当前位置:文档之家› 第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量守恒定理讲解学习
第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量

守恒定理

第五章角动量角动量守恒定理

本章结构框图

学习指导

本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。

基本要求

1.理解质点、质点系、定轴刚体的角动量概念。

2.理解定轴刚体的转动惯量概念,会进行简单计算。

3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。

5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定

理,熟练进行有关计算。

6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。

内容提要

1.基本概念

刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即:

I的大小与刚体总质量、质量分布及转轴位置有关。

质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。

表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):

即:

大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

对于力矩的概念应该注意明确以下问题:

?区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。例如:某力对x、y、z轴的力矩就是该力对

原点的力矩在三个坐标轴上的投影:

由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。

?明确质点系内力矩的矢量和恒为零:由于内力总是成对出现,作用力和反作用力等大、反向、在同一直线上,所以对任何参考点内力矩的矢量和恒为零。当然,对任意轴,内力矩的代数和也恒为零。

?明确质点系的合外力矩不等于其外力矢量和的力矩:合外力矩为各外力对同一参考点的力矩的矢量和,即:。由于一般情况下,各外力的作用点的位矢各不相同,所以不能先求合力,再求合力的力矩。但是存在特例:在求重力矩时,可以把系内各质点所受重力平移到质心C,先求出其合力,再由得到重力的合力矩。

由此还可以得到:作用于系统的合外力为零时,合外力矩不一定为零(图5.2);系统的合外力矩为零时,其合外力也不一定为零(图5.3)。

?明确有心力对其力心的力矩恒为零:力的作用线始终通过某定点的力称为有心力。该定点称为力心。显然,有心力对其力心的力臂为零。所以,有心力对其力心的力矩恒为零。

力矩的角冲量(冲量矩):见表5.2

表5.2力矩的角冲量

2.基本规律

角动量定理:质点和质点系角动量定理的微分、积分形式如表5.3所示。请注意刚体定轴转动定律不过是质点系角动量定理在定轴方向上的分量式而已。

表5.3质点和质点系的角动量定理

角动量守恒定律:当质点系所受对某参考点(轴)的合外力矩为零时,质点系对该参考点(轴)的总角动量不随时间变化(表5.4)。角动量守恒定律反映了空间的旋转对称性(见第7章),是自然界普遍适用的基本定律之一,在生活、技术及科学研究中有非常广泛的应用。

表5.4 角动量守恒定律

重点与难点

1.重点

质点,质点系和定轴转动刚体的角动量定义。

刚体定轴转动定律及应用。

质点和质点系角动量定理及应用。

角动量守恒定律及应用

2.难点

①区别动量定理和角动量定理。

②区别动量守恒定律和角动量守恒定律的条件,并能综合运用。

③动量及动量定理、角动量及角动量定理是否与参考系的选择有关。

1.动量及动量定理,角动量与角动量定理是否与参考系选择有关?

质点动量,角动量,由于 v 和 r 都是相对量,与参考系的选择有关,所以,动量和角动量应与参考系的选择有关。

动量定理和角动量定理只适用于惯性系,对于非惯性系,该两定理不成立。

2.区别动量定理与角动量定理

动量定理表示质点或质点系的动量改变与质点或质点系所受的合力的时间累积-- 冲量相对应;角动量定理表示质点或质点系的角动量的改变与质点或质点系所受的外力矩的矢量和的时间累积 -- 角冲量相对应。两者是不同的概念。例如:有力作用下的质点系(太阳地球系统),地球在太阳引力作用下,动量不断发生变化,但角动量却始终不变,因引力通过力心(太阳),对力心的力矩始终为零。

