数控系统中直线与圆弧插补算法的探讨
- 格式:docx
- 大小:36.59 KB
- 文档页数:2
多轴联动常用插补算法
多轴联动是指在数控加工过程中,多个轴同时协同运动以完成复杂零件的加工。
为了实现精确且高效的多轴联动,需要采用合适的插补算法进行控制。
常见的多轴联动插补算法包括以下几种:
1. 直线插补:直线插补是最基本的插补算法,用于控制轴在直线轨迹上运动。
直线插补算法根据预设的轨迹,通过控制电机转速和加速度,使轴按照指定的速度和加速度曲线运动。
2. 圆弧插补:圆弧插补用于控制轴在圆弧轨迹上运动。
与直线插补类似,圆弧插补算法也需要根据预设的轨迹,控制电机转速和加速度,使轴按照指定的速度和加速度曲线运动。
3. 样条插补:样条插补是一种基于多项式的插补方法,可以实现较为复杂的曲线轨迹。
通过拟合多项式曲线,样条插补可以控制轴在不同坐标系下实现平滑过渡,提高加工精度。
4. 电子凸轮插补:电子凸轮插补是一种基于数字信号处理的插补方法,通过预设的数字信号序列来控制轴的运动。
电子凸轮插补可以实现复杂的轨迹和动作,但相对于其他插补算法,其精度较低。
5. 全闭环运动控制插补:全闭环运动控制插补是一种基于反馈控制的插补方法,通过对各轴实际位置与电机实际位置之间的偏差进行实时调整,实现高精度的多轴联动。
全闭环运动控制插补可以保证多轴联动轮廓精度、定位精度及重复定位精度,同时保证伺服电机稳定运行。
在实际应用中,根据不同的加工需求和设备条件,可以选择合适的插补算法来实现多轴联动。
同时,为了提高插补算法的性能和稳定性,还可以采用诸如优化算法、PID控制等方
法进行优化。
第一象限逆圆弧为例,讨论圆弧的插补方法。
如图8-4 所示,设要加工圆弧为第一象限逆圆弧AB ,原点为圆心O ,起点为A (xo ,y 0),终点为B (x e ,y e )半径R ,瞬时加工点为P (x i ,y i ),点P 到圆心距离为Rp<0+△y>0-△x <0+△x <0+△y>0-△x<0-△y <0-△y>0+△x yx图8-2 第一象限直线插补轨迹图 图 8-3第一象限直线插补程序框图图12345X123YF>0p(xi,yi)A(Xi,Yi)F<0开始初始化Xe ,Y e ,JF≥0?+x 走一步F←F -Y e F←F -X e-y 走一步YNJ ←J-1J =0?Y结束若点P 在圆弧内则,则有x i2+y j2=R2p<R2即x i2+y j2-R2 < 0显然,若令F i,j= x i2+y j2-R2(8-4)图8-4 逆圆弧插补则有:(1)F i,j= F i,j=0, 则点P在圆弧上(2)F i,j >0则点P在圆弧外则(3)F i,j<0则点P在圆弧不则常将8-4称为圆弧插补偏差判别式。
当F i,j≥时,为逼近圆弧,应向-x方向进给一步;当F i,j<0时,应向+y 方向走一步。
这样就可以获得逼近圆弧的折线图。
与直线插补偏差计算相似,圆弧插补的偏差的计算也采用递推的方法以简化计算。
若加工点P(x i,y i)在圆弧外或者圆弧上,则有:F i,j=x i2+y j2-R2≥0 为逼近该圆沿-x方向进给一步,移动到新加工点P(x i=1,y i),此时新加工点的坐标值为x i+1=x i-1,y i=y i新加工点的偏差为:F i+1,j=(x i-1)2+y i2-R2=x i2-2x i+1+ y i2-R2= x i2+ y i2-R2+1即F i+1,j= F i,j-2x i+1 (8-5)若加工P(x i,y i)在圆弧内,则有F i,j=x i2+y j2-R2<0若逼近该圆需沿+y方向进给一步,移到新加工点P(x i,y i),此时新加工点的坐标值图8-5 第一象限圆弧插补程序框图为新加工点的偏为:F i,j+1=x i2+(y i+1)2-R2=x i2+ y i2+1 -R2= x i2+ y i2-R2+1+2y iF i,j+1= F i,j-2y i+1 (8-6)从(8-5)和式(8-6)两式可知,递推偏差计算仅为加法(或者减法)运算,大大降低了计算的复杂程度。
