职高数学第一轮复习教案-1集合
- 格式:pdf
- 大小:986.91 KB
- 文档页数:6
数学第一册导学案第一章集合 1.1集合及表示方法班级姓名【学习目标】通过本次课的学习探究,我能:1.理解集合的概念,熟练掌握常见数集。
2.掌握表示集合的常用方法:列举法和性质描述法。
【重点难点】教学重点:集合中的元素的特性和表示方法。
教学难点:各种数集的符号应用。
【使用说明与学法指导】1.依据导学案的要求,预习本节内容,完成自主学习。
2.在完成自主学习的基础上,根据要求认真思考合作探究题目,并形成答案。
3.做好总结与反思,提高自己的学习能力。
【知识链接】【课前导学】一、依案预习(通过预习,能列举其他的几个例子吗?有什么共同特点?)赠言:数学是科学的大门和钥匙;没有强有力的数学就不可能有强有力的科学。
定义概述:1.集合:符号表示:2.元素:符号表示:拓展提升:二者的关系如何用数学方式表示?二、探究质疑(通过预习,我的问题和疑问?)1.集合有什么特性?2.能完成“想一想”中的问题吗?有什么特点?三、小组合作(将自学所得在小组内交流)请问常见的数集有哪些?四、班级展示(分组展示学习成果)对比各组的结果,看看哪个组的成果更完善,并评论五、迁移提升(迁移知识,提高能力)列举法:{(1,2)}={1,2}?{(1,2)}={(x,y)|x=1且y=2}?注意:能区分0;{0};Ø 的不同吗?请用列举法写正偶数集:性质描述法:请用性质描述法写正偶数集:提醒:列举法和性质描述法的异同点?六、目标检测(知识回顾)1.完成练习1-1和练习1-22.选做练习册A组和B组的练习题【学后反思】1.集合和2.常见的和3.表示方法和【自我评价】数学第一册导学案第一章集合 1.2集合之间的关系班级姓名【学习目标】通过本次课的学习探究,我能:1.掌握空集、子集、真子集、集合相等的概念。
2.会正确判断集合与集合之间的关系。
【重点难点】教学重点:子集和集合相等。
教学难点:集合之间的关系判断。
【使用说明与学法指导】1.依据导学案的要求,预习本节内容,完成自主学习。
职高高一数学集合教案模板作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。
下面是小编为你准备的职高高一数学集合教案,快来借鉴一下并自己写一篇与我们分享吧!职高高一数学集合教案篇1一、教学内容:椭圆的方程要求:理解椭圆的标准方程和几何性质.重点:椭圆的方程与几何性质.难点:椭圆的方程与几何性质.二、点:1、椭圆的定义、标准方程、图形和性质定义第一定义:平面内与两个定点)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距第二定义:平面内到动点距离与到定直线距离的比是常数e.(0标准方程焦点在x轴上焦点在y轴上图形焦点在x轴上焦点在y轴上性质焦点在x轴上范围:对称性:轴、轴、原点.顶点:,.离心率:e概念:椭圆焦距与长轴长之比定义式:范围:2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a(2)余弦定理:+-2r1r2cos(3)面积: = r1r2 sin ?2c y0 (其中P()三、基础训练:1、椭圆的标准方程为,焦点坐标是,长轴长为___2____,短轴长为2、椭圆的值是__3或5__;3、两个焦点的坐标分别为 ___;4、已知椭圆上一点P到椭圆一个焦点的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴,,则椭圆的离心率为6、方程 =10,化简的结果是;满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系顶点,顶点在椭圆上,则10、已知点F是椭圆的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x≥0)是椭圆上的一个动点,则的最大值是 8 .【典型例题】例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.解:设方程为.所求方程为(2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.解:设方程为.所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为,求以为焦点且过点的椭圆方程.解:(1)由题意可设所求椭圆的标准方程为∴所以所求椭圆的标准方程为(4)求经过点M(, 1)的椭圆的标准方程.解:设方程为例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程(精确到1km).解:建立如图所示直角坐标系,使点A、B、在轴上,则 =OA-O = A=6371+439=6810解得 =7782.5, =972.5卫星运行的轨道方程为例3、已知定圆分析:由两圆内切,圆心距等于半径之差的绝对值根据图形,用符号表示此结论:上式可以变形为,又因为,所以圆心M的轨迹是以P,Q为焦点的椭圆解:知圆可化为:圆心Q(3,0),设动圆圆心为,则为半径又圆M和圆Q内切,所以,即,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以,故动圆圆心M的轨迹方程是:例4、已知椭圆的焦点是|和|(1)求椭圆的方程;(2)若点P在第三象限,且∠ =120°,求.选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.