3.动量和角动量守恒的条件质点或质点系所受合外力为零时,质点或质点系的动量将保持不变。质点或质点系对某一参考点或参考轴的合外力矩为零时,质点或质点系对该参考点或参考轴的角动量保持不变。在实际问题中要认真区别两个守恒定律成立的条件。许多情况下,系统对某一参考点的力矩矢量和为零时,系统所受外力不一定为零。即系统角动量守恒时,动量不一定守恒。反之,系统所受合外力为零时,合外力矩不一定为零,即系统动量守恒时,角动量不一定是守恒。(参看教材P.91【例2】)。

对质点系而言,内力总是成对出现,大小相等方向相反,作用在同一直线上,因此,内力的矢量和及内力对某一参考点或参考轴的力矩的矢量和始终为零,因此,内力不改变系统的总动量,内力矩不改变系统的

角动量。

例1水分子的形状如图5-2所示。从光谱分析得知水分

子对 AA′轴的转动惯量是,对

BB′轴的转动惯量是。试由此

数据和各原子的质量求出氢和氧原子间的距离 d 和夹角。假设各原子都可当质点处理。

解:由图可得

此二式相加,可得

上二式相比,可得

例2一质量m = 2200kg 的汽车以的速度

沿一平直公路开行。求汽车对公路一侧距公路d= 50m 的一点的角动量是多大?对公路上任一点的角动量又是多大?

解:如图5-3所示,汽车对公路一侧距公路d= 50m的一点P1的角动量的大小为

汽车对公路上任一点P2的角动量的大小为

例3两个质量均为m 的质点,用一根长为2a、质量可忽略不

计的轻杆相联,构成一个简单的质点组。如图5-4所示,两质

点绕固定轴OZ以匀角速度转动,轴线通过杆的中点O与杆的夹角为,求质点组对O点的角动量大小及方向。

解: 设两质点A、B在图示的位置,它们对O点的角动量的大小相等、方向相同(与OA和 m v组成的平面垂直)。

角动量的大小为

例4如图5-5所示,转轴平行的两飞轮Ⅰ和Ⅱ,

半径分别为R1、R2。对各自转轴的转动惯量分别

为J1、J2。Ⅰ轮转动的角速度为,Ⅱ轮不转

动。移动Ⅱ轮使两轮缘互相接触。两轴仍保持平

行,由于摩擦,两轮的转速会变化。问转动稳定

后,两轮的角速度各为多少?

辨析:首先分析系统所受的外力,再看这些外力对定轴的合外力矩是否为零,如果为零应用角动量守恒定律,否则应用角动量定理。

解:轮Ⅰ、轮Ⅱ接触时,轮Ⅰ受到重力m1g,轴给轮的力T1,以及摩擦力f 1,轮Ⅱ施加的正压力N1;轴Ⅱ受到重力m2g,轴给轮的力T2,以及摩擦力f 、轮Ⅰ施加的正压力N2,以及外加力F。f1和f2大小相等、方向相反,对轮Ⅰ2

和f2是一对内力,它们的力矩和不会改变系统的总和轮Ⅱ组成的系统来说,f

1

角动量。轮Ⅰ、轮Ⅱ系统受到的外力T1、T2、m1g和m2g,它们对O1轴或者O2

或者O2的角动量都不守恒。所以应对轴的合外力矩皆不为零,这个系统对O

1

轮Ⅰ、轮Ⅱ分别运用角动量定理。

对Ⅰ轮,设顺时针转动为正向

(1)

对Ⅱ轮,设逆时针转动为正负

(2)

联立(1)、(2)两式可得

(3)

转动稳定时,两轮缘的线速度相等,即

(4)

联立(3)、(4)解得

例5唱机的转盘绕过盘心的固定竖直轴转动,唱片放上后将受转盘的摩擦力作用随转盘移动。设唱片可以看成是半径为R的圆盘,唱片质量为m,唱片与转盘之间摩擦系数为μ,求唱片刚放上去时受到的摩擦力矩M f和唱片由放上去

