无网格法介绍
- 格式:ppt
- 大小:1007.00 KB
- 文档页数:26
多物理场模拟仿真第一部分多物理场概述 (2)第二部分仿真模拟技术发展 (3)第三部分数值求解方法介绍 (6)第四部分计算流体力学应用 (8)第五部分热传导与温度调控 (11)第六部分电磁场模拟与优化 (13)第七部分光学现象与仿真应用 (15)第八部分多物理场耦合问题研究 (17)第一部分多物理场概述括对流、热传导、电磁学、力学等多个物理学科的交叉,要求研究人员具备丰富的知识和技能。
在过去的几十年中,随着计算机技术的飞速发展和数值方法的不断创新,多物理场模拟仿真技术得到了广泛应用。
例如,在航空航天领域,需要模拟气动弹性、传热、结构强度等多种物理现象。
在能源方面,需要模拟温度、压力、化学反应等物理参数,以提高能源转换效率和减少污染排放。
此外,在生物医学、环境科学等领域也都需要进行多物理场模拟仿真来提高研究水平。
然而,多物理场模拟仿真的实现并不容易。
它涉及到多种不同的物理现象,需要精确描述每个物理场的相关方程,还需要处理不同时间尺度、空间尺度和物理单元之间的复杂相互作用。
因此,多物理场模拟仿真需要强大的计算能力和先进的算法支持。
为了解决这些问题,研究人员开发了各种多物理场模拟仿真方法。
其中最常用的方法是有限元法,该方法通过将连续体离散化为网格节点,并利用插值函数将物理量从节点扩展到整个区域,从而求解偏微分方程。
此外,还有有限差分法、边界元法、谱元法等多种方法可供选择。
尽管已经取得了一些进展,但多物理场模拟仿真仍然是一个充满挑战的领域。
随着物理问题的复杂性和计算能力的不断提高,新的方法和算法仍需不断研发,以满足日益增长的需求。
第二部分仿真模拟技术发展仿真模拟技术是一种通过计算机模拟真实世界中的物理现象和过程的技术,在科研、工程设计和教学等领域具有广泛的应用。
随着计算能力的提高和数值方法的发展,仿真模拟技术不断进步,为人类社会的发展做出了巨大的贡献。
早在 20 世纪 40 年代,仿真模拟技术就已经开始萌芽。
无网格法的应用无网格方法的研究应用与进展引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA 是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。
近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。
与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。
克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。
无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。
是一种很有发展的数值模拟分析方法。
目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds 无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。
这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。
无网格方法国内外研究的进展无网格法起源于20 世纪70 年代。
Perrone,Kao 最早采用任意网格技术将传统有限差分进行扩展,提出了有限差分法,这可看作无网格技术的最初萌芽。
1977年Lucy 和Monaghan 首次提出了基于拉格朗日公式的光滑质点流体动力法(Smoothed Particle Hydrocynamics:SPH),这是一种纯拉格朗日法,无需网格。
无网格法(无网格流体模拟)简介无网格法(无网格流体模拟)是一种用于模拟流体行为的数值计算方法。
与传统的网格法相比,无网格法不需要预先划分网格,因此可以灵活地模拟各种复杂的流体现象。
无网格法的主要优势在于能够处理大变形、大位移和自适应网格等问题,在计算效率和精度方面都有较好的表现。
背景在过去的流体模拟中,通常使用网格来离散模拟空间。
然而,传统的网格法存在一些缺点。
首先,网格法需要预先划分网格,这在处理复杂几何体或大变形情况下往往具有挑战性。
其次,网格法在处理液体表面的运动时可能会出现不准确或不稳定的情况。
最后,网格法需要对整个领域进行求解,计算成本相对较高。
无网格法的基本原理无网格法通过将流体领域内的粒子进行离散化,并采用不同的数值计算技术来模拟流体的行为。
在传统的无网格法中,粒子通常是拉格朗日粒子(Lagrangian Particle),它们可以自由移动和变形,并且可以在计算中重新连接和分离。
无网格法的核心是描述流体的运动方程。
在拉格朗日粒子的模拟中,通常使用基于质点的方法来计算粒子运动的方程。
在每个时间步长中,根据质点的受力和刚体动力学原理,可以确定质点的加速度、速度和位置。
通过不断迭代计算所有质点的运动方程,可以得到流体领域内的流体运动状态。
除了描述粒子运动方程之外,无网格法还需要考虑粒子之间的相互作用和液体的流动特性。
为了模拟粒子之间的相互作用,可以使用诸如领域分解、体积渗透、弹簧网格等技术。
而为了模拟流体的流动特性,可以使用诸如斯托克斯流体方程、连续介质力学等数值方法。
无网格法的应用无网格法在计算流体力学和计算物理等领域都具有广泛的应用。
在流体力学方面,无网格法可以模拟复杂的流体现象,如自由表面流动、液滴碰撞、流体-结构相互作用等。
在计算物理方面,无网格法可以用于模拟固体材料的变形和破裂行为,如弹性体的形变、破坏和碎裂等。
此外,无网格法还具有适应性网格的特点,可以根据流体的运动状态自动调整粒子的分布和连接,从而实现更高的计算效率和精度。
无网格法(Mesh-less method)无网格方法(Mesh-less method)是在数值计算中不需要生成网格,而是按照一些任意分布的坐标点构造插值函数离散控制方程,就可方便地模拟各种复杂形状的流场。
该法大致可分成两类:一类是以Lagrange方法为基础的粒子法(Particle method),如光滑粒子流体动力学(Smoothed particle hydrodynamics,简称SPH)法,和在其基础上发展的运动粒子半隐式(Moving-particle semi-implicit,简称MPS)法等;另一类是以Euler方法为基础的无格子法(Gridless methods),如无格子Euler/N—S算法(Gridless Euler/Navier-Stokes solution algorithm)和无单元Galerkin法(Element free Galerkin,简称EFG)等。
无网格方法可以方便地利用坐标点计算模拟复杂形状流场计算,但不足之处是在高雷诺数流动时提高数值计算精度较困难。
无网格方法中比较常见的还有径向基函数方法(Radious Basis Function),主要使用某径向基函数(如(MQ)f(r)=r^5)的组合,来逼近原函数。
吴忠敏院士在这方面有比较突出的工作。
最近在了解有限元法和无网格法,介绍中知道它们都是数值计算方法,主要区别一个是基于网格的,一个是无需借助于网格的。
但从有关数值计算方法的书和其他资料中,基本上没有见提到有限元法和无网格法,数值计算方法的书中基本上主要内容都包括:插值和拟合、数值微分和数值积分、求解线性方程组的直接法和迭代法、计算矩阵特征值和特征向量和常微分方程数值解等等。
而在有限元法和无网格法的具体算法计算过程中也都会用到上述数值计算方法中的某些。
首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解:1、网格划分有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。
单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。
无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。
节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。
几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。
(a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代图1 网格-节点示意图2、形函数的产生:有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。
有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。
形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。
无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。
3、边界条件有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。
无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。
,拉格朗日乘子法和罚函数法是两种基本的方法。
4、系统离散方案有限元法是建立在虚功原理上的。
若给出控制微分方程,对于固体结构或流体, 都可以从加权残值法推出更普遍意义上的有限元公式,其可以得到一个对称的刚度矩阵。