙两车从两地相对开出,经过5小时相遇,甲、乙两车的速度之比是3:4,求甲、乙两车每小时各行多少千米?
例4、学校装修一间会议室,原计划用一种边长6分米的方砖铺地,需要192块,如果改用边长8分米的方砖,需要多少块呢?
例5、甲、乙两车的速度比是4:7,两车同时从两地相对开出,在距中点15km处相遇,两地相距多少千米?
例6、某建筑工地要运进一批材料,原计划8辆汽车15次运完,为了提前完成任务,要增加2辆汽车,可以少运几次?。
比例尺和用比例解决问题
一、教学目标
1、熟练求比例尺的方法。
2、掌握放大或缩小的方法。
3、掌握用比例知识解答实际问题的解题思路。
二、教学目标精析
1、比例尺是一个比,分为线段比例尺和数值比例尺。
2、比例尺=实际距离
图上距离(比例尺中,图上距离与实际距离单位必须统一) 经典例题讲解
⒈求比例尺
⑴比例尺分为( )和( )。
⑵在一幅地图上,用3厘米的线段表示18千米的实际距离,这幅地图的比例尺
是( )。
⑶ 一幢教学大楼平面图的比例尺是200
1,表示实际距离是图上距离的( )倍。
(4)一个电子零件的实际长度是2毫米,画在图纸上的长度是4厘米,这张图
纸的比例尺是( )。
A. 1:20
B.20:1
C. 2:1
D.1:2
2、求实际距离
⑴在比例尺是1:6000000的地图上,量得重庆到上海的距离是24厘米,重庆到
上海的实际距离是多少千米?
⑵在比例尺是1000
1的地图上,量得一间房屋地基长8厘米,宽5厘米。
这间房屋实际的长和宽分别是多少?
(4)我是小法官,对错我来判。
⑴实际距离一定比图上距离大。
( )
⑵ 在比例尺是10:1的图纸上,2厘米的线段表示零件实际长度是20厘米。
( )
3、求图上距离
⑴实际距离240千米,画在比例尺是1:8000000的地图上,应画多少厘米?
⑵一个长方形操场,长160米,宽120米。
如果把它画在比例尺是
4000
1的地图上,长和宽各应画多少厘米?
【灵活运用】 活用知识点,展现你风采!
1、在比例尺是50001的地图上,量得一所学校的平面图长6厘米,宽4厘米。
这所学校实际占地面积是多少平方米?
2、在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。
如果
把南京到北京的距离画在比例尺是1:5000000的地图上,应该画多少厘米?
3、在一幅地图上,用5厘米的距离表示实际距离1500千米。
在这幅地图上量得
A 、
B 两地的距离是3.5厘米,A 、B 两地的实际距离是多少千米?一条640千米
的高速公路,在这幅地图上是多少厘米?
4、在比例尺是1:5000000的地图上,量得沈阳和重庆两地相距6厘米。
如果甲、
乙两辆汽车同时从两地相对出发,甲车每小时行48千米,乙车每小时行42千米。
几小时后两车能相遇?
知识点:图形的放大与缩小
前项大为放大比例尺,后项大为缩小比例尺。
经典例题
例1、比例尺是10:1的平面图上,表示( )是( )的10倍。
在这张平面图上量得1分米的长度表示实际长度的( )厘米。
练习
1、在一幅地图上,用10厘米表示80千米的实际距离,则这幅地图
的比例尺是( )。
A.1:80000
B.1:8000
C.1:800000
2、一幅地图的比例尺是1:100,表示把实际距离( )
A.扩大到原来的100倍
B.缩小到原来的100
1 C.无法判断 3.学校操场长110米,宽80米,将它画在练习本上,选用较合适的
比例尺是( )
A.1:200
B.1:2000
C.1:20000
4.将圆的半径按2:1放大后,面积将扩大到原来的( )。
A.2倍 B 、4倍 C 、8倍
5、按1:5将长方形缩小,就是将长方形的面积缩小到原来面积的( ) A.51 B.101 C.25
1
6.在方框内画出操场的平面图(比例尺1:1000)
操场是长为80米,宽为60米的长方形。
7、一个圆柱体建筑物,底面直径是30米,高是20米,按照1:100做成微缩模型,求该模型的表面积是多少平方厘米?
8、北京奥运会主体育场“鸟巢”在2008年夏天奥运会上令人眼前一亮。
它是由瑞士某设计事务所设计,全长330米,宽220米,高69.2米,可容纳将近十万人。
如果用1:2000的比例尺画在纸上,长和宽应各画多少厘米?在图纸上的面积约是多少?