到具有角速度所需的时间t

1

解:唱片之所以转动是因受到转盘施加的力矩的作用,也就是摩擦力矩,它是唱片的动力矩。

在唱片上选为半径为r,宽度为d r的圆环,如图5-6所示。它受的动力矩为

上式中,是唱片的密度。

整块唱片受的摩擦力矩为

视唱片为刚体,据转动定律

分离变量有

积分上式

例6如图5-7所示,两物体质量分别为m1和m2,定滑轮的质量为m,半径为r,可视作均匀圆盘。已知m

与桌面间的滑动摩擦系数为,求m1下落的加速

2

度和两段绳子中的张力各是多少?设绳子和滑轮间无相对滑动,滑动轴受的摩擦力忽略不计。

解:

对m1,由牛顿第二定律

对m2,由牛顿第二定律

对滑轮,用转动定律

又由运动学关系,设绳在滑轮上不打滑

联立解以上诸方程,可得

例7如图5-8所示。两个圆轮的半径分别为R1和R2,质量分别为M1和M2。二者都可视为均匀圆柱体而且同轴固结在一起,可以绕一水平固定轴自由转动。今在两轮上各绕以细绳,绳端分别挂上质量是m1和m2的两个物体。求在重力作用下,m2下落时轮的角加速度。

解:如图示,由牛顿第二定律

对m1:

对m2:

对整个轮,由转动定律

又由运动学关系

联立解以上诸式,即可得

例8 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO′转动,设

大小圆柱体的半径分别为R和

r,质量分别为 M和

m,绕在两柱体上的细绳分别与物体m 1和物体m2相连,m1和m2 分别挂在圆柱体的两侧,如图5-9(a)所示。设R = 0.20m ,r = 0.10m,m = 4kg,M = 10kg,m1= m2= 2kg,且开始时m1、m2离地均为h = 2m,求:

(1)柱体转动时的角加速度;

(2)两侧细绳的张力;

(3)m1经多长时间着地?

(4)设m1与地面作完全非弹性碰撞,m1着地后柱体的转速如何变化?

解:设a1、a2分别为m1、m2的加速度,为柱体角加速度,方向如图5-9(b)所示。

(1)m1、m2的平动方程和柱体的转动方程如下:

式中:; ; ;

联立(1)、(2)、(3)式,解得角加速度为

图5-9(a)

代入数据后得

(2)由(1)式得

由(2)式得

(3)设m1着地时间为t,则

(4)m1着地后静止,这一侧绳子松开。柱体继续转动,因只受另一侧绳子拉力的阻力矩,柱体转速将减小,m2减速上升。

讨论:如果只求柱体转动的角加速度,可将柱体、m1、m2选做一个系统,系统受的合外力矩,则加速度

本题第二问还要求两侧细绳的张力,故采用本解法是必要的,即分别讨论柱体的转动、m1和m2的平动。

例9一轻绳绕过一质量可以不计且轴光滑的滑轮,质量皆为m 的甲、乙二人分别抓住绳的两端从同一高度静止开始加速上爬,如图5-10所示。

(1)二人是否同时达到顶点?以甲、乙二人为系统,在运动中系统的动量是否守恒?机械能是否守恒?系统对滑轮轴的角动量是否守恒?

(2)当甲相对绳的运动速度u是乙相对绳的速度2倍时,甲、乙二人的速度各是多少?

解:(1)甲、乙二人受力情况相同,皆受绳的张力T,重力mg,二人的运动相同,因为

所以二人的加速度相同,二人的速度为

因初速度v0 = 0,二人在任一时刻的速度相同,上升的高度相同,所以同时到达顶点。

以二人为系统,因二人是加速上升,所受合外力2(T-mg) > 0,故系统的动量不守恒。以人和地球为系统,张力T对系统做功,因而系统的机械能不守恒。显然人在上升中机械能在样加。但