解:(1)由题设||=2||=4∴ , 2c=2,∴b=∴椭圆的方程为.(2)设∠ ,则∠ =60°-θ由正弦定理得:由等比定理得:整理得:故说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P 点横坐标先求出来,再去解三角形作答例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分 PP?@之比为,求点M的轨迹)解:(1)当M是线段PP?@的中点时,设动点,则的坐标为因为点在圆心为坐标原点半径为2的圆上,所以有所以点(2)当M分 PP?@之比为时,设动点,则的坐标为因为点在圆心为坐标原点半径为2的圆上,所以有,即所以点例6、设向量 =(1, 0), =(x+m)+y =(x-m)+y +(I)求动点P(x,y)的轨迹方程;(II)已知点A(-1, 0),设直线y= (x-2)与点P的轨迹交于B、C两点,问是否存在实数m,使得?若存在,求出m的值;若不存在,请说明理由.解:(I)∵ =(1, 0), =(0, 1), =6上式即为点P(x, y)到点(-m, 0)与到点(m, 0)距离之和为6.记F1(-m, 0),F2(m, 0)(0∴ PF1+PF2=6>F1F2又∵x>0,∴P点的轨迹是以F1、F2为焦点的椭圆的右半部分.∵ 2a=6,∴a=3又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2∴ 所求轨迹方程为(x>0,0<m<3)( II )设B(x1, y1),C(x2, y2),∴∴ 而y1y2= (x1-2)?(x2-2)= [x1x2-2(x1+x2)+4]∴ [x1x2-2(x1+x2)+4]= [10x1x2+7(x1+x2)+13]若存在实数m,使得成立则由 [10x1x2+7(x1+x2)+13]=可得10x1x2+7(x1+x2)+10=0 ①再由消去y,得(10-m2)x2-4x+9m2-77=0 ②因为直线与点P的轨迹有两个交点.所以由①、④、⑤解得m2= <9,且此时△>0但由⑤,有9m2-77= <0与假设矛盾∴ 不存在符合题意的实数m,使得例7、已知C1:,抛物线C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.(Ⅰ)当AB⊥x轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;(Ⅱ)若p= ,且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.解:(Ⅰ)当AB⊥x轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为x=1,从而点A的坐标为(1,)或(1,-).∵点A在抛物线上,∴此时C2的焦点坐标为(,0),该焦点不在直线AB上.(Ⅱ)当C2的焦点在AB上时,由(Ⅰ)知直线AB的斜率存在,设直线AB的方程为y=k(x-1).由(kx-k-m)2= ①因为C2的焦点F(,m)在y=k(x-1)上.所以k2x2-(k2+2)x+=0 ②设A(x1,y1),B(x2,y2),则x1+x2=由(3+4k2)x2-8k2x+4k2-12=0 ③由于x1、x2也是方程③的两根,所以x1+x2=从而 = k2=6即k=±又m=-∴m= 或m=-当m= 时,直线AB的方程为y=-(x-1);当m=-时,直线AB的方程为y= (x-1).例8、已知椭圆C:(a>0,b>0)的左、右焦点分别是F1、F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点A、B,M 是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设= .(Ⅰ)证明:(Ⅱ)若,△MF1F2的周长为6,写出椭圆C的方程;(Ⅲ)确定解:(Ⅰ)因为A、B分别为直线l:y=ex+a与x轴、y轴的交点,所以A、B的坐标分别是A(-,0),B(0,a).由得这里∴M = ,a)即解得(Ⅱ)当时,∴a=2c由△MF1F2的周长为6,得2a+2c=6∴a=2,c=1,b2=a2-c2=3故所求椭圆C的方程为(Ⅲ)∵PF1⊥l ∴∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有PF1=F1F2,即 PF1=C.设点F1到l的距离为d,由PF1= =得:=e ∴e2= 于是即当(注:也可设P(x0,y0),解出x0,y0求之)【模拟】一、选择题1、动点M到定点和的距离的和为8,则动点M的轨迹为()A、椭圆B、线段C、无图形D、两条射线2、设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A、 C、2--13、(20__年高考湖南卷)F1、F2是椭圆C:的焦点,在C上满足PF1⊥PF2的点P的个数为()A、2个B、4个C、无数个D、不确定4、椭圆的左、右焦点为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为()A、32B、16C、8D、45、已知点P在椭圆(x-2)2+2y2=1上,则的最小值为()A、 C、6、我们把离心率等于黄金比是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个端点,则等于()A、 C、二、填空题7、椭圆的顶点坐标为和,焦点坐标为,焦距为,长轴长为,短轴长为,离心率为,准线方程为.8、设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,),使得FP1、FP2、FP3…组成公差为d的等差数列,则d的取值范围是.9、设,是椭圆的两个焦点,P是椭圆上一点,且,则得.10、若椭圆 =1的准线平行于x轴则m的取值范围是三、解答题11、根据下列条件求椭圆的标准方程(1)和椭圆共准线,且离心率为.