数字增量式直接函数法插补算法
- 格式:docx
- 大小:36.74 KB
- 文档页数:2
数据插补的方法一、引言数据插补是一种常见的数据处理方法,用于填补缺失值或补全不完整的数据序列。
在实际应用中,由于各种原因(如传感器故障、网络异常等),数据可能会出现缺失或不完整的情况,这时候就需要使用数据插补方法来处理这些问题。
本文将介绍几种常见的数据插补方法,并对其优缺点进行分析和比较。
二、常见的数据插补方法1. 线性插值法线性插值法是最简单、最基础的数据插补方法之一。
它假设缺失值在两个已知数据点之间,且在这两个点之间变化是线性的。
具体地,设已知两个点 $(x_1, y_1), (x_2, y_2)$,则对于 $x_1 \leq x \leqx_2$ 的任意 $x$,可以通过以下公式计算其对应的 $y$ 值:$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$线性插值法简单易懂,计算速度快,但它假设变化是线性的,在某些情况下可能会产生较大误差。
2. 拉格朗日插值法拉格朗日插值法是一种多项式插值方法,它通过已知数据点构造一个多项式函数,再用该函数计算缺失值。
具体地,设已知 $n+1$ 个点$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$,则可以构造一个 $n$ 次多项式函数:$$L(x) = \sum_{i=0}^n y_i \prod_{j=0,j\neq i}^n \frac{x - x_j}{x_i - x_j}$$对于任意 $x$,都可以用 $L(x)$ 计算其对应的 $y$ 值。
拉格朗日插值法可以精确地拟合已知数据点,但当数据量较大时计算复杂度较高,并且容易产生龙格现象(即在插值区间两端出现震荡的现象)。
3. 样条插值法样条插值法是一种分段多项式插值方法,它将整个插值区间划分为若干小区间,在每个小区间内构造一个低次数的多项式函数。
具体地,在每个小区间内,设已知两个点 $(x_i, y_i), (x_{i+1}, y_{i+1})$,则可以构造一个三次样条函数:$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$要求 $S_i(x)$ 在 $[x_i, x_{i+1}]$ 上满足以下条件:- 在插值点处,$S_i(x_i) = y_i$,$S_{i}(x_{i+1})=y_{i+1}$;- 在插值点处,$S'_i(x_{i})=S'_{i-1}(x_{i})$,即两个相邻区间的导数相等;- 在插值点处,$S''_i(x_{i})=S''_{i-1}(x_{i})$,即两个相邻区间的二阶导数相等。
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
插补方法的分类
1)基准脉冲插补(脉冲增量插补)
每次插补结束时向各运动坐标轴输出一个基准脉冲序列,驱动各坐标轴进给电机的运动。
每个脉冲使坐标轴产生1个脉冲当量的增量,代表刀具或工件的最小位移;脉冲数量代表刀具或工件移动的位移量;脉冲序列频率代表刀具或工件运动的速度。
基准脉冲插补特点:运算简洁,用硬件电路实现,运算速度快。
适用步进电机驱动的、中等精度或中等速度要求的开环数控系统。
有的数控系统将其用于数据采样插补中的精插补。
基准脉冲插补方法:逐点比较法、数字积分法、比较积分法、数字脉冲乘法器法、最小偏差法、矢量判别法、单步追踪法、直接函数法等。
应用较多的是逐点比较法和数字积分法。
2)数据采样插补(数据增量插补、时间分割法)
采纳时间分割思想,依据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段(又称轮廓步长)进行数据密化,以此来靠近轮廓曲线。
着重解决两个问题——
(1)如何选择插补周期T;
(2)如何计算在一个插补周期内各坐标轴的增量值△x或△y。
闭环、半闭环系统采纳数据采样插补方法。
数据采样插补方法:直线函数法、扩展数字积分法、二阶递归扩展数字积分法、双数字积分插补法等。
数控原理与系统课程设计课题名称:数字积分插补法直线插补专业:班级:姓名:指导老师:数控原理与系统课程设计任务书班级姓名学号课程设计的目的1)了解连续轨迹控制数控系统的组成原理。
2) 掌握数字积分插补的基本原理。
3)掌握数字积分插补的软件实现方法。
二、课程设计的任务数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。
数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。
其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。
由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。
本次课程设计具体要求如下:1)数字积分插补法基本原理2)数字积分插补法插补软件流程图3)算法描述(逐点比较法算法在VB中的具体实现)4)编写算法程序清单5)软件运行仿真效果二、课程设计报告要求1)按课程设计任务5点要求为标题,编写课程设计报告,最后加一点:此次课程设计小结(包括设计过程中所碰到的问题、解决办法以及有关设计体会等)。
2)字数在3000字左右。
3)仿真软件一份。
三、学生分组学 生 姓 名数控原理与系统课程设计说明书一、数字积分法直线插补的基本原理数字积分法是利用数字积分的方法,计算刀具沿各坐标轴的位移,使得刀具沿着所加工的轮廓曲线运动利用数字积分原理构成的插补装置称为数字积分器,又称数字微分分析器(Digital Differential Analyzer ),简称DDA 。
数字积分器插补的最大优点在于容易实现多坐标轴的联动插补、能够描述空间直线及平面各种函数曲线等。
因此,数字积分法插补在轮廓数控系统中得到广泛的应用。
从几何角度来看,积分运算就是求出函数Y = f (t )曲线与横轴所围成的面积,从t =t 0到t n 时刻,函数Y= f (t )的积分值可表述为⎰⎰==n n tt t t dt )t (Ydt S 00f如果进一步将t ∈[t 0,t n ]的时间区划分为若干个等间隔Δt 的小区间,当Δt 足够小时,函数Y 的积分可用下式近似表示t Y Ydt S n i i tt n ∆∑⎰-=≈=1在几何上就是用一系列的小矩形面积之和来近似表示函数f (t )以下的积分面积。
数字增量式直接函数法插补算法
数字增量式直接函数法插补算法:
1、定义:数字增量式直接函数法插补是一种通过定义数增量函数来实现机床运动控制的插补算法。
它基于曲线点数据,转换为数增量,利用增量函数快速实现插补计算。
2、特点:
(1)数字增量式直接函数法插补算法具有算法精度高、运算量小、运行速度快的特点。
(2)在实现步进步伐和匀速插补的基础上,它可以快速实现任何曲线的插补算法。
(3)数字增量式插补方法具有柔和的过渡特性,可以有效降低对环境的振动。
3、实现原理:在数字增量式直接函数法插补中,定义函数将曲线平滑转换为相应的数增量,从而获取曲线需要的每个步伐数据。
在此过程中,还可以实现参数调节,以加快运算速度,提高插补精度。
4、应用:
(1)数字增量式直接函数法插补在工业机床控制系统中最广泛应用;(2)用于高速加工精度要求较高的电路板、玻璃、钢筋圆柱、五金、
塑胶等材料的裁切及铣、刨等加工技术的控制;
(3)在精确的工具机/窖机中,数字增量式插补方法可以实现较高的控制精度,以满足材料加工的要求。
5、发展:近年来,数字增量式直接函数法插补算法在工业应用中得到
了越来越广泛的应用。
随着计算机技术的发展,数字增量式插补方法
不断性的发展,算法的小巧、轻量化得到了极大的改观,实现了更加
快速节能的加工控制,为工业智能与自动化的发展奠定了坚实的基础。