甲、乙二人相对滑轮轴的合外力矩(M = TR -TR + mgR-mgR)等于零,系统对轴的角动量守恒。

(2)设甲的速度、乙的速度为,从解(1)知二人的速度相等,即

,这个结果也可用角动量守恒得到,因

设绳子的牵连速度为v0,设滑轮左侧绳子的v0向下,那么滑轮右侧的v0一定向上,根据速度合成定理

所以

讨论:由于人用力上爬时,人对绳子的拉力可能改变,因此绳对人的拉力也可能改变,但甲、乙二人受力情况总是相同,因此同一时刻甲、乙二人的加速度和速度皆相同,二人总是同时到达顶点。

例10哈雷慧星绕太阳运动的轨道是一个椭圆。它离太阳最近的距离是

,此时它的速率是。它离太阳最远时的速率是,这时它离太阳的距离r2是多少?

解:慧星运行受的引力指向太阳,所以它对太阳的角动量守恒,它在走过离太阳最近或最远的地点时,速度的方向均与对太阳的径矢方向垂直,所以角动量守恒给出

由此得

例11太阳的热核燃料耗尽时,它将急速塌缩成半径等于地球半径的一颗白矮星。如果不计算质量散失,那时太阳的转动周期将变为多少?太阳和白矮星均按均匀球体计算,目前太阳的自转周期按26d计。

解:由太阳的自转角动量守恒可得

= 3.1(min)

例12一质量为M,半径为R,并以角速度旋转着的飞轮,某瞬时有一质量为m的碎片从飞轮飞出。假设碎片脱离圆盘时的瞬时速度方向正好竖直向上,如图5-11所示。求余下圆盘的角速度、角动量。

解:破裂瞬间,系统对转轴的合外力矩为零,系统角动量守恒

余下圆盘角速度不变。

余下圆盘的角动量

例13赤道上有一高楼,楼高h(图5-12)。由于地球自转,楼

顶和楼根对地心参考系都有线速度。

(1)证明:楼顶和楼根的线速度之差为,其中为地球自转角速度。(2)证明:一物体由楼顶自由下落时,由于地球自转的影响,着地点将在楼根

东侧约处。这就是落体偏东现象。计算h = 30m时,着地点偏东的距离。(此结果利用了物体下落时“水平”速度不变这一近似处理。实际上物体下落时应该是地球对自转轴的角动量保持不变。利用这一点,并取楼高对

地球半径之比的一级近似,则可得更有为准确的结果。)证:

(1)楼顶的线速度为楼根的线速度为。二者之差。

(2)将楼所在处的地面局部视为向东以速度平移,则落体下落时间为

而着地时偏东的距离为

代入上式可得

例14地球的自转轴与它绕太阳的轨道平面的垂线间的夹角是23.5o(图5-13)。由于太阳和月亮对地球的引力产生力矩,地球的自转轴绕轨道平面的垂线旋进,旋进一周需时间约26000a。已知地球绕自转轴的转动惯量为

。求地球自旋角动量矢量变化率的大小,即,并求太阳和月亮对地球的合力矩多大?

解:

太阳和月亮对地球的合力矩的大小为

例15一个内壁光滑的圆环型细管,正绕竖直光滑固定轴OO′自由转动。管是刚性的,环半径为R。一质量为m的小球静止于管内最高点A处,如图5-14所示。由于微小扰动,小球向下滑动,试判决小球在管内下滑过程中,下列三种说法是否正确,并说明理由。

(a)地球、环管与小球系统的机械能不守恒。

(b)小球的动量不守恒。

(c)小球对OO′轴的角动量守恒。

辨析

(a)不正确。对小球、环管、地球系统,外力为零,外力的功当然为零,环管与小球间的正压力N和N′是一对非保守内力。在小球下滑过程中,小球受管壁的压力N(与管壁垂直)始终与小球相对管壁的速度方向(与管壁相切)垂直,所以这一对内力做功之和为零,而且与参考系的选择无关。系统中只有保守内力(重力)做功,系统的机械能守恒。