(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点.12、已知轴上的一定点A(1,0),Q为椭圆上的动点,求AQ 中点M的轨迹方程13、椭圆的焦点为 =(3,-1)共线.(1)求椭圆的离心率;(2)设M是椭圆上任意一点,且 = 、∈R),证明为定值.【试题答案】1、B2、D3、A4、B5、D(法一:设,则y=kx代入椭圆方程中得:(1+2k2)x2-4x+3=0,由△≥0得:.法二:用椭圆的参数方程及三角函数的有界性求解)6、C7、(;(0,);6;10;8;;.8、∪9、10、m<且m≠0.11、(1)设椭圆方程.解得,所求椭圆方程为(2)由.所求椭圆方程为的坐标为因为点为椭圆上的动点所以有所以中点13、解:设P点横坐标为x0,则为钝角.当且仅当.14、(1)解:设椭圆方程,F(c,0),则直线AB的方程为y=x-c,代入,化简得:x1x2=由 =(x1+x2,y1+y2),共线,得:3(y1+y2)+(x1+x2)=0,又y1=x1-c,y2=x2-c∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=即 = ,∴ a2=3b2∴ 高中地理,故离心率e= .(2)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2 设 = (x2,y2),∴ ,∵M∴ ()2+3()2=3b2即:)+(由(1)知x1+x2= ,a2= 2,b2= c2.x1x2= = 2x1x2+3y1y2=x1x2+3(x1-c)(x2-c)=4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0又 =3b2代入①得为定值,定值为1.职高高一数学集合教案篇2教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法。
1.1.1 集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】12341.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】5671.1.3 集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】89101.1.3 集合之间的关系(二)【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.1112131.1.4 集合的运算(一)【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】141516171.1.4 集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.18新课我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.AUC U A19新课(2) 已知全集U=R,A={ x | x≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.学生做练习2、3,老师点拨、解答学生疑难.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.201.2.1 充要条件【教学目标】1. 使学生正确理解充分条件、必要条件和充要条件三个概念.2. 能在判断、论证中灵活运用上述三个概念.3. 培养学生思维的严密性.【教学重点】正确理解充分条件、必要条件和充要条件三个概念.【教学难点】正确区分充分条件、必要条件.【教学方法】本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.【教学过程】1.2.2 子集与推出的关系【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】。
第一章集合【课题】1.1集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.介绍倾听引领学生教学过程教师行为学生行为教学意图时间同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习---旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师一一导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的一一运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?说明讲解说明了解领会了解了解新阶段的数学学习特点重点是要树立学生的数学学习信心8*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的1.1集合.