角动量例题
- 格式:ppt
- 大小:466.50 KB
- 文档页数:22
角动量计算题
角动量是描述物体旋转运动的物理量,它的计算公式是角动量等于物体质量乘以物体的角速度与距离旋转中心的垂直距离的乘积。
角动量的单位是千克·米/秒。
在实际的物理问题中,常常需要计算物体的角动量,以便分析物体的旋转运动规律和研究力学、天体物理等领域的问题。
下面就来看几个角动量计算题:
1. 一个质量为2千克的物体以每秒5转的角速度绕一个固定的点旋转,旋转半径为1.5米。
求该物体的角动量。
解析:根据角动量的计算公式,角动量L = mvr,其中m为物体的质量,v为角速度,r为旋转半径。
将已知数据代入计算公式得到L = 2kg × (5 × 2π rad/s) × 1.5m = 30π kg·m/s。
2. 一个刚体以每秒2.5转的角速度绕自己的对称轴旋转,刚体的质量为3千克,旋转半径为0.8米。
求该刚体的角动量。
解析:同样根据角动量的计算公式,角动量L = mvr,将已知数据代入计算公式得到L = 3kg × (2.5 × 2π rad/s) × 0.8m = 12π kg·m/s。
以上两个例题都是求解物体或刚体在旋转运动中的角动量,通过角动量的计算可
以得到物体或刚体的旋转动量大小。
角动量的大小与物体的质量、角速度和旋转半径有关,所以在计算角动量时要对这些因素进行合理的选择和计算。
同时,还需要注意角速度的单位为弧度/秒,旋转半径的单位为米,质量的单位为千克。
牛顿力学中的角动量守恒练习题及解答牛顿力学中的角动量守恒练习题及解答在牛顿力学中,角动量守恒是一个重要的概念。
它指的是如果一个物体受到的合外力矩为零,则该物体的角动量将保持不变。
本文将介绍一些关于角动量守恒的练习题,并提供解答。
练习题一:一个半径为r的质点以速度v绕一个定点做匀速圆周运动。
求该质点的角动量。
解答一:根据角动量的定义:L = r × p其中,r为质点与定点的距离,p为质点的动量。
由于质点做匀速圆周运动,所以其速度和角动量的方向是沿着圆周平面的法向量。
而质点的动量则是质量和速度的乘积,即p = mv。
所以,角动量的大小为L = r × mv = mvr角动量的方向与速度方向垂直,并由右手法则确定。
对于这道题目,要求的只是角动量的大小,所以最终答案为L = mvr。
练习题二:一个竖直绕一个定点转动的细长杆长L,质量为m。
当杆的角速度为ω时,求杆的角动量。
解答二:根据角动量的定义:L = r × p其中,r为质点与定点的距离,p为质点的动量。
对于细长杆,可以将其看作是质点,且该质点的动量为质量乘以质点的速度,即p = mLω(ω为角速度)。
而关于杆的角速度,根据直线运动的关系可得:v = ωr(v为线速度,r为质点与定点的距离)。
将v代入p = mv中,得到:p = mLωr将以上结果代入角动量的定义中,可得到:L = r × p = r × (mLωr) = mL²ω所以杆的角动量大小为L = mL²ω。
练习题三:一个质量为m的质点,以速度v沿一条与水平方向夹角θ的斜面下滑,质点的轨迹是一条半径为R的圆弧,求质点的角动量。
解答三:首先需要计算质点的速度与轨迹的关系。
根据斜面的性质和牛顿力学的知识,可以得到:mgsinθ = mv²/R其中,g为重力加速度。
将以上结果代入角动量的定义中,可得到:L = r × p = mRsinθ × mv = m²R²sinθ所以质点的角动量大小为L = m²R²sinθ。
⾓动量⾓动量、刚体习题4-1 如本题图,⼀质量为m的质点⾃由降落,在某时刻具有速度v.此时它相对于A、B、C三参考点的距离分别为d1、d2、d3。
求:(1)质点对三个点的⾓动量;(2)作⽤在质点上的重⼒对三个点的⼒矩。
4-2 ⼀质量为m的粒⼦位于(x,y)处,速度为v=v x i+ v y j,并受到⼀个沿-x⽅向的⼒f.求它相对于坐标原点的⾓动量和作⽤在其上的⼒矩。
4-3 电⼦的质量为9.1×10-31kg,在半径为5.3×10-11m的圆周上绕氢核作匀速率运动。
已知电⼦的⾓动量为h/2π,(h为普朗克常量,等于6.63×10-34J?s),求其⾓速度。
4-4 如本题图,圆锥摆的中央⽀柱是⼀个中空的管⼦,系摆锤的线穿过它,我们可将它逐渐拉短。
设摆长为l1时摆锤的线速度为v1,将摆长拉到l2时,摆锤的速度v2为多少?圆锥的顶⾓有什么变化?4-5 如本题图,在⼀半径为R、质量为m的⽔平转台上有⼀质量是它⼀半的玩具汽车。
起初⼩汽车在转台边缘,转台以⾓速度ω绕中⼼轴旋转。
汽车相对转台沿径向向⾥开,当它⾛到R/2处时,转台的⾓速度变为多少,动能改变多少?能量从哪⾥来?4-6 在上题中若转台起初不动,玩具汽车沿边缘开动,当其相对于转台的速度达到v时,转台怎样转动?4-7 两质点的质量分别为m1、m2(m1> m2),拴在⼀根不可伸长的绳⼦的两端,以⾓速度ω在光滑⽔平桌⾯上旋转。