(b)正确。小球在下滑过程中始终受到管壁的压力和重力,而此二力的方向不同,所以合力不为零,使得小球的动量不断变化。

(c)不正确。小球在下滑过程中受重力和管壁的压力,重力和OO′轴平行,重力的轴向力矩恒为零,但管壁对小球的压力方向不通过OO′轴,对OO′轴有力矩,所以小球对OO′的角动量在变化,角动量不守恒。例如小球在位置A 对OO′轴的角动量为零,在B处小球有垂直于环半径的水平分速度,它对OO′轴的角动量不再是零,到达最低点C时,对OO′轴的角动量又等于零。

运用刚体定轴转动定律解题

转动定律描述刚体定轴转动中的瞬时关系,常常用来求解角加速度,一般步骤为:

1)隔离物体:即明确研究对象。

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

刚体的角动量及守恒定律

刚体的角动量及守恒定律 一、选择题 1、一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃。在该人把此二哑 铃水平收缩到胸前的过程中,对于人、哑铃与转动平台组成的系统来说,正确的 是: 。 A.机械能守恒,角动量守恒; B.机械能守恒,角动量不守恒; C.机械能不守恒,角动量守恒; D.机械能不守恒,角动量不守恒; 2、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 3、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今 有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力, 在碰撞中守恒的量是 。 (A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量. 4、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同 速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与 杆粘在一起转动,则这一系统碰撞后的转动角速度应为 。 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 。 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 6、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直 光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地 面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向 分别为 。 (A) ??? ??=R J mR v 2ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作 系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 。 (A) 动量守恒. (B) 机械能守恒. O v 俯视图

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

角动量守恒定律

第四节 角动量守恒定律 一、角动量 1. 质点对定点的角动量 (1)v m r p r L ?=?= (力矩:F r M ?=) (2)说明:r 指质点相对于固定点O 的位置矢量;指质点的动量;v 指质点的速度 (3)大小:=L αsin rmv , (4)方向:(右手法则)v r ?向 (5)单位:12-s kgm (6)量纲:12-T ML 2. 刚体对定轴的角动量 (将刚体分解为质点组)∑∑=???==????=???=ωI w r m L L w r m v r m L i i i oz i i i i i i 22 ω I L = 此式对质点也适用 3. 角动量定理: (1) 公式:dt dL dt I d dt d I I M ====)(ωωβ 或dL dt M =? (2)文字表述:刚体对某一给定转轴或点的角动量对时间的变化率等于刚体所受到的对同一转轴或点的和外力矩的大小。 (3)说明:dt M ?称冲量矩,表示力矩的时间积累效果,单位:牛·米·秒 若何外力矩M=0,则L=IW=恒量 4. 转动定律的普遍形式 dt dI dt d I dt L d M ωω +== 二、角动量守恒 1、角动量守恒的条件:质点所受相对于参考点的力矩的矢量和等于零;在有心 力作用下,质点相对于力心的角动量守恒。 2、应用:

例1:花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快;再如:跳水运动员的“团身--展体”动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水。 3、习题: 1.质点做直线运动时,其角动量( )(填一定或不一定)为零。 答案: 不一定 2.一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量( )常量;若该质点做匀加速直线运动,则它相对于点O的角动量( )常量,角动量的变化率( )常量。(三空均填是或不是)答案: 是; 不是; 是。 3.一质点做匀速圆周运动,在运动过程中,质点的动量( ),质点相对于圆心的角动量( )。(两空均填守恒或不守恒) 答案:不守恒;守恒。 4.一颗人造地球卫星的近地点高度为h 1 ,速率为υ 1 ,远地点高度为h 2, 已知地 球半径为R.求卫星在远地点时的速率υ 2.. 解:因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。 根据角动量守恒定律得 r 1 mυ 1 = r 2 mυ 2 且r 1=R+ h 1 r 2 =R+ h 2 解得υ 2 =(R+ h 1 /R+ h 2 )υ 1