圆弧插补算法原理1.前言圆弧插补算法是数控机床中重要的一项技术。
在数控机床中,众多的刀具、工件都是基于圆弧进行加工的。
插补算法可以使机床从一点到另一点进行流畅的直线、圆弧插补,实现高精度加工。
本文将详细介绍圆弧插补算法的原理。
2.圆弧插补简介数控机床涉及的加工图形可以由直线段和圆弧段构成。
直线段部分可以通过简单的加减法进行位置计算,而圆弧部分则必须采用一定的数学方法进行刻画和计算。
圆弧插补算法就是对这些圆弧部分进行计算和插补的过程。
3.坐标系在圆弧插补的过程中,需要使用两个坐标系:工件坐标系和机床坐标系。
工件坐标系是工件本身固有的坐标系,与机床无关;机床坐标系则是数控机床固有的坐标系。
在进行插补计算时,通常以机床坐标系为基准进行计算,最终将计算结果转换回工件坐标系。
4.插补公式基于圆弧插补的原理,我们可以计算出一个圆弧上任意位置的坐标值。
以工件坐标系为基准,圆弧可以表示为(x,y)=(xc+r* cosθ,yc+r*sinθ),其中xc和yc分别是圆心的坐标,r是半径,θ是弧度(角度)。
圆心坐标和半径可以从CAD绘图程序得到,弧度可以通过下面的公式进行计算:θ=α-(α-β)*t/T其中α和β分别是起点角度和终点角度,t是时间,T是总时间。
在计算过程中,时间从0到T递增,从起点角度开始到终点角度结束,弧度也随之变化,从而实现圆弧插补。
5.插补精度在数控机床加工过程中,精度是非常重要的一项指标。
由于圆弧插补通常需要基于数学公式进行计算,因此插补精度直接受到计算精度的影响。
在实际应用中,我们需要尽可能精确的计算和控制每个插补点的坐标值,以保证整个加工过程的精度和质量。
6.圆弧插补算法的应用圆弧插补算法广泛应用于数控机床、自动化设备、机器人等领域。
在金属加工、木材加工、注塑加工、玻璃加工等领域中,圆弧插补技术都扮演着重要的角色。
在未来,随着自动化程度的不断提高,圆弧插补算法的应用范围还将不断扩大。
7.总结圆弧插补算法是一种基于数学计算的加工技术。
数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。
数控系统中直线与圆弧插补算法的探讨导言数控系统是一种广泛应用于机械加工领域的自动化控制系统。
其中,直线与圆弧插补算法是数控系统中的核心算法之一。
本文将深入探讨直线与圆弧插补算法的原理、方法以及应用。
直线插补算法直线插补是数控系统中最基本的插补运动方式之一。
它的目标是实现两个给定点之间的直线路径。
在直线插补算法中,我们需要考虑以下几个方面:1.起始点和终点的坐标:为了实现直线插补,我们需要明确起始点和终点的空间坐标。
2.运动速度和加速度:直线插补需要考虑加速度和速度的变化,以实现平滑而又快速的运动。
3.插补精度:直线插补的精度决定了运动轨迹的平滑度和误差控制的能力。
直线插补算法的基本思路是将插补路径划分为多个小段,然后通过控制每个小段的加速度和速度,以达到平滑运动的效果。
常用的直线插补算法包括线性插补算法和B样条插补算法。
线性插补算法线性插补算法是最简单和最基础的直线插补算法之一。
它假设插补路径是一条直线,并根据起始点和终点的坐标以及插补周期,计算出每个插补周期点的位置。
线性插补算法的优点是计算简单,实现容易,但缺点是对于曲线路径的插补效果较差。
B样条插补算法B样条插补算法是一种基于样条曲线的插补算法。
在B样条插补算法中,我们将插补路径表示为一条样条曲线,并通过控制样条曲线的控制点来实现运动轨迹的控制。
B样条插补算法的优点是对曲线路径的插补效果较好,但是计算复杂度较高。
圆弧插补算法除了直线插补,圆弧插补算法也是数控系统中常用的插补方式之一。
圆弧插补用于实现两个给定点之间的圆弧路径。