介绍说明了解引入教学内容10*创设情景兴趣导入从实教学教师学生教学时过程行为行为意图间问题播放观看际事某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水课件课件例使笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品学生放在指定的篮筐里?自然解决质疑思考的走显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,向知彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.识点归纳面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、引导自我启发水笔、橡皮、裁纸刀、尺子组成了文具集合.分析建构学生而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、体会裁纸刀、尺子就是其对应集合的元素.集合15概念*动脑思考探索新知概念带领由某些确定的对象组成的整体叫做集合,简称集.组成集学生合的对象叫做这个集合的元素.总结理解理解如大于2并且小于5的自然数组成的集合是由哪些元素组归纳整体成个体表示意义一般采用大写英文字母表示集合,小写英文字领会母a,b,c,…表示集合的元素.讲解为后续学拓展说明集合中的元素具有下列特点:习做(1)互异性:一个给定的集合中的元素都是互不相同的;准备(2)无序性:一个给定的集合中的元素排列无顺序;(3)确定性:一个给定的集合中的元素必须是确定的.强调记忆通过不能确定的对象,不能组成集合.例如,某班跑得快的同例题学,就不能组成集合.教学过程教师行为学生行为教学意图时间例1下列对象能否组成集合:进一(1)所有小于10的自然数;(2)某班个子高的同学;步领(3)方程x2-l=。
中等专业学校2023-2024-1教案教学内容2、考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.一般地,由所有属于A又属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.如:{1,2,3,6}∩{1,2,5,10}={1,2}.又如:A={a,b,c,d,e},B={c,d,e,f}.则A∩B={c,d,e}基本性质A∩B= B∩A; A∩A=A; A∩Ф=Ф; A ∩B=A⇔A⊆B注:是否给出证明应根据学生的基础而定.例题例1.设A={x|x>-2},B={x|x<3},求A∩B.解:A∩B={x|x>-2}∩{x|x<3}={x|-2<x<3}.例2.设A={x|x是等腰三角形},B={x|x是直角三角形},求A∩B.解:A∩B={x|x是等腰三角形}∩{x|x是直角三角形}={x|x是等腰直角三角形}例3、已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A . x =3,y =-1 B.(3,-1) C.{3,-1} D.{(3,-1)}分析: 由已知得M ∩N ={(x ,y )|x +y =2,且x -y =4}={(3,-1)}.也可采用筛选法.首先,易知A 、B 不正确,因为它们都不是集合符号.又集合M ,N 的元素都是数组(x ,y ),所以C 也不正确.注: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是求方程组⎩⎨⎧=-=+42y x y x 的解组成的集合.另外要弄清集合中元素的一般形式.课堂练习:1、设A={x|x>-2},B={x|x<3},求A B.2、设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B.基础巩固1.若集合A ={0,1,2,3,4},B ={1,2,4}则A ∪B =( )A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 答案:A 2.设S ={x||x|<3},T ={x|3x -5<1},则S∩T =( ) A .∅ B .{x|-3<x<3}C .{x|-3<x<2}D .{x|2<x<3 答案:C3.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B ={3}, A∩∁UB ={9},则A =( ) A .{1,3} B .{3,7,9}C .{3,5,9}D .{3,9} 答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B为()A.{x=1,或y=2} B.{1,2}C.{(1,2)} D.(1,2)解析:A∩B=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,y∈R且x2+y2=1},B ={(x,y)|x,y∈R且x+y=1,则A∩B的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1⇒x=1,y=0或x=0,y=1,即A∩B={(1,0),(0,1)}.答案:C小结:本节课我们学习了交集的概念和基本性质再次突出交集概念中“且”的含义.课后作业:第18页练习A、B中等专业学校2023-2024-1教案编号:备课组别数学组课程名称数字所在年级一年级主备教师授课教师授课系部授课班级授课日期课题§1.4集合的运算教学目标(1)理解两个集合的并集的含义,会求两个集合的并集(重点、难点);(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。