知识点:用比例解决实际问题
1、判断成正反比例(总数已知用正比例,总数未知用反比例)
2、根据正反比例的形式列比例解决问题。
经典例题
1、用边长40厘米的方砖给教室铺地,需要432块,如果用边长60厘米的方砖铺地,需要多少块方砖?
2、一辆客车3小时行135千米,照这样计算,如果行315千米,需要多少小时?
3、一间教室用方砖铺地,用面积为0.16平方米的方砖铺需要300块,如果改用边长为0.5米的方砖铺需要多少块?
3、一种农药,用药液和水按1:1500配制而成。
如果只有3千克的药液,应加水多少千克?
4、运一批药品,每箱装36瓶,需要40只箱子,如果每箱装24瓶,需要多少只箱子?
5、一块长方形地长120米,宽90米。
把它画在比例尺是1:1000的图纸上,长和宽各应画多少厘米?
6、在一幅比例尺是1:350000的地图上,量得甲乙两地的距离是12厘米,甲乙两地的实际距离是多少千米?
7、小王用24元买了6本笔记本,张明也想买几本,可是他妈妈只给他16元,他最多可以买到多少本笔记本?
8、一个工厂要生产1120台电脑,头10天生产了350台,照这样的进度,一共需要多少天才能完成任务?
9、六年(1)班的学生做早操,排成四路纵队,每路纵队有12人,如果要安排每路纵队8人,要分成几路纵队?
10、一个车间,]每台机床占地10平方米,可以放36台。
如果每台机床占地8平方米,可以放多少台机床?
11、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
课后作业
一、想一想,填一填。
1、如果5a=4b(b≠0),那么a∶b=()∶()
如果a∶0.5=8∶0.2,那么a=()
2、8∶2 =24∶() 1.5∶3=( )∶3.4
3、一个数与它的倒数( )比例。
4、大圆的直径是4厘米,小圆的直径是2厘米,大圆和小圆面积最简单的整数比是()。
5、白兔与灰兔只数的比是7∶6,白兔56只,灰兔()只。
6、三角形的面积一定,它的底和高成()比例。
7、在一个比例中,两个外项互为倒数,其中一个内项是1
6
,则另一个内项是
()。
8、右边的比例尺表示图上1厘米相当于地面实际距离()千米,把它改写成数值比例尺是()∶()。
9、每台电视机的价格一定,购买电视机的台数和钱数成()比例。
10、一幢楼的模型高度是7厘米,模型高度与实际高度的比是1∶400,楼房的实际高度是()米。
三、请你来当小裁判。
()1、把一个比的前项扩大2倍,后项缩小2倍,这个比的比值不变。
()2、由2、3、4、5四个数,可以组成比例。
()3、汽车的速度一定,所行路程和时间成正比例。
()4、每小时织布米数一定,织布总米数和时间成反比例。
()5、圆的半径和它的面积成正比例。
四、选择正确答案的序号填在括号内。
1、一个长4cm,宽2cm的长方形按4∶1放大,得到的图形的面积是()cm2。
A、32
B、72
C、128
2、与1
4
∶
1
6
能组成比例的是()。
A、1
6
∶
1
4
B、
1
3
∶
1
2
C、
1
2
∶
1
3
3、如果y= 8x,x和y()比例。
A、成正
B、成反
C、不成
4、全班人数一定,出勤人数和出勤率()比例。
A、成正
B、成反
C、不成
5、铺地的面积一定,砖块的面积和用砖的块数()。
A、成正比例
B、成反比例
C、不成比例
五、解比例。
6 x =
10
7
3∶8=24∶x 15∶3=12∶x
3 4∶
9
10
=x∶
3
5
22.4
x
=
2
3
12.5
2.5
=
x
8
六、用比例知识解决问题。
1、分别按3∶1和1∶2的比画出长方形放大和缩小后的图形。
2、我国“神舟五号”载人飞船着陆在内蒙古的四子王旗。
在一幅比例尺是1∶15000000的地图上,量得四子王旗与北京的距离是3厘米,这两地之间的实际距离大约是多少千米?
3、同学们做操,每行站15人,正好站12行。
如果每行站9人,可以站多少行?
4、甲乙两地间的距离是490千米,一辆汽车5小时行驶了350千米。
照这样计算,行完全程需要几小时?
5、给一间房子铺地,如果用边长6分米的方砖,需要80块。
如果改用边长8分米的方砖,需要多少块?。