物理动量守恒定律练习题20篇.docx

物理动量守恒定律练习题20 篇 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板恢复原长时,甲的速度大小为 2m/s ,此时乙尚未与 P.现将两滑块由静止释放,当弹簧 P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】 v 乙=6m/s.I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 左的方向为正方向,由动量守恒定律可得: 和,对两滑块及弹簧组成的系统,设向 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、 C,三球的质量分别为m A=1kg、 m B=2kg、 m C=6kg,初状态BC球之间连着一根轻质弹簧并处于 静止, B、C 连线与杆垂直并且弹簧刚好处于原长状态, A 球以 v0=9m/s 的速度向左运动,与同 一杆上的 B 球发生完全非弹性碰撞(碰撞时间极短),求: (1) A 球与 B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中 B 球的最小速度. 【答案】( 1);(2);(3)零. 【解析】 试题分析:( 1) A、 B 发生完全非弹性碰撞,根据动量守恒定律有:

碰后 A、 B 的共同速度 损失的机械能 (2) A、 B、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,速,A、 B 的加速度沿杆向右,直到弹簧恢复原长,故A、 B 在前, C 在后.此后C 向左加A、 B 继续向左减速,若能减速到零 则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时 A、 B 的速度,C的速度 可知碰后A、B 已由向左的共同速度减小到零后反向加速到向右的,故 的最小速度为零. 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】 A、 B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定 律和机械能守恒定律求出 A 球与 B 球碰撞中损耗的机械能.当B、C 速度相等时,弹簧伸 长量最大,弹性势能最大,结合B、 C 在水平方向上动量守恒、能量守恒求出最大的弹性 势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 B 3.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和m B=3.0kg .用轻弹簧拴接,放在光 滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

角动量守恒定律

《大学物理》作业 No.4 角动量守恒定律 一、选择题 1.已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ ](A) (B) (C) (D) 2.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ](A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大。 3. 两个均质圆盘A和B密度分别为和,若>,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和,则 [ ](A) > (B) > (C) = (D) 、哪个大,不能确定 4.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: [ ](A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。 (2) 作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等、形状和大小不同的两个物体,在相同力矩的作用下,它 们的角加速度一定相等。 在上述说法中,

动量守恒定律的典型例题

动量守恒定律的典型例题 【例1】 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? [] A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.车.枪和子弹组成的系统动量守恒 D.车.枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小【例2】 一个质量M=1kg的鸟在空中v0=6m/s沿水平方向飞行,离地面高度h=20m,忽被一颗质量m=20g沿水平方向同向飞来的子弹击中,子弹速度v=300m/s,击中后子弹留在鸟体内,鸟立即死去,g=10m/s 2.求:鸟被击中后经多少时间落地;鸟落地处离被击中处的水平距离. 【例3】 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,脱钩后牵引力不变,且每一部分所受摩擦力均正比于它的重力,则当最后一节车厢滑行停止的时刻,前部列车的速度为 [] 【例4】 质量m1=10g的小球在光滑的水平桌面上以v1=30cm/s的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二

个小球的质量为m2=50g,速率v2=10cm/s.碰撞后,小球m2恰好停止.那么,碰撞后小球m1的速度是多大,方向如何? 【例5】 甲.乙两小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的总质量共为M=30kg,乙和他的冰车的总质量也是30kg.游戏时,甲推着一质量为m=15km的箱子,和他一起以大小为v0=2m/s 的速度滑行.乙以同样大小的速度迎面滑来.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免和乙相碰. 【例6】 两辆质量相同的小车A和B,置于光滑水平面上,一人站在A 车上,两车均静止.若这个人从A车跳到B车上,接着又跳回A 车,仍与A车保持相对静止,则此时A车的速率 [] A.等于零B.小于B车的速率 C.大于B车的速率D.等于B车的速率【例7】甲.乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度v,水平向后方的乙船上抛一沙袋,其质量为m.设甲船和沙袋总质量为M,乙船的质量也为M.问抛掷沙袋后,甲.乙两船的速度变化多少? 【分析】 由题意可知,沙袋从甲船抛出落到乙船上,先后出现了两个相互作用的过程,即沙袋跟甲船和沙袋跟乙船的相互作用过程.在这两个过程中的系统,沿水平方向的合外力为零,因此,两个系

