动量守恒和角动量守恒定律——清华大学物理
- 格式:pdf
- 大小:944.21 KB
- 文档页数:26
第3章 动量守恒 角动量守恒上一章我们研究了牛顿定律,特别是牛顿第二定律给出了力的瞬时作用规律。
实际上,力对物体的作用总是要延续一段时间。
在这段时间内,力的作用将积累起来产生一个总效果。
力的时间积累效应的规律,就是动量定理。
把动量定理应用于质点系,导出一个重要的守恒定律——动量守恒定律。
对用于质点系,引入质心的概念,并说明了外力和质心运动的关系。
然后,研究和动量概念相关的、描述物体转动特征的重要的物理量——角动量。
在牛顿第二定律的基础上,导出角动量变化率和外力矩的关系——角动量定理,并进一步导出了另一条重要的守恒定律——角动量守恒定律。
动量守恒定律、角动量守恒定律以及与之相关的动量定理、角动量定理和能量定理深刻反映了机械运动与其他运动形式相互转化之间的关系,具有普遍的意义,它们是自然界最基本、最普遍的规律。
这一章我们着重研究动量守恒定律、角动量守恒定律以及与之相关的动量定理、角动量定理。
3.1 冲量与动量定理3.1.1 冲量物体运动状态的变化必须在物体运动的过程中受到力的作用,力作用到质点上,可以使质点的动量或速度发生变化。
在许多实际情况下,我们要考虑力按时间积累的效果。
这一效果可以直接从牛顿第二定律得出:1、牛顿第二定律的微分形式P d dt F = (3.1-1)式中乘积dt F 就表示力在时间dt 内的积累量,叫做在时间dt 内质点所受合外力的冲量。
此式表明:在时间dt 内质点所受合外力的冲量等于在同一时间内质点动量的增量。
这一关系叫做动量定理的微分形式,实际上是牛顿第二定律公式数学形式的变化。
2、冲量的定义将(3.1-1)式两边对1t 到2t 这段时间积分,则有⎰⎰=2121t t P P P d dt F (3.1-2), 将 dt F I t t ⎰=21(3.1-3)称为质点的冲量。
3.1.2 质点的动量定理(3.1-3)式表示在1t 到2t 这段时间内合力的冲量。
(3.1-3)式的物理意义是:在1t 到2t 这段时间内,合外力作用在质点上的冲量等于质点在该时间间隔内的动量的增量,这就是质点的动量定理。
角动量守恒定律和动量守恒定律角动量守恒定律和动量守恒定律是物理学中两个重要的守恒定律,它们在描述物体运动过程中起着关键作用。
我们来了解一下角动量守恒定律。
角动量是描述物体旋转状态的物理量,它与物体的转动惯量和角速度有关。
当一个物体不受外力或外力矩的作用时,其角动量守恒。
简单来说,这意味着物体的角动量在运动过程中保持不变。
例如,在没有外力作用下,一个旋转的陀螺会保持自己的角动量,即使它的方向和速度发生改变。
接下来,我们来了解一下动量守恒定律。
动量是描述物体运动状态的物理量,它与物体的质量和速度有关。
当一个系统不受外力作用时,其总动量守恒。
简而言之,这意味着系统中各个物体的动量之和在运动过程中保持不变。
例如,在碰撞过程中,两个物体之间的动量可以相互转移,但总动量保持不变。
角动量守恒定律和动量守恒定律是基于牛顿力学的基本原理推导而来的。
牛顿第一定律指出,当一个物体受到的合力为零时,物体将保持静止或匀速直线运动。
而牛顿第二定律则表明,物体的加速度与作用在其上的力成正比,与物体的质量成反比。
基于这两个定律,我们可以推导出角动量守恒定律和动量守恒定律。
在物理学中,守恒定律是描述自然界中一些重要物理量保持不变的规律。
角动量守恒定律和动量守恒定律是这些守恒定律中的两个重要的例子。
它们不仅在经典力学中有广泛应用,而且在其他领域,如量子力学和相对论中也有重要的意义。
角动量守恒定律和动量守恒定律的应用非常广泛。
在物理学中,它们被用于解释各种运动现象,如行星的运动、天体的自转、杠杆原理等。
在工程学中,它们被用于设计和优化各种机械系统,如汽车发动机、航天器姿态控制系统等。
在生物学中,它们被用于研究动物的运动机制和人体的运动生理学。
在化学和物理化学中,它们被用于解释分子反应和化学平衡等现象。
角动量守恒定律和动量守恒定律是描述物体运动过程中重要的守恒定律。
它们在物理学的各个领域都有广泛的应用。
通过研究和理解这两个定律,我们可以更好地理解和解释自然界中的各种现象。
动量守恒定律和角动量守恒定律辨析
牛顿动量守恒定律:牛顿动量守恒定律认为,物体对外力的作用与动量的变化之间有一定的联系,也就是说,动量守恒定律要求物体作用外力时,物体的动量平衡不变。
角动量守恒定律:角动量守恒定律认为,物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。
牛顿动量守恒定律和角动量守恒定律之间具有明显的不同:
1、它们所涉及的物理量不同:牛顿动量守恒定律涉及的物理量是物体的动量,而角动量守恒定律涉及的是物体的角动量。
2、它们的守恒的内容不同:牛顿动量守恒定律要求物体作用外力时,物体的动量平衡不变,而角动量守恒定律则要求物体受到外力作用时,可能会受到旋转扭转影响,产生角动量,角动量的总量也是不变的。
3、它们的应用领域不同:牛顿动量守恒定律可以用来描述物体作用外力后的运动状态,而角动量守恒定律则可以用来描述物体在受到外力作用后,受到正好用来反作用外力的转动情况。
从上面的对比可以看出,牛顿动量守恒定律和角动量守恒定律各有其适用的范围,牛顿动量守恒定律适合于物体作用外力后的线性运动学状态,而角动量守恒定律则可以描述物体受到外力
作用后受到旋转变形的状态,能够更好地说明物体之间的相互作用状态。