控制运动轨迹的插补原理
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
时间分割插补法的原理
时间分割插补法是指在控制系统中,将所需的控制信号按照时间分段的方式进行插补计算,从而实现平滑的运动控制。
其原理主要包括以下几个步骤:
1. 目标路径生成:根据设定的起点和终点,计算出路径函数,即描述运动变化的函数。
2. 时间分割:将整个运动过程分割成若干个时间段。
时间段的长度可以根据需要进行设定,一般情况下,长度越短,插补的精度越高。
3. 插补计算:对每个时间段进行插补计算,根据路径函数和时间段长度,计算出每个时间点上的位置、速度和加速度。
4. 控制命令生成:根据插补计算的结果,生成相应的控制命令,包括位置命令、速度命令和加速度命令。
5. 控制执行:根据生成的控制命令,控制执行器(如伺服电机)进行相应的运动控制,使得实际运动与期望运动一致。
通过时间分割插补法,可以实现平滑的运动轨迹控制,并且能够避免速度和加速度的突变,从而提高系统的稳定性和精度。
同时,插补计算的精度可以通过时间段长度的调整来进行控制,以满足不同应用的需求。
教学课题控制运动轨迹的插补原理
教学课时 2
教学目的掌握逐点比较插补法原理(直线插补,圆弧插补)及插补运算
教学难点插补运算
教学重点插补原理
教学方法讲授图示公式分析
教具准备电脑黑板粉笔教材
教学过程
教学步骤(流程)教学内容设计意图
及依据
新课学习一、逐点比较插补法原理(一种边走边找的近似法)
原理:数控装置在加工轨迹的过程中,逐点计算和判别加工
偏差,以控制坐标进给方向,从而按规定的图形加工出合格
的工件。
1.偏差判别:判别加工点对规定几何轨迹的偏差位置,然后
决定机床滑板的走向。
2.进给:控制机床滑板进给一步,向规定的轨迹逼近,缩小
偏差。
3.偏差计算:计算加工点对规定轨迹的偏差,作为下一步判
别走向的依据。
4.终点判断:判断是否到达程序的加工终点。
若到达,则停
止插补。
否则,继续重复上述过程,直至加工出所要求的轮
廓形状。
5.逐点比较法插补的工作流程图11-15
二、直线插补,圆弧插补
1.平面直线插补
①.加工偏差判别式图11-16
解析教材,
理清思路
抓重点
tanαi = Y i/X i,tanα = Y e/X e
比较αi与α的大小只需比较tanαi与tanα的大小即可。
因为
Tanαi- tanα= Y i/X i- Y e/X e
=(X e Y i-X i Y e)/X i X e
由于X i X e>0 所以只需比较X e Y i与X i Y e的大小。
设 F ij = X e Y i- X i Y e则有
F ij =0时,加工点M(X i,Y i)在直线上
F ij >0时,加工点M(X i,Y i)在直线上方
F ij <0时,加工点M(X i,Y i)在直线下方
②.偏差计算
第一象限偏差与进给的关系
F≥0时X轴正方向进给,F i+1,j=F i,j-Y e
F<0时Y正方向进给,F i,j+1=F i,j+X e
③.终点判断(两种判断方法)
a.利用动点所走过的总步数是否等于坐标之和来判断。
b.取点坐标Xe和Ye的较大者作为终判计数器的初值,并称此值为长轴,另一个值为短轴。
2.平面圆弧插补
①.加工偏差判别式图11-17
R M>R 加工点M在圆外,为缩小偏差,应控制机床滑板向圆图示、公式讲解逐点比较插补法原理及偏差计算
内进给一步,现选择向X轴负方向进给一步。
R M<R 加工点M在圆内,应控制机床滑板向圆外沿Y轴正方向进给一步
R M=R 加工点M在圆上,但为了继续加工也必须进给,进给方向通常与R M>R相同
由圆的方程式:X²+Y²=R²得平面插补的判别式为:
F ij=R M² -R²=X i²+Y i²-R²
当F ij≥0时,向X轴负方向进给一步
F ij<0时,向Y轴正方向进给一步
②.偏差计算
F ij≥0向X轴负方向进给一步。
则
F i+1,j=(X i-1)²+Y i²-R²
=X i²-2X i+1+Y i²
=F ij-2X i+1
F ij<0向Y轴正方向进给一步
F i,j+1=F ij+2Y i+1
③.终点判断(一般取45°线为界来确定)
圆弧插补的终点判断和直线插补一样,但要注意以下两点:
a.每个坐标方向的进给总步数等于终点坐标值与起点坐标
值之差的绝对值,即X方向为|Xe-X0|;Y方向为|Ye-Y0|。
b.在取单方向总步数作为终判计数器的初值时,计数方向的
选取决定于终点附近的情况:若圆弧终点靠近Y轴,则X 方向最后到达终点值,所以计数器方向应取X方向(记为Gx);若终点靠近X轴,同理,计数方向应取Y方向(记为Gy)
3.象限坐标变换
a.偏差计算公式不变。
但在进给方向上,也就是脉冲分配时,按不同的象限和圆弧走向进行转换,根据实际象限和圆弧走向来确定。
转换关系见表 11-1
b.同样的方法适用于坐标的变换。
如果要插补YZ平面内的直线或圆弧,只需以Y代X,Z代Y即可。
同理,如果插补在XZ平面内进行,就以Z代Y,X不变。
这种方法使我们可以用两坐标插补的设备,很容易实现三坐标机床的控制,从而加工出各种立体形状的工件。
逐点比较插补法的优点:
逐点比较发运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,而且输出脉冲速度变化小,调节方便,因此应用很普遍。
课堂小结本次课主要掌握逐点比较插补法的原理、偏差的计算、象限及坐标的转换
板书提纲
板书设计
插补的工作流程——判别式——逐点比较插补法的优点。