它们之中哪个对质⼼的⾓动量⼤?⾓动量之⽐为多少?4-8 在上题中,若起初按住m2不动,让m1绕着它以⾓速度ω旋转。
然后突然将m2放开,求以后此系统质⼼的运动,绕质⼼的⾓动量和绳中的张⼒。
设绳长为l。
4-9 两个滑冰运动员,体重都是60kg,他们以6.5m/s的速率垂直地冲向⼀根10m长细杆的两端,并同时抓住它,如本题图所⽰。
若将每个运动员看成⼀个质点,细扦的质量可以忽略不计。
(1)求他们抓住细杆前后相对于其中点的⾓动量;(2)他们每⼈都⽤⼒往⾃⼰⼀边收细杆,当他们之间距离为5.0m时,各⾃的速率是多少?(3)求此时细杆中的张⼒;(4)计算每个运动员在减少他们之间举例的过程中所作的功,并证明这功恰好等于他们动能的变化。
5.3角动量例题例1、在一根长为3l的轻杆上打一个小孔,孔离一端的距离为l,再在杆的两端以及距另一端为l处各固定一个质量为M的小球。
然后通过此孔将杆悬挂于一光滑固定水平细轴O上。
开始时,轻杆静止,一质量为m的铅粒以v0的水平速度射入中间的小球,并留在其中。
求杆摆动的最大高度。
例2、质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.例3、两个质量均为m的质点,用一根长为2L的轻杆相连。
两质点以角速度ω绕轴转动,轴线通过杆的中点O与杆的夹角为θ。
试求以O为参考点的质点组的角动量和所受的外力矩。
例4、小滑块A位于光滑的水平桌面上,小滑块B位于桌面上的小槽中,两滑块的质量均为m,并用长为L、不可伸长、无弹性的轻绳相连。
开始时,A、B之间的距离为L/2,A、B间的连线与小槽垂直。
突然给滑块A一个冲击,使其获得平行与槽的速度v0,求滑块B开始运动时的速度例5、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?例6、一质量为M a,半径为a的圆筒A,被另一质量为M b,半径为b的圆筒B同轴套在其外,均可绕轴自由旋转。
在圆筒A的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。
在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。
打开小孔,沙子向外飞出并附着于B筒的内壁上。
设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t 时刻两筒旋转的角速度。
*例7、如图,CD、EF均为长为2L的轻杆,四个端点各有一个质量为m的质点,CE、DF为不可伸长的轻绳,CD的中点B处用一细线悬于天花板A点。
高中物理力学中角动量守恒问题的解题技巧在高中物理力学学习中,角动量守恒是一个非常重要的概念。
它在解决一些与旋转运动有关的问题时起着至关重要的作用。
本文将通过具体题目的举例,来说明角动量守恒问题的解题技巧,并且尝试给出一些一般性的指导。
例题1:一质点质量为m,在水平光滑桌面上以速度v做匀速圆周运动,半径为r。
一个质量为M的物体以速度V撞击该质点,并与其发生完全弹性碰撞。
碰撞后,质点的圆周运动半径变为R。
求M与m的质量比。
解析:这道题目涉及到了角动量守恒和动量守恒两个重要的物理定律。
我们可以首先分析碰撞前后的角动量和动量是否守恒。
碰撞前,质点的角动量为L1 = mvr,物体的角动量为L2 = MRV。
由于碰撞是完全弹性碰撞,所以碰撞后质点和物体的速度方向不变,仅仅改变了大小。
因此,碰撞后质点的角动量为L3 = mVR,物体的角动量为L4 = MRv。
根据角动量守恒定律,碰撞前后的总角动量应该相等,即L1 + L2 = L3 + L4。
代入数值,得到mvr + MRV = mVR + MRv。
同样地,根据动量守恒定律,碰撞前后的总动量也应该相等,即mv + MV = mV + Mv。
通过以上两个方程,我们可以解得M与m的质量比。
这道题目的解题关键在于正确运用角动量守恒和动量守恒的定律,并将它们转化为数学方程进行求解。
在解题过程中,需要注意将碰撞前后的角动量和动量分别表示出来,并且注意角动量的正负方向。
例题2:一个物体以速度v绕一个半径为r的固定点做匀速圆周运动。
现在将该物体的速度加倍,求此时物体的角动量相对于原来增加了多少倍。
解析:这道题目考察的是角动量与动量的关系。
根据角动量的定义,L = mvr,其中m为物体的质量,v为物体的速度,r为物体到固定点的距离。
当物体的速度加倍时,新的角动量为L' = 2mv(r/2) = 2L。
可以看出,物体的角动量相对于原来增加了2倍。
这道题目的解题关键在于理解角动量与动量的关系,即角动量正比于动量。