开普勒定律的推导及应用

开普勒定律的推导及应用 江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀 随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下: (1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。 至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。 一、开普勒第一定律 1.地球运行的特点 (1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。 (2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。 2.地球运行轨迹分析 地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。 若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。 当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1) 若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2) (1)式代入(2)式得:(3)

由式(3)得:(4) 由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考 虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中的号改写为更普遍的形式极坐标方程。 则地球的运行轨迹方程为(5) (5)式与圆锥曲线的极坐标方程吻合,其中(p为 决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所 以地球绕太阳运行的轨迹为椭圆。 3.人造星体的变轨 由于运载火箭发射能力的局限,人造星体往往不能直接由火箭送入最终运行的空间轨道,若要使人造星体到达预定的轨道,要在地面跟踪测控网的跟踪测控下,选择合适时机向卫星上的发动机发出点火指令使人造星体的速度增加(机械能增加),进而达到改变卫星运行轨 道的目的。如图所示最初人造星体直接由火箭送入近地轨道1,此时,偏 心率e=0,人造星体运行的轨迹为圆;当到达A点时,人造星体发动机点火,此时

7.角动量守恒定律

《大学物理》练习题 No 7 角动量守恒定律 班级__________学号 _________ 姓名 _________ 成绩 ________ 基本要求: (1) 掌握质点和刚体在定轴转动中的角动量、角动量定理、角动量守恒定律及应用 内容提要: 1. 质点的角动量 a. 质点对点的角动量:v m r p r L ?=?= b. 对固定轴的角动量:ω J L = 2. 刚体对定轴的角动量:等于刚体对此轴的转动惯量与角速度的乘积 即:ω z z J L = 3.刚体的角动量定理: 外力矩对系统的角冲量(冲量矩)等于角动量的增量. 即:00 ωω J J L d dt M L L t t -==?? 若J 可以改变,则:000 ωω J J L d dt M L L t t -==?? 4.角动量守恒定律:当物体所受的合外力矩为零时,物体的角动量保持不变, 即00 ωωω J J J ==或 常矢量 角动量守恒定律的两种情况: a. 转动惯量保持不变的单个刚体 00,0ωωωω ===则时,当J J M b. 转动惯量可变的物体。 . 保持不变就增大,从而减小时,当就减小; 增大时,当ωωω J J J 一、选择题 1.刚体角动量守恒的充分必要条件是 [ ] (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变

2.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 [ ] (A) J ω 0/(J +mR 2) . (B) J ω 0/[(J +m )R 2]. (C) J ω 0/(mR 2) . (D) ω 0. 3.如图7.1所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为 [ ] (A) mv/(ML ) . (B) 3mv/(2ML ). (C) 5mv/(3ML ). (D) 7mv/(4ML ). 二、填空题 1. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = . 2.质量均为70kg 的两滑冰运动员,以6.5s m /等速反向滑行,滑行路线的垂直距离为10m 。当彼此交错时,各抓住10m 长绳子的两端,然后相对旋转。则各自对中心的角动量=L ,当各自收绳到绳长为5m 时,各自速率为=v 。 3.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = . 三、计算题 1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm . 绳系重物m 2后的张力? v /2 图7.1 图7.2 图7.3

高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解 一 动量 冲量 动量定理 1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球对手的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确. 二 动量守恒定律 2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是 A B C D 答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+1 4m v 乙, 解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =1 2gt 2,水平方向对甲、 乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确. 3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求: (1) 碰撞前瞬间A 的速率v ; (2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .

相关主题
文本预览
相关文档 最新文档