与直线插补类似,圆弧插补算法也需要考虑起始点和终点的坐标、运动速度和加速度等因素。
圆弧插补算法的基本思路是通过指定起始点、终点和圆心,计算出圆弧路径上每个插补点的位置。
常用的圆弧插补算法包括圆心法和半径法。
圆心法圆心法是一种基于圆心坐标的圆弧插补算法。
在圆心法中,我们通过指定起始点、终点和圆心的坐标,计算出圆弧路径上每个插补点的位置。
实验三数控系统的插补实验一、实验目的了解数控系统直线插补和圆弧插补的原理及其实现方法,通过插补算法的可视化,加深对常用插补算法的了解。
应用标准G代码编程实现直线插补和圆弧插补,掌握标准G代码的直线插补和圆弧插补编程方法。
二、实验要求1.掌握数控机床插补原理。
2.掌握数控机床直线和圆弧插补。
三、实验原理1.基本概念机床数字控制的核心问题之一,就是如何控制刀具与工件的相对运动。
加工平面直线或曲线需要两个坐标轴联动,对于空间曲线或曲面则需要三个或三个以上坐标轴联动,才能走出其轨迹。
插补(interpolation)的实质上是决定联动过程中各坐标轴的运动顺序、位移、方向和速度。
具体来说,插补方法是指在轮廓控制系统中,根据给定的进给速度和轮廓线形的要求,在已知数据点之间插入中间点。
每种方法又可能用不同的计算方法来实现,具体的计算方法称之为插补算法。
插补的实质就是数据点的密化。
数控系统中完成插补工作的装置叫插补器。
根据插补器的不同结构,可分为硬件插补器和软件插补器两大类。
硬件插补器由专用集成电路组成,它的特点是运算速度快,但灵活性差:软件插补器利用微处理器通过系统程序完成各种插补功能,这种插补器的特点是灵活易变,但速度较慢。
随着微处理器运算速度和存储容量的提高,现代数控系统大多采用软件插补或软、硬件插补相结合的方法。
2.插补算法按数学模型来分,有一次(直线)插补,二次(圆、抛物线等)插补及高次曲线插补等,大多数控机床都具有直线插补和圆弧插补。
根据插补所采用的原理和计算方法的不同,有许多插补方法,目前应用较多的插补方法分为脉冲增量插补和数字增量插补两类。
脉冲增量插补又称为基准脉冲插补,适用于以步进电动机驱动的开环数控系统中。
在控制过程中通过不断向各坐标轴驱动电机发出互相协调的进给脉冲,每个脉冲通过步进电动机驱动装置使步进电动机转过一个固定的角度(称为步距角),并使机床工作台产生相应的位移。
该位移称为脉冲当量,是最小指令位移。
数控系统中直线与圆弧插补算法的探讨
数控系统中直线与圆弧插补算法的探讨
数控系统是现代制造业中不可或缺的一部分,它的主要功能是将数字
化的指令转化为机器能够理解的运动控制信号,从而实现对机器的精
确控制。
在数控系统中,直线与圆弧插补算法是非常重要的一部分,
它们决定了机器在加工过程中的精度和效率。
直线插补算法是数控系统中最简单的插补算法之一,它的原理是将直
线分割成若干个小段,然后通过控制机器在每个小段上的运动来实现
整条直线的加工。
在实际应用中,直线插补算法的精度和效率都非常高,因此被广泛应用于各种数控加工设备中。
与直线插补算法相比,圆弧插补算法则更加复杂。
圆弧插补算法的原
理是将圆弧分割成若干个小段,然后通过控制机器在每个小段上的运
动来实现整个圆弧的加工。
在实际应用中,圆弧插补算法的精度和效
率都非常高,但是由于其复杂性,需要更高的计算能力和更复杂的控
制算法来实现。
在实际应用中,直线和圆弧插补算法经常会同时使用。
例如,在加工
一个复杂的零件时,可能需要使用直线插补算法来加工一些直线部分,
而使用圆弧插补算法来加工一些曲线部分。
在这种情况下,数控系统需要能够自动切换不同的插补算法,并且保证整个加工过程的精度和效率。
总的来说,直线和圆弧插补算法是数控系统中非常重要的一部分,它们决定了机器在加工过程中的精度和效率。
在实际应用中,直线和圆弧插补算法经常会同时使用,数控系统需要能够自动切换不同的插补算法,并且保证整个加工过程